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3. THE SIMPLEX ALGORITHM

3.1 Introduction

We know that, if a linear programming problem has a finite optimal solution, it
has an optimal solution at a basic feasible solution (b.f.s.). The simplex algorithm is a
systematic method of searching through the basic feasible solutions in such a way that,
at each iteration, it moves to a better solution in the sense of having higher value of
the objective function (or ‘payoff’ as it is often called); this would be in the case of a
maximization problem, we would want a lower value if we were minimizing. The better
solution is an ‘adjacent’ one which is reached by moving along an edge of the feasible set.
As there are only a finite number of basic feasible solutions (bounded above by (Z)) this

process will terminate in a finite number of steps. Schematically, the algorithm proceeds

as follows:
Take an Test whether the YES )
e current b.f.s. Terminate
initial b.f.s. is optimal

[0

Replace the b.f.s.
with an adjacent
one with higher value

We will illustrate how this goes by considering the example of the previous chapter. In
this case we will take as the initial b.f.s. the point A in the diagram corresponding to the
values

1 =0, z90=0, 21 =4, z9 =6.
In general it may not be obvious how to determine an initial b.f.s. (we will come to that
question later when we introduce the two-phase algorithm) but for any example which we

can write with inequality constraints Az < b where b > 0, then when we put it in equality

form Az + z = b with slack variables z > 0 we can obtain an initial b.f.s. by setting x = 0
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and 2 = b > 0 (as we have done here). The basic variables at A are z; and 2 and the

non-basic variables are z; and zs. Let us write the problem as

2 =4-2x1— Ts (1)
23 =6 — 211 — 3z (2)
Payoff f = 311 + 229, (3)

with the feasibility conditions z; > 0, 9 > 0, 21 > 0 and 25 > 0. This representation of the
problem expresses the basic variables z1, 29, and the objective function f, parametrically
in terms of the non-basic variables z; and x3. At this b.f.s., the non-basic variables
z1 = 9 = 0, and we can read off the values of the basic variables, z; = 4, zo = 6, and of
the objective function, f = 0, at A.

It is clear that this b.f.s. is not optimal because we can increase either z; or x5 from
0 (by a sufficiently small amount so as to keep 2; and z; non-negative) and thus strictly
increase the objective function this is because the coefficients of both z; and zs in the
expression for the objective function are positive. The method of the simplex algorithm
is to move from this b.f.s. by increasing exactly one of the non-basic variables from zero
(keeping the others equal to zero) by as large an amount as possible, while retaining
feasibility (that is, the current basic variables > 0). In our case, since the coefficient of
in the objective function is larger than that of zo let us choose z; to increase, as it will
give the larger rate of increase of the payoff; this is a useful rule-of-thumb but it is not
necessary to the algorithm — choosing any non-basic variable with a positive coefficient in
the objective function would do.

Now as we increase z; from zero, keeping zo = 0, the current basic variables are
21 = 4 — 2z, 29 = 6 — 2z1, and we see that we are moving along the edge AB of the
feasible set; note that z; becomes negative as z; passes through the value 2 while z5 does
not change sign until z; = 3, so the largest value of z; that we may take and remain within
the feasible set is 1 = 2. This gives a new b.f.s. z1 =2, 29 = 2, z9 = 2; = 0, which is the
point B in the diagram. This new b.f.s. has z9, 21 as non-basic variables and z1, 29 basic.

We now rewrite the problem parametrically in terms of the new non-basic variables

zo and z;. Divide (1) by 2 and rearrange to get z; in (4) below, then substitute z; into
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(2) (which is the same as subtracting (1) from (2) and rearranging to get the expression

for 25 in (5), and substitute for z1 in (3), which corresponds to adding $ times (1) to (3)

to get
z1=2- %21 — 373 (4)
29 =24+ 21 — 219 (5)
Payoff f=6— 2z + 1zs. (6)

At this stage we have gone from 21, 22 as the basic variables to z1 and z, basic (the
terminology is ‘zy has entered the basis’ and ‘z; has left the basis’). We are now at a
better b.f.s. since the value of the objective function is now f = 6, and we start the loop
again.

Test for optimality: there is a coefficient of a non-basic variable, x4, in the expression for
the payoff (6) which is positive, so that the current b.f.s. is not optimal. We can increase

z9 from 0 (‘z, enters the basis’) to get a higher value of the objective function.

Choice of variable to leave the basis: the first of the two basic variables to hit 0 as
x5 increases (and z; is kept fixed at 0) is 22 (when x5 = 1).

The new b.f.s. has z, z2 basic and z1, 22 non-basic, which corresponds to the point D
in the diagram. Again, we express the problem in terms of the non-basic variables. Divide
(5) by 2 and rearrange to get (8). Take 1 x (5) from (4) (to eliminate z, or equivalently
substitute for z, from (8) into (4)) and rearrange to get (7); finally, add + x (5) to (6) to

get (9) (again, to eliminate z3), and we have the problem represented as

T = % - %Z1 + 122 ()
o= 1+ %21 — %22 (8)
Payoff f=18_5; — 1z, (9)

We see that this b.f.s. with z; = %, r2 = 1, 21 = 29 = 0 and the objective function f = %

is optimal because in (9) the coefficients of both the non-basic variables are negative so

increasing either from 0 would give a lower value of the payoff.

3.2 The simplex tableau
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The discussion in the previous section contains all the essential elements of the simplex
algorithm, but the somewhat adhoc transition through the steps from b.f.s. to b.f.s. that
we gave needs to be systematized and formalized to cope with larger problems. The way
this is done is by writing the problem in the form of the simplex tableau, which is a form
of bookkeeping for the procedures we have used. We will work through the problem using
the notation of the simplex tableau. Firstly the problem in equality form is:

2r1 + x9 + 21 =4
2x1 + 34 +29=6
Payoff 3z + 2z, =7,
with, of course, the conditions zi, zs, 21, 22 > 0 always assumed. This is written in the

form

21 2 1 1 0 4
29 2 3 0 1

Payof | 3 2 0 0|0

with the * to indicate the basic variables; the entries z; and 29 on the left-hand side are to
remind you to which basic variable each row refers, including them is a bit of overkill but
a little redundancy does not hurt if it helps to make it clearer. This table is essentially

equations (1)-(3). In general if the constraints are in the form Az = b where A is an m x n

. T T .
matrix , € = (z1,...,2,) and b= (b1,...,b,) , the tableau looks like
Ti Ty o+ Tn
a1 ara v Qia| b
Gma Gm,2 “°° Amn bm
Payoff | ag1 @02+ aon|@o0

but within the box (rows 1 to m, columns 1 to n) there is the identity matrix (as there is

under the basic variables in our example ).

Step 1 Test for optimality. Look along the payoff row, if all the entries are < 0 (apart

from the bottom right-hand entry ago which is —f, where f is the value of the objective
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function at the current b.f.s.), the current b.f.s. is optimal (we need all entries > 0 if the

problem is a minimization). Otherwise, we proceed as follows.

Step 2 Identify the non-basic variable to enter the basis; this is called ‘choosing the pivot
column’. We look along the payoff row (ao,1,...,a0,, ) and choose a positive element (a
negative element if we are minimizing); our rule-of-thumb is to choose the largest positive
element g ; indicated by 1 below to give the steepest ascent, (but this is no guarantee that
we will minimize the number of iterations of the algorithm). The choice of pivot column is

to ensure that the objective function is higher (lower for minimization) at the next b.f.s..

Step 3 Choose the basic variable to leave the basis; this is called ‘choosing the pivot
row’. Within the pivot column j we choose the row element a; ; which minimizes the ratio
bi/ax,; over those rows k for which ag; > 0. If all ar,; < 0 for all rows £ = 1,...,m then
the problem is unbounded above (the maximum of the problem = co) because the variable
x; may be increased indefinitely without making any of the basic variables go negative.
The element a; ; chosen in this way is the pivot element and boxed in the tableau below.
The variable z; enters the basis and the variable that leaves the basis may be determined
from the ith row label; it corresponds to the basic variable which has a 1 in the 7th row in
the identity matrix below the basic variables. This choice of pivot row is made to ensure

that at the next step the basic solution is feasible.

* *
I ] Z1 Z92
2 1 1 04
Z9 2 0 1
Payof | 3 2 0 0| 0
T

Step 4 We need to perform the pivot operation, when the pivot element is a; ;. This is
the process of rewriting the problem in terms of the new basic variables, as we did going
from the representation (1)-(3) to the representation (4)-(6). The procedure is to

(i) divide row ¢ by a;j;

(ii) add —(ak,j/ai;) x row(i) to row k for each k # ¢ (including payoff row).
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Notice that this operation preserves the property that the identity matrix is always em-
bedded in the tableau under the basic variables (possibly after a rearrangement of the

columns).

In the case of our example we obtain (the left-hand) tableau below, which should be
compared with equations (4)-(6). At this stage we return to Step 1 and repeat the cycle.
In the right-hand tableau we identify that the current b.f.s. is not optimal, that x5 should

enter the basis and that 29 should leave:

* * * *
I 9 21 z9 I 9 Z1 29
I % % 0 2 X1 % % 0 2
29 2 -1 1 2 29 _ 1 )
Payoff i -2 0|-6 Payoff I -2 0|6
t
Performing the pivot operation we obtain
* *
I X9 Z1 Z9
w1 0 313
) 1 7% % 1
Payoff| 0 0 -2 —1 |-%

which corresponds to equations (7)-(9), and which is optimal from Step 1 above. We read
off the optimal solution z; = g, o =1, 21 = 29 = 0, and the optimal value of the objective
function is 12—3, obtained as minus the bottom right-hand entry of the tableau.

Remarks

1. By comparing the various simplex tableaux for this problem with the enumeration
of the solutions to the dual problem in the previous chapter, it may be noted that,
at each stage, in the payoff row of the tableau the dual variables at the relevant
b.f.s. may be identified. This will be the case when the constraints in the primal
problem are inequalities, however the order in which the dual variables appear,
and their sign, may have to be deciphered, depending on the original formulation
of the problem. In the typical formulation, as we have here, where we start from

the b.f.s. where the slack variables are the basic variables then the optimal dual
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variables will be minus the entries under the slack variables in the payoff row of
the final tableau (see below and later). In this example, from the final tableau we
can see that the optimal solution to the dualis Ay = 2, Ay = 1, and Ay =v; =0,
A4 = vy = 0. This can provide a useful check on your arithmetic as we must have,
at the optimal solution, that ' A = ¢z, and here 4 (2) + 6 () = L&,

. Each step of the simplex algorithm just involves elementary operations on the
rows of the tableau: dividing through a row by a constant or adding/subtracting

a multiple of a row to/from another. If we compare the initial and final tableaux

* * * *
I I9 21 Z9 1 I9 21 29
7 2 1 1 0| 4 T o 3 -1
29 2 3 0 1 6 Z9 0 1 -1+ 1 1
Payoff | 3 2 0 0 0 Payoff | 0 0 —% —% — 12—3

of the problem we have looked at, because the identity matrix is initially below
the slack variables z1, 2z, we can identify easily the total effect of these operations.

By looking under z; and 25 in the final tableau, we see that the first two rows
have been pre-multiplied by the matrix

(471

and from considering the entries under 21, z2 in the payoff row we see that the

(SIS
T[N,

final payoff row has been formed by adding (=2 x (row 1) — 1 x (row 2)) to the
initial payoff row. Suppose now that the initial right-hand sides in the constraints

are changed to 4+¢; and 6+ €3, then the new right-hand sides in the final tableau

d4+e) %+4§61*i62
6+ € n 1—%61+%62

will be determined by

(-

and the new final tableau is

I Y
[N

* *
Z1 T2 21 22
3 1 3 3 1
Il 1 0 1 17 2 + 261 — z€2
1 1 1 1
T2 1 -3 5 1—561+§62
5 1 13 5 1
Payoﬂ' 0 —1 ~1 |73 —z€1—z€

[\
©

One thing to note is that (apart from the changed value of the objective function)
the payoff row is unchanged so the entries are still < 0; this tableau will be optimal
for the revised problem so long as the new right-hand sides are > 0, that is the

basic solution given by this tableau is feasible for the revised problem. So long as
%4—%61*%62?0, and 1*%61-%%62?07

the tableau is optimal; this will be true irrespective of whether the application
of the simplex algorithm has taken you outside the feasible set in the intervening
steps. This is because of the three necessary and sufficient conditions for opti-
mality we had in the previous chapter. The other thing to note that the change
in the optimum value is 3e; + 1es, which is consistent with the shadow price
interpretation of the optimal dual variables \; = ?I and Ay = i, discussed in

Chapter 1.

3.3 The two-phase method

There remains the question of how the simplex algorithm should be started if there
is no obvious b.f.s from which to start the algorithm. The answer to this, somewhat
paradoxically, is that the simplex algorithm itself may be used to generate an initial b.f.s..
This is done by setting up a linear programming problem (the Phase I problem) for which
there is an obvious initial b.f.s. and which yields an optimal solution which will be an
initial b.f:s. for the original problem (if one exists). Phase II is then the application of the
simplex algorithm to the original problem starting from this initial b.f.s.. We will consider

the example:
maximize r1 — 3rs + drs

subject to 1+ To+ 3 <30
— x9+ 2x3 =20

-1+ 229 + x3 > 40

T1, T2, T3 = 0.

Add slack variables to the first and third constraints to put it in equation form and we
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obtain

maximize z1 — 39 + bz3
subject to 1+ Ta+ T3+ 2 =30
— 9+ 2x3 =20
-1+ 2x9 + 3 — 29 =40

T1, Ta, T3, 21, 22 2 0.

In the previous section we could start from the feasible solution with just the slack variables
as basic; this cannot work here, for a start there is no slack variable appearing in the second
constraint and, if we take 1 = x5 = x3 = 0, then we obtain z; = —40 which is not feasible.
The answer to the problem is to introduce what are known as artificial variables y1, y2

into the constraints

1+ o+ x3+ 2 =30
— X9+ 223 +y1 =20
—T1+2T9 + T3 — 29 +y2 =40

T1, T2, T3, 21, 22,Y1, Y2 2 0,

and then minimize y; + y» subject to these constraints, starting from the b.f.s. to this

enlarged problem obtained by taking z;, y; and y, basic, that is

1 =Ts =x3 =29 =0, 21 =30, y1 =20, y =40;

if there is a solution to this Phase I problem with y; = y» = 0 (1, y2 non-basic) then there
is a b.f.s. to the original problem from which we can initiate the simplex algorithm for the
original problem. If the optimal solution to the Phase I problem has optimal value which
is strictly positive then there is no feasible solution to the original problem. We set this
up in tableau form, and as a useful piece of bookkeeping during the Phase I algorithm, we
include a row corresponding to the Phase II objective function (the objective function for

the original problem). This avoids having to calculate the Phase IT objective function in
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terms of the non-basic variables at the end of Phase I.

* * *
1 T2 T3 21 22 hn Y2

1 1 1 1 0 0 0 30

0 -1 2 0 0 1 0 20

-1 2 1 0 -1 0 1 40

Phase II| 1 -3 5 0 0 0 0 0
Phase I | 0 0 0 0 0 1 1

We have written the Phase I objective function as y; +y2 so the problem is a minimization;
if you feel more comfortable maximizing, you may replace it by —y; — ys.

Preliminary Step Notice first of all that the tableau above is not yet in the correct form
to apply the simplex algorithm. The payoff row(s) should express the objective functions
in terms of the non-basic variables so we need to subtract the second and third rows from

the Phase I row to eliminate y; and ys.

* * *

1 T2 T3 21 22 hn Y2
21 1 1 1 1 0 0 0 30
Y1 0 -1 0 0 1 0] 20
Yo -1 2 1 0 -1 0 1 40
PhaseII| 1 -3 5 0 0 0 0 0
PhaseI | 1 -1 -3 0 1 0 0 [—60

All we are doing here is expressing

Y1+ Y2 =60+ 21 — 29 — 323 + 20

from the second and third constraint. We are now ready to roll and solve this Phase I
problem (remembering that we have set it up as a minimization and so we choose a negative

element in the payoff row).

Phase I We take two pivots, first introducing z3 and dropping y; (pivot element marked
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above) to get:

* * *
1 Tz T3 21 22 Y1 Yo
7 1 2 0 1 0 —3 20
z3 0 —% 1 0 0 % 10
v | -1 0 0 -1 -} 1] 30
Phase IT| 1 f% 0 0 0 f% 0 |—50
PhaseI | 1 -3 0 0 1 2 0]-30
T
and then then pivoting on g to introduce z9 and drop ya:
* * *
z1 ) x3 21 29 Y1 Yo
8 3 1 3
< 5 0 1 5 -5 —5| 2
1 1 2 1
Zz3 -5 1 0 -3 5 5 16
2 2 1 2
PhaseII| ¢ 0 0 o0 - -2 1l|-44
Phase I 0 0 0 0 0 1 1 0

We are now at an optimal solution to Phase I; all the entries in the payoff row are > 0
(we are minimizing) and the optimal value is 0 so y; = y2 = 0 and we have a b.f.s. of the
original problem. If we had obtained an optimal solution to Phase I and the value was > 0,
so that at least one of 3 > 0 or yo > 0, then there is no feasible solution to the original
problem.

Phase II We may now drop the Phase I row and the columns corresponding to the

artificial variables y; and ys,

* * *
1 T z3 21 22
z1 0 1 g 2
T3 *% 1 0 *% 16
z -2 1 0 o0 -%| 12
PhaseII| 2 0 0 0 —1|-44
T
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and we proceed to apply the simplex algorithm to this reduced tableau, introducing z;
and dropping z; from the basis (remember we are now maximizing, so we choose a positive

element in the payoff row).

* * *
1 To x3 21 22
:c1 1 0 o & 2 3
3 o 0o 1 I -1} &
2 o 1 0o i -1z
Phasell| 0 0 0 -3 —%|-45

This tableau is now optimal for the original problem with the optimal value being 45

65

occurring when x; = %, Ty = % and x3 =

Remark
If the dual variables corresponding to the three constraints for the problem of
this section are A1, A2 and A3 then we must have Ay > 0, A3 < 0 while Xy is
unconstrained in sign. We can read off the optimal A\ = é and A3 = —% from
under the slack variables in the final tableau and you may like to think about

how you would see that Ay = 5.

3.4 Extreme points and basic feasible solutions

We will now fill in some of the details and proofs that were promised earlier in the

course. We will discuss the case of the standard linear programming problem

maximize ¢'x subjectto Az =b, > 0.

Recall that we are making the following

Assumptions
(i) Ais an m x n matrix, n > m, with rank (4) = m;
(ii) any m columns of A are linearly independent; and
(iii) the problem is non-degenerate: b cannot be expressed as a linear combination

of fewer than m columns of A (so that any b.f.s. has exactly m non-zero entries).
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Degeneracy The importance of non-degeneracy for the simplex algorithm is the following:
if, when we introduce a new variable into the basis, it has a positive value in the new b.f.s.,
because we have a strictly positive coefficient (when maximizing) for this variable in the
expression for the objective function (the bottom row of the tableau), we get a strictly
positive improvement in the objective function at the new b.f.s.. Hence, if the problem
is non-degenerate, during each iteration the simplex algorithm will move to a strictly
better b.f.s; there are only a finite number of basic feasible solutions and so the algorithm
terminates after a finite number of steps. If the problem is degenerate and a basic variable
is zero, then it is possible to go through an iteration and change the basis and get no
improvement in the objective function — it is theoretically possible to cycle through a
sequence of basic feasible solutions and return to the starting point, so the algorithm gets
stuck. While this is a theoretical possibility, the situation is easily resolved, as even such a
crude approach as randomizing the choice of pivot column will ensure that the algorithm
breaks out of the loop.
We turn to the proofs of two results postponed from Chapter 2.

Theorem 2.2 A point x is a basic feasible solution of Ax = b if and only if it is an

extreme point of the feasible set {x : Az = b, x > 0} for the linear programming problem.

Proof. Let Xp ={z: Az =b, = > 0}. Suppose that z is a b.f.s., so that z € X} and =

has exactly m non-zero entries. Suppose that
z=0y+(1-0)z, y, z€Xp, 0<b<1.

Since y; > 0 and z; > 0, z; = Oy; + (1 — 0)z; implies that if z; = 0 then necessarily
y; = z; = 0, so that, by Assumption (iii), ¥ and z are basic feasible solutions each with
exactly m non-zero entries, which occur in the same positions. Since Ay = b = Az we
have A(y — z) = 0; but this give a linear combination of m columns of A equal to zero
and, using Assumption (ii), we deduce that y = z so that z is extreme in Xp.
Conversely, suppose & € Xp is not a b.f.s., so that it has exactly 7 non-zero entries
Tiy,---,xi, > 0 for some r > m; by Assumption (i), the corresponding columns of A,
a;,,...,a; ,must be linearly dependent so there exist (yi,,...,¥:.) # 0 with Z]T.:l Yi, @i, =

0. We may extend (¥i,,...,¥:, ) to the point y = (y1,...,yn)" (by setting the other entries
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equal to 0), to get Ay = 0 and y # 0. It follows that, for € > 0 sufficiently small, z+ey > 0
and A (z £ ey) = b so that z + ey € X, and

1 1
z=§(w+ey)+§(w—ey),

showing that z is not extreme. O

Tz subject to Az = b,

Theorem 2.1 If the linear programming problem, mazimize c
x > 0, has a finite optimum then there is an optimal solution which is an extreme point of

the feasible set.

Proof. Let x be an optimal solution; firstly, suppose that « has exactly m non-zero entries
then x is a b.f.s. and, by the previous result, it is necessarily an extreme point of X. So
suppose that & has r non-zero entries where 7 > m and that x is not extreme in Xp; that
is, t=0y+(1—0)z, fory, 2 € Xp, y# 2,0< 0 <1. We will show that we can find
an optimal solution with fewer than 7 non-zero entries; then we can repeat the argument

until we get down to an optimal solution with m non-zero entries which is extreme. Since

T T

c'z>c'y,c’'z>c’zandc'z=0c"y+ (1 -0)c'zwemust havec'z=c'y =c'z,
so that y and z are also optimal. As in the previous proof, z; = 0 implies that y; = 0
and z; = 0, so that y and z have r, or fewer, non-zero entries which occur in the same
positions as those in x. If either y or 2z have fewer than r non-zero entries we are done,
otherwise we can choose a 6’ € R so that ' = 'y + (1 —6')z > 0 and ' has r — 1, or
fewer, non-zero entries. To do this, write ' = z + §'(y — z); since y # 2z we can move 6’
from 0 (by the smallest amount possible, either in the positive or negative direction) until
z’ has r — 1, or fewer, non-zero components. The point &' will be again be optimal. This

completes the argument. |

Note In fact this theorem can be strengthened to the case of maximizing a convex function
f(z) over z € X C R", a compact convex set, to show that the maximum occurs at an
extreme point of the set X. It may be shown that any point € X may be written as
a convex combination = Zf’:l O;x;, 6; > 0, Zle 6; = 1, of extreme points {z;} of X.
Then

1<igk

k
f(z) < Zt‘)if(il?i) < max f(z;),
i=1
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from which the conclusion follows.

3.5 Formal description of the simplex algorithm

We make the same three assumptions as in the previous section about the con-
straints Az = b. Each stage of the algorithm determines a basis which is a subset
B = {i1,...,im} C {1,...,n}, corresponding to the indices of the basic variables, with
N = {1,...,n}\B being the indices of the non-basic variables. After rearranging the
columns of A and the elements of z, if necessary, we can rewrite A = (Ap, An), where

B

Ap, Ay are the columns of A corresponding to B, N, respectively, and & = ) is the
N

rearrangement of &, the constraints become
Apxp + Ayvxy = b.

By our assumptions, Ap is non-singular and we can determine the basic solution corre-
sponding to B by setting ny = 0 and solving for zp = Aglb. So B gives a b.f.s. if

Aglb > 0. If we partition ¢ = (;:B ) in the same way the objective function becomes
N
f= cng + cI,:cN.

As we have seen the algorithm expresses the problem in terms of the non-basic variables
at each stage. Rewriting the constraint we get xp = Aglb — AglANa:N and substituting

that into the objective function yields

T

.
f=chAz'b+ (v — A% (A7) ez) @w. (1)

The complementary slackness condition in this problem is
0=(c—A™A) &= (cs— A5\ "z + (en — ATA) zy.

At this basic solution zy = 0 and the components of g are positive (if it is a b.f.s.) so
to ensure complementary slackness we take A = (AEI)T cp. Notice that this choice of A,
as well as ensuring complementary slackness, gives the same values of the dual and primal
objective solutions

h=b"A=b" (43") c5 = 7.
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Dual feasibility for the problem is

AL 0
0>C—ATA:<CB>_< ?)(AEI)TCB:< T )7
CN AN CN—ANA

which reduces to the condition ¢y — AL A < 0. If we substitute for X into (1) we see that

the primal objective function in terms of the non-basic variables is then
f=chAz'b+ (cy — ALA) 2.

Schematically, the simplex tableau may be expressed as

zh zy
I AG'An AG'b
Payoff 0 (en — AN | —c}; (45'D)

The algorithm proceeds as follows:
(i) it maintains primal feasibility at each stage, that is, the right-hand sides in the
tableau Az'b > 0;
(ii) it has complementary slackness built in at each stage by the choice of A;
(iii) it seeks to satisfy the third of the three necessary and sufficient conditions for
optimality which is dual feasibility, ¢y — A})\ < 0, which we see is the condition
that the entries in the payoff row are < 0.

Finally, we can justify the assertion made earlier that, when the initial basic solution
is obtained by taking the slack variables as the basic variables then the negative of the
dual variables will be the entries under these variables in the tableau. Observe that in this
case we would have Ay = I and ey = 0 and it is then clear from the schematic tableau

above that the entry in the payoff row under a:;, is —AT.

6 April 2005
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