Optimization (D2) DPK
Easter 2005
5. NETWORK FLOWS

5.1 Maximal flow in a network

We consider a network with nodes N = {1,2,...,n} and directed arcs between some,
or all, of them. We will study the problem of flow in the network between two designated
nodes: 1, called the source, and n, known as the sink of the network. For each arc (3, 5)
from node ¢ to node j there is an associated capacity ¢;; > 0 and if z;; is the flow in that

arc then we require that z;; satisfy 0 < z;; < ¢ij.

Think of a flow of value v entering the network through the source 1 and exiting
through the node n; at all other nodes the net flow is zero so that flow is conserved except
at the source and sink; the object is to find the largest flow value v subject to the capacity

constraints on the flows in the arcs. Mathematically, the problem is to

maximize v subject to 0 <z < ¢y, forallé,j and
v o ifi=1,
injzﬁji:{ 0 ifi;él,n
j j —v ifi=mn.

This is a linear programming problem but the special structure enables us to analyze it in
a different way. For a subset S C N of nodes denote its complement in N as S = N\S.
For subsets S and 7" of nodes in the network denote by (S,T) = {(3,5): ¢ € S, j € T’} the
set of arcs in the network from nodes ¢ in S to nodes j in 7.

Definition A cut separating the source 1 and the sink 7 is a set of arcs of the form (S, S)

withl € SandneS.

47

A cut has the property that if all the arcs in the cut were removed from the network
it would separate 1 and n, so there could be no flow from the source to the sink.
Definition The capacity of a cut (§,5) is ¢(S,8) = Yies.jes Ciji that is, the sum of
the capacities over all arcs in the cut.

It is intuitively clear that the capacity of any cut should be an upper bound for the
value of any flow since any flow must flow through the cut. We can prove something

stronger which is the central characterization of a maximal flow.

Theorem 5.1 (Max-Flow Min-Cut Theorem) For any network, the mazimal value of

a flow from 1 to n equals the minimum cul capacity over all cuts separating 1 and n.

Proof. For any flow (z;;) and subsets of nodes S, T, denote by f(S,T) = > c s ier Tij
the flow in arcs from S to 7. If (S, S) is a cut and (z;;) is a feasible flow then summing

the constraints

v ifi=1,
in]-z:cﬁ:{ 0 ifi;él,n
j j —v ifi=mn,

over nodes ¢ € S we get
v=) D () =) D T)
i€S JEN i€ES jJEN i€S JEN
= J(8,N) = f(N,S) = /(5,8) + £(5,5) - /(S,9) — £(3,9) (1)

= f(Ssg) - f(gss) < f(Ssg) < C(S,g),

the first inequality being because z;; > 0 and the second since z;; < ¢;;. This shows that
the value of any flow is less than the capacity of any cut, so that Max Flow < Min Cut.
We show now that there is equality. Let (z;;) be a maximal flow (it is clear that a maximal
flow exists, why?). Define a set of nodes S in the following recursive way:

(i) 1€ 8;

(ii) if ¢ € S and x;; < ¢;; then j € S

(iii) if ¢ € S and ;; > 0 then j € S.
It is clear that the set of nodes S is constructed so that it is the set of nodes to which
more flow can be pumped from the source 1, consistent with the constraints. Then we

must have n € S, for otherwise there would be a path from 1 to n along which more flow

48

could be pumped which would contradict the fact that the flow is maximal. Hence (S, S)
is a cut separating 1 and n with the properties that

(a) ifi € S and j € S then z;; = ¢;;; and

(b) ifi € S and j € S then z;; = 0.
It follows that for the maximal flow and this cut (S, S) we have equality in the two in-

equalities in (1), completing the proof. 0

Example 5.2 Consider the network with the capacities shown

A maximal flow with value 5 is T2 = 2, 13 = 3, T34 = 1, I35 = 2, I3 = 0, T4 = 2 and

z45 = 3. The corresponding minimal cut is indicated by the dashed line. O

Note From the proof of the theorem, we see that to prove that a particular flow is optimal,

it is sufficient to find a cut that has capacity equal to the value of the flow.

5.2 The Ford—Fulkerson Algorithm

The proof of the max-flow min-cut theorem suggests an algorithm for finding a max-
imal flow; this algorithm is known as the Ford—Fulkerson algorithm (the theorem is
sometimes known as the Ford—Fulkerson Theorem). The algorithm starts with some fea-
sible flow (z;;), say xi; = 0. Then construct the set of nodes S iteratively as in the
theorem:

(i) 1€ 8
(i) if ¢ € S and z;; < ¢;; then j € S;
(iii) if : € S and z;; > 0 then j € S.

49

This process continues until either (i) n € S, in which case the current flow may be
increased, or (ii) no more nodes may be included in S and n ¢ S, in which case the current
flow is optimal. The construction of S ensures that S consists of those nodes 7 to which
more flow may be ‘pumped’ from 1 consistent with the capacity constraints; if the node
i € S (so more flow can reach ¢) and the flow in the arc (4, j) is below capacity, z;; < c¢;;
then more flow can reach j, while if the arc (j,4) is such that z;; > 0 then more flow can
reach j by reducing the flow in the backward arc (7,7). If n € S then by the construction
of S, there is a path from 1 to n along which the flow can be increased (by the amount
8 = min [ming; j)(cij — z4;), mingj 4y ;;], where the minimum over (i,j) is over forward
arcs of the path and the minimum over (7,) is over backward arcs (j,7) of the path). Now
the flow can be incremented by ¢ along the path to give a new flow and the algorithm can

be iterated again.

Note If the arc capacities and the initial flow are rational then this process terminates in
a finite number of steps at the optimal flow. To see this, scale up the capacities and the
initial flow so that they are all integers, then by the construction above é > 1 so that the

flow always increases by at least 1 on each iteration.

Example 5.3 Irrational flows If the initial flow is irrational then (even if the capacities
are rational) the algorithm may not terminate in a finite number of steps and may not even
converge to the optimal solution. This example has six nodes {1,2,3,4, 5,6} and (special)

arcs, each with capacity 1, as follows

Q

@

In addition, there are arcs (1,%) and (7,6), ¢ = 2,3,4,5 (not shown), each with capacity
10. The node 1 is the source and 6 is the sink. Start with an initial flow which sends flow

1 along the route 1 -+ 2 —+ 3 — 6 and flow w along the route 1 - 4 — 5 — 6, where

50

w = (V5—1) /2, and w satisfies 1 — w = w?; also w™! — w™ = w™*, for all n. Now
suppose that after the (2n — 1)th iteration of the algorithm, the flows in the special arcs

are shown in Figure 1.

Figure 1 Figure 2 Figure 3

For the (2n)th step, route flow of w™ along the path 1 -3 -2 — 5 — 4 — 6 to get
the flows in the special arcs shown in Figure 2. For the (2n + 1)th step send flow of w™
along the route 1 -4 —+ 5 — 2 — 6 to get the flows in Figure 3. Notice that the form of
Figure 3 is the same as Figure 1 (with 2 and 4 interchanged and 3 and 5 interchanged).
Between the two steps the flow is increased by 2w™; these steps may be repeated in the

obvious way and the total flow then converges to
T+w+2) w"=1+w+2w/(1 —w),
n=1

which is less than 5 and considerably less than the optimal flow, which is clearly 40. O

5.3 Minimal-cost circulation

Many optimization problems can be formulated in the form of minimizing the cost of
flows which circulate in a closed network; that is, unlike the situation with the maximal-
flow problem, where flow enters the network at the source and exits at the sink, in a closed

network the flow is conserved at each node, so that

Z (zij —xj;) =0, for each node 1. (1)

i

51

It is usually assumed that the flow in arc (Z,7) is restricted so that there are upper and
lower bounds on the flow,

. +
C,‘j < -731,] < Cijs

for each arc (4,) (2)
where ¢;; and c?;- are finite for each (7,7) and there is a cost d;; per unit flow in that arc.

So the problem may be formulated as:

minimize E dij:cij subject to E (.’L’ij — ﬂ?ﬁ) = 0, for each ’i, and C;j S Tij S CZ

i j
A flow is feasible if it satisfies (1), for each node, and the capacity constraints in (2), for
each arc. Important conditions for establishing the optimality of a flow are provided by

using the Lagrangian Sufficiency Theorem.

Theorem 5.4 A feasible flow (z;;) is optimal for the minimal-cost circulation problem
if there exist numbers ()\;) such that

ctif dij — i+ X; <0,

1y
Tij =

c; if dij—Xi+X; >0

]

and d;j — A\i + Aj = 0 whenever ci; <Tij < c;';

Proof. We wish to minimize the Lagrangian
L(:Il, A) = Z di]'x,'j — Z)\,’ Z (.’Ei]' - xj,') = Z (d,’j -)\i +)\j) Tij,
i.j i 7]
over the constraint region X = {(z;): ¢;; < zs; < ¢f;}. The result follows immediately

from the Lagrangian Sufficiency Theorem. O

Remarks
1. The dual variables ();) are sometimes known as potentials or node numbers
for the problem.
2. Notice that in the conditions of the Theorem only the differences between the (\;)
appear; consequently, without loss of generality one A; may be chosen arbitrarily,
usually it is set = 0.
+

3. In the case when one or other of ¢;; or ¢jj is infinite, e.g., when cfg = 00, then we
can see that we obtain a dual-feasibility condition for a finite minimum for the

problem, in this case it would be d;; — A\; + A; > 0.

52

Example 5.5 Mazimal flow as a minimal-cost circulation 1t is interesting to note that
the maximal-flow problem may be formulated as a minimal-cost circulation. Add another
arc from n to 1 with cost d,; = —1, and for the other regular arcs (7, 7), take C; = 0 and

¢ = cij with the cost di; = 0.

® . ®

cost —1

Maximizing the flow, v, in the arc (n,1) is the same as minimizing the total cost in the
enlarged network which is —v. For the arc (n,1), we will have no capacity constraints,
that is ¢,; = —oo0 and 0:1 = 400, S0 necessarily we must have d,; — A, + A1 = 0; one of
the node numbers may be chosen arbitrarily, so take A, = 0 which gives A\; = 1. Take a
minimal cut (S, S) and set A; =1 fori € § and A; = 0 for j € S, then check that

(i) when both 4,5 € S or both 7,5 € S, dij — A\ + \j = 0, so that z;; can take any

feasible value;
(ii) when i € S and j € S, dij — Ai + A; = —1 < 0, so that z;; = ¢;; = cij; and

(iii) wheniegandjeS, dij — i +Aj = 1>0,so0 that xij=c;j=0.

These are just the conditions for optimality for a maximal flow.

5.4 The transportation problem and transportation algorithm

A classical optimization problem, which is a special case of minimal-cost circulation, is
the transportation problem in which there are m sources of supply of a particular good,
{S81,...,Sm}, with amounts {s1,...,s,,} available, and n destinations, {D;,...,D,} at
which there are demands {ds,...,d,}, respectively, for the good. For each pair (S;, D;)
there is a cost d;; per unit for shipping from S; to D;.

m n
Assumption: Z 8; = Z d;; that is, total supply equals total demand.
i=1 j=1

53

The objective is to satisfy the demand from the supplies with the minimal transportation

cost. Denote by x;; the flow from S; to D;, then the problem is

m n
minimize E E dijﬂfij

i=1 j=1

subject to Z-Tij =5, 1l<i<m, 1)
=t

Sey=d;, 1<j<n, x>0, foralli,;j.
i=1

The problem may be formulated as a network as shown:

L(:l?,)\,V) = Z Zd,—jxij + Z i si — Z i | + ZV]‘ (dj — Z$1])
i=1 j=1 im1 i=1 =1 i=1
=33 (dij = M-y + Y Nisi+ Y vid;.
i=1 j=1 i=1 j=1

The minimum of the Lagrangian over z;; > 0 will be finite provided:

dij —Xi —vj 20, for each 4,7, (dual feasibility)
and at the optimum

(dij — \i —vj)z;; =0, for each4,j, (complementary slackness).

The existence of (\;) and (v;) satisfying these two conditions together with of course the
primal feasibility conditions, that the (z;;) satisfy the constraints in the problem (1), are
necessary and sufficient conditions for optimality.

There is a version of the simplex algorithm, specially tailored for this problem, known
as the transportation algorithm; it may be interpreted nicely in terms of the network

describing the problem. It examines a sequence of basic feasible solutions to the problem

54

and chooses (\;) and (v;) to satisfy complementary slackness at each stage and works to-
wards their also satisfying dual feasibility (at which point the three necessary and sufficient
conditions for optimality are satisfied and an optimal solution is obtained).

First notice that while there are m + n linear constraints in the problem, one of the
constraints will always be linearly dependent on the others so that there will be m +n — 1
basic variables in a basic feasible solution. A second observation is that a basic feasible
solution corresponds to flow in the network just on a spanning tree in the network; a sub-
network spans the network if it touches all the nodes in the network and it is a tree if it
contains no circuits.

We will introduce the algorithm by solving a particular problem with 3 sources of
supply with supplies (12,8, 11) respectively, and 4 destinations with demands (7, 6, 10, 8);

the matrix of unit costs for shipping is

8 6 7 5
4 3 5 4],
9 8 6 7

where the (7, 7) element is the cost of shipping 1 unit from S; to D;.

Step 1. Initial assignment We start the algorithm by choosing an initial basic feasible
solution; that is one in which there is positive flow (if the problem is non-degenerate) in
exactly m +n — 1 arcs of the network, or m+n — 1 cells if the problem is set out in tabular

form, as here.

Supplies
7] 5]
12
8 6 7 5
1] 7]
8
4 3 5 4
3] 8 |
11
9 8 6 7
Demands 7 6 10 8

This assignment is chosen by what is known as the North-West (NW) method and the
flows in the ‘basic’ cells are indicated in the upper left-hand corner of the cells with the

costs (di;) in the lower-right hand corners; the NW method puts as much flow as possible

55

in the cell (1,1) then either moves over to the cell (1,2) or down to the cell (2,1) and
assigns as much as possible again in the obvious way, and continues until all the demands
are satisfied and all supplies used up. In this case the total cost of this flow is 7 x 8 +5 x

6+1x3+7x5+3x6+8x7=198.

Step 2. Assign the Lagrange multipliers Next, choose values for the Lagrange
multipliers ();), (v;), so that d;; — A\; — v; = 0 for the basic cells; this ensures that
complementary slackness holds. As only the sum of A; 4+ v; enter into all the calculations

one of these multipliers may be chosen arbitrarily; set A; = 0, say.

vy 8 6 8 9
M 5]
0
8 6 7 5
] 7]
-3
4 3 5 4
3] 5]
-2
9 8 6 7

We can then assign, in order, v1, v9, A2, v3, A3 and vy4.

Step 3. Check for optimality Identify those (non-basic) cells for which d;;—\;—v; < 0;
if all cells have d;; — A\; —v; > 0 then the current solution is optimal. A v" has been placed
in a non-basic cell which satisfies dual feasibility, d;j; — A\ —v; > 0, and a x in those

non-basic cells for which d;; —A\; —v; < 0, along with the numerical difference d;; — \; —v;.

Vj 8 6 8 9
o 5]
0 x —1 X —4
8 6 7 5
1] 7]
-3 x —1 X —2
4 3 5 4
3] 8 |
-2 v v
9 8 6 7

In this case the flow is not optimal so the pivot operation must occur.

Step 4. Pivoting Choose one of the non-basic cells for which d;; — A; — v; < 0; the

56

algorithm will work if any such cell is chosen, but in line with our rule-of-thumb in the
simplex algorithm we will choose the one with the most negative value of d;; —\; —v;, which
is shaded below. Increase the flow in this cell by € and form a loop as shown, increasing or
decreasing the flow by ¢ in basic cells to ensure that the row and column totals for the flow

are unchanged (and equal the supplies and demands, that is, preserving primal feasibility).

7] 5 —¢|
8 6 7
1+e] 7—¢]
4 3 5 4
3+e] 8 —¢|
9 8 6 7

We can increase € until the flow in one of the basic cells becomes zero, in this case when

€ = 5, and this gives a new basic feasible flow :

[7] E
8 6 7 5
6 | 2]
4 3 5 4
8 | 3]
9 8 6 7

The algorithm now returns to Step 2 with this flow as the basic feasible flow. Notice that
the new total cost is 178; the reduction in the value of the flow is € x (di; — A; — v;) for
the cell which enters the basis. We set out the two further iterations of the algorithm for

this problem that are required to obtain the optimal solution.

vj 8 2 4 5
Ai 7—e| 5+e|
0 v v
6 7 5
6 | 2 —¢]
1 X —2
3 5 4
8+e| 3—e|
2 x —1 v
9 8 6 7

57

vy 8 7 4 5
Ai 5—¢€ 7
0 v
8 7 5
2te | Total cost = 168
—4 v v
4 3 5 4
10| 1]
2 X —1 x —1
9 8 6 7
vj 7 6 4 5
x 5] 7]
0 v v
8 6 7 5
7] 1] Total cost = 163, optimal
-3 v v
4 3 5 4
10] 1]
2 v v
9 8 6 7
Remarks

1. It is easy to see that the pivot operation (increasing the flow in a non-basic cell
by €¢) will always lead to a circuit, or closed loop, by considering the spanning
tree in the network representing the basis. For example, the initial basis in the

problem above, with its associated flows, is:

D, D,
and when the
D, D,
arc (5, D,) enters ¢
2

D, the basis D,
S;

leading to the circuit (with orientations on the arcs indicated):
S1 = Dy < S3 = D3 < Sy = Dy < S5.

2. When a degenerate basic solution is encountered in the transportation algorithm

(the demands may be met from the supplies with fewer than m +n — 1 basic cells

58

with positive flows), then to assign the Lagrange multipliers it will be necessary
to add ‘basic’ cells with zero flow and proceed as before. Degeneracy may occur
whenever a subset of demands may be satisfied exactly by a subset of supplies.

. The NW algorithm described above is only one way to initiate the transportation
algorithm — any initial basic feasible flow may be used to start it off. The greedy
algorithm can be a useful starting point since it may reduce the number of
subsequent iterations of the algorithm (see the Example Sheet); what it does is,
first, to put as much flow as possible on the smallest cost then put as much flow
as possible on the next smallest cost and so on. More formally, choose (¢, j') so
that dyjy = min;; d;; and put flow equal to min (s;,d;) into cell (¢/,;'); then
eliminate row ¢’ if s;; < d; or eliminate column j' if s;; > d;: (if they are equal
then eliminate both, the assignment will be degenerate) and repeat the process
on the reduced array; when two or more costs tie to be the smallest at any stage,
any one of the corresponding cells may be chosen. For example, for our problem
above, an initial assignment (with total cost 167) given by the greedy algorithm

is:

Supplies
4] N
12
8 6 7 5
2 | 6]
8
4 3 5 4
1] | 10 |
11
9 8 6 7
Demands 7 6 10 8

You may check that the algorithm will take you to an optimal solution in one iter-
ation starting from this initial basic feasible solution. The greedy algorithm will
not produce a unique assignment if there is a tie for the minimal cost remaining
at any stage, e.g., for our problem it may produce the assignment below (which
has total cost 173) from which you may verify that it requires two iterations to

reach an optimal solution.

59

Supplies

[6] [6]
12
8 6 7 5
[6] [2]
8
4 3 5 4
1 10
11
9 8 6 7
Demands 7 6 10 8

. The network for the transportation problem can be transformed so that the trans-

portation problem may be regarded as a minimal-cost circulation: add an extra
node I, say, with arcs (7, S;) with costs = 0 and upper and lower capacity con-
straints = s;, for each i, and arcs (Dj,I) with costs = 0 and upper and lower
capacity constraints = d;, for each j. These have the effect of forcing flow s; into
node S; and forcing flow d; out of node D;. The node numbers for the problem

will be the (A;) and (—v;) we have obtained above.

. The transportation problem is also a special case of the distribution problem for

a general network where associated with each arc (4, j) are costs d;; and upper and
lower capacity constraints (c;j, cfj), and at each node 7 the net flow is constrained
to be b; where the (b;) are given numbers with the constraint), b; = 0 (which

expresses the constraint ‘what goes in must come out’). So the problem is

minimize E d,'jzij
%)

+
< @ij € ¢

for all z, j.

ij

subject to Z (i —xzj;) = b;, foreachi, ¢
J

In the transportation problem ¢;; = 0 and cjj = oo for each arc; when i is the
node S;, b; = s; and when ¢ is the node Dj, b; = —d;, so that demands are
negative supplies. The transportation algorithm is a special case of a version
of the simplex algorithm developed for the distribution problem, known as the

simplex-on-a-graph algorithm.
6 April 2005

60

