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4. GAME THEORY

4.1 Saddle points of two-person zero-sum games

We consider a game with two players. Player I can choose one of m strategies, indexed
by ¢ = 1,...,m and Player II can choose one of n strategies, indexed by 7 = 1,...,n; if
Player I plays strategy < and Player II plays strategy j the payoff to Player I is a; ; and
the game is zero-sum in that what Player I wins Player II loses. The payoff matrix
A = (ai,;) is given, and known to each player. For example, consider the game in which
Player I has 3 choices of strategy and Player II has 4 and the payoff matrix is:

3 4 1 -2

A= 2 5 2 4

-5 2 1 0
To analyze the game, consider the worst outcome that can happen for Player I if he picks
each of his strategies 1, 2 or 3. Looking along row 1 we see that the minimum he can get,
if IT picks option 4, is —2; if [ picks 2 his worst possibility is 2, which occurs when II picks
1 or 3, and if I picks 3, his worst is —5 when II picks 1. These are illustrated below, and
if we consider similarly the worst possibilities for Player II, we get the column maxima in

the table.

Player II chooses j

Strategy 1 2 3 4 Row min
1 3 4 1 -2 -2
Player [ 2 2 5 4 2
chooses % 3 -5 2 1 -5
Col. max 3 5 2
4

By taking the maximum of the row minima we see that Player I is guaranteed not to get
less than the amount 2 by choosing strategy 2, while, by considering the minimum of the

column maxima, Player II is guaranteed not to lose more than 2 by choosing his strategy
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3. The upshot is that they will settle on the (2,3) element which is worth 2 to Player I
(—2 to Player II) and either player may be worse off if they deviate from the strategies
indicated. The amount that they settle on, here 2, is known as the value of the game and
the element (2,3) of the matrix is a saddle point. The matrix has a saddle point when
min; max; a;,; = max; min; a; ;. It is always the case that min; max; a; ; > max; min; a; ;
but not all matrices have a saddle point as the next example below illustrates.

For the row player I, we say that strategy ¢ dominates strategy ¢’ if a;; > as ; for
all j = 1,...,n; for the column player II, strategy j dominates strategy j' if a;; < a;
for all ¢ = 1,...,m. A player will never play a strategy that is dominated by another
(except possibly in the special case where the payoffs are identical for all outcomes). In
the example above, for the row player strategy, 2 dominates 3, while for the column player

strategies 1 and 3 dominate 2.

Example 4.1 Undercut In a version of the game Undercut, each player selects a number
from 1, 2, 3, 4. The players reveal their numbers and the player with the smaller number
wins £2, unless the numbers are either adjacent, when the player with the larger number

wins £1, or equal, when the game is tied with payoff zero. The payoff matrix is

Strategy 1 2 3 4 Row min

1 0 -1 2 2 -1
2 1 0 -1 2 -1
3 —2 1 0 -1 -2
4 -2 -2 1 0 -2

Col. max 1 1 2 2

Since all the row minima are negative and all the column maxima are positive there can
be no saddle point. This is an example of a symmetric game; its payoff matrix is an
anti-symmetric matrix, that is A = —AT.

4.2 Mixed strategies

In order to study games for which there is no saddle point, we widen the sets of

strategies available to each player. A mixed strategy for Player I is a set of probabilities
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p = (pl,...,pm)T, where py,...,pm > 0, and Xm:p,- = 1; if Player I uses the mixed
strategy p he chooses row ¢ with probability p;. Aiznhixed strjtegy for Player II is a set of
probabilities ¢ = (g1, .- .,qn)T, where ¢1,...,¢, > 0, and qu = 1 with the analogous
interpretation. The expected payoff to Player I if Player II ]uzsies jis Y, piai;, so Player I
seeks to

maximize [mian,—a,—,j} subject to Zpi =1, pi=20, 1<i<m.

I i=1 i=1

This problem is equivalent to
m m
P: maximize v subject to Zpidi,j >v, 1<j<m, Zpi =1, p;20, 1<e<m.
i=1 i=1

If we write € = (1,1,...,1)" (we will use the same notation, e, for vectors of lengths m

and n with all components equal to 1 — it will be clear from the context which is meant),

then this problem may be written in matrix form as
P: maximize v subject to ATp>ve, e ' p=1, p > 0.

This is of course a linear programming problem and it is easy to see that the dual problem

is Player II’s problem as he will wish to solve

n n
D: minimize v subject to Zai,jqj <wv, 1<i<m, qu =1,¢20,1<j5<n,
i=1 j=1

which in matrix form is

D: minimize v subject to Aq < ve, e'g=1,¢>0.

Theorem 4.2 If P, q and v satisfy:

ATp>7Te, e p=1, >0 (primal feasibility)
AG<Te, e g=1,g>0 (dual feasibility)
7=p Aq (complementary slackness)
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then D and q are optimal for P and D respectively, and v, the common value of the two

problems, is the value of the game.

Proof. 'This is just Lagrangian sufficiency again. Suppose that v, p are feasible for P and

w, q are feasible for D, then
T
v<v+q" (ATp—ve) =gA'p=w+p" (A4g—we) < w,

with equality throughout if we have v = w = 7, p = p and q = q since we have comple-

mentary slackness, which (along with e"P = 1 = e' q) is equivalent to
q' (A"p-7e) =0=p" (Ag-Te),
which completes the argument. O

Remark
The necessity part of the duality result for the pair of linear programming prob-
lems P and D is of course also true: that is, for any matrix A there exist P, @
and U satisfying the conditions of Theorem 4.2. This fact is sometimes known
as the Fundamental Theorem of Matrix Games, but as we have seen it is just a
consequence of linear programming duality. It’s conclusion is also equivalent to

the statement that

minmax p' Ag = maxmin p' Ag,
a p P q

T

where the minimum is over ¢ > 0, e’ ¢ = 1 and the maximum over p > 0,

e'p=1.
4.3 Finding solutions for games
There are several approaches to tackling the problem of finding solutions to games:

1. Direct solution of a player’s optimization problem

For small matrices it may be possible to solve one of the players problems directly;

for example, consider the payoff matrix

=L N
L = W
TSN



For Player 1 it is clear that row 1 dominates row 3 so that an optimal row strategy will
put no weight on row 3, and if we let p; = p, p2 = 1 — p, ps = 0 the problem becomes one

of trying to find the maximum v such that v and p satisfy
2p+3(1-p)=3-p2v,
3p+(1—-p)=1+4+2p> v,
dp+3(1-p)=5+fp2v, 0<p<L

Plotting the three lines as functions of p gives

which shows that the largest value of v is when the first two lines meet (at p = %) giving
v = Z. Thus we have the optimal strategy for Player I is (2, %,0). Notice that the line
% + %p is strictly greater that v at p = %, thus Player II's optimal strategy must be of the
form (g,1— ¢,0) and looking at the top row we get (using complementary slackness) that
2¢+3(1 — q) = v = % which gives ¢ = 3.

2. Determining strategies satisfying the conditions of the Theorem

In some cases features of the matrix may be used to help determine strategies which
may be checked to be optimal using the sufficient conditions of the Theorem. For example,
for the Undercut game introduced above the matrix is

0 -1 2 2

1 0 -1 2
—2 1 0 -1}’
-2 =2 1 0

and since the game is symmetric (A = —AT) the value is necessarily 0 and any strategy

optimal for Player I must also be optimal for Player II. Suppose that p = (pl,pg,ps,p4)T
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is an optimal strategy, then if p1 > 0, complementary slackness will give (from the first
row)

—p2+2p3+2pa=0 or —pa+2(1—p—p3)=0 (1)

which gives ps = 2(1 — p1)/3. If ps > 0, we would have from the second row,
pr—p3+2ps=0 or p—p3+2(1—p1—ps—p3) =0, (2)

which gives ps = (2 + p1)/9, after using the expression for py. Similarly, from the third

row, if p3 > 0, we must have
—2p1 +p2 —pa =0, (3)

and we deduce that p, = (2 — 8p;1)/3. But we also have ps = 1 — p; — p2 — ps which gives

pa = (1 —4p1)/9. Equating the two expressions for ps shows that we must have p; = i.

This proves p = (i, %, i, 0) is an optimal strategy and it is the unique optimal strategy
since its first three components are strictly positive, the argument above shows that any

optimal strategy must satisfy (1), (2) and (3) which has only one solution.
3. Using linear programming

Although Player I's problem is a linear programming problem, it is not immediately
in a form to which we could apply the simplex algorithm because v is unconstrained in
sign. However, if we add a constant ¢ > —min; ; a; j, to each element of the matrix A, all
the elements of A may be taken as positive, and we can assume that v > 0; this will not
change the optimal strategies and will just add ¢ to the value. Now set z; = p;/v and the

row player’s problem which is

maximize v subject to ATp >ve, e'p=1, p >0,
becomes

maximize v subject to ATz > e, ez =1/v, & > 0,
which is equivalent to

T

minimize e' & subject to ATz >e, 0.
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This may now be tackled using the simplex algorithm. The column player’s problem may

be reduced in the same way, by putting y; = ¢;/v, to

maximize e' y subject to Ay < e, y > 0;

this latter problem is somewhat simpler to solve by this method as it does not require the
use of the Phase I procedure to find an initial b.f.s. as the row player’s problem would.

Consider the Undercut game and add 3 to each element to obtain the matrix

3 2 5 5
4 3 2 51,
1 4 3 2}’
1 1 4 3
setting up the tableau (with slack variables 21, 22, 23, 24) we have
* * * *
Yi Y2 Ys Y+ 21 22 23 24
21 3 2 5 5 1 0 0 0 1
2z 3 2 5 0 1 0 01
23 1 4 3 2 0 0 1 0 1
24 1 1 4 3 0 0 0 1 1
Payoff | 1 1 1 1 0 0 0 0 0
T
Then a sequence of pivots as indicated, gives
* * * *
Y Y2 Y3 Y4 21 22 23 2
1 7 5 3 1
Ayl oo oTE 0 )
u I3 2 1 0 7z 0 0] 3
23 0 % g % 0 7% 1 0 %
s 0 3 3 F 04 0 1)y
Payof| 0 1 L -1 o -1 o o0]|-1
T
* * * *
Y1 Y2 Ys Y+ 21 22 23 24
48] 17 10 1 4
21 0 0 13 13 1 —1i3 i3 0 i3
SO RS B B I A I
Z4 0 0 13 13 0 —1is " i3 1 13
4 4 3 1 4
Payoff 0 0 i3 13 0 —13 13 0 ~13
T

The final pivot, bringing in y3 and dropping z;, gives the optimal solution

* * * *

n Y2 Ys Ya 21 22 23 24
17 13 5 1 1
Ys 0 0 1 3% % —u m 0| 1
53 1 7 11 1
Y 0 0 3 2 22 a8 0| 12
1 5 1 7 1
Y2 0 1 0 -5 -3 13 321 0| 5
25 43 11 7 5
24 0 0 0 i 45 24 s 1 15
5 1 1 1 1
Payoﬁ' 0 0 0 12 12 6 13 0 -3

The optimal value of the linear programming problem is %, which means the value of the
game is 3 (remember we added 3 to all the components of the original symmetric game
whose value was 0). We can read off the optimal solution y; = ﬁ, Yy = %, Ys = ﬁ and
ys = 0. These values must be scaled by the value 3 to get the optimal strategy ¢; = i,

@ =%, 03 =1 and g1 = 0, as we had obtained before.

Remarks

1. Notice the symmetry between the payoff row and the right-hand side in the final
tableau; minus the entries in the payoff row are the optimal solution to the dual
problem—because of the symmetry of the original game the optimal solutions to
the primal and dual are the same, one giving the row player’s strategy, the other
the column player’s. For any game, when we solve one player’s problem by linear
programming, we may identify the other player’s optimal strategy from the final
payoff row.

2. It is clear from this section that solving a game by linear programming may not be
tractable by hand except for the smallest problems. However, for larger problems

and with the aid of a computer, it may be the only way to fly.
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