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2. LINEAR PROGRAMMING

2.1 The primal and dual problems

Constrained optimization problems where both the objective function and the the
functional constraints are linear in & are known as linear programming problems; that

is, when f(z) = ¢

z and g(x) = Az, where ¢ € R™ and A is an m x n matrix. The
problem can be one of either minimization or maximization, the functional constraints
may be either inequalities or equalities and the set X is typically the non-negative orthant
X = {z : = > 0}. To be specific, we will investigate the following general pair of problems:
P: maximize ¢'x  subjectto Az <b, x>0,
D: minimize b'A  subjectto ATA e, A>0;
P will be referred to as the primal problem and D is its dual. The solutions of these two
problems are intimately related in a way that we will explore in this chapter.
To make the situation concrete, we will carry through detailed consideration of the

following particular example of these problems:

P: maximize 3z + 2x9 D: minimize 4A; + 62
subject to 2z1+ zo <4 subject to  2X\; +2X2 > 3
2z1 + 319 < 6 A+ 3A =2
zi, T3 20 A, A2 20

We begin by plotting the feasible region for the problem P; that is the set of values z1,
z9 which are feasible for the problem and we observe that it is the shaded region in the
diagram bounded by the four lines z; = 0, o = 0, 221 + z2 = 4 and 2z7 + 3z2 = 6.

We notice that the feasible region is a convex set, which is always true for a linear
programming problem, and since it is bounded by lines (in higher dimensions the feasible
region is bounded by hyperplanes) it is an example of what is known as a polyhedral set. We
further observe that the contours of the objective function f = 3z; + 2z5 = constant = a,

say, are straight lines so the linear programming problem is equivalent to finding the largest
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value of a for which these lines intersect the feasible set. It is immediately clear that, since
the feasible region is bounded by lines, as we increase a the last time (assuming that there
is a last time so that there is a finite maximum for the problem) the contour intersects the
feasible set it will pass through at least one ‘corner’ or vertex of the feasible set. Thus if
there is a finite optimal solution to a linear programming problem then there is a solution
that occurs at a vertex; this statement is formalized in the Theorem below which will be
proved later. The vertices are known as extreme points of the feasible set.

Definition A point € X is an extreme point of a convex set X if x = 6y + (1 — 0)z,

fory,z € X and 0 < 0 < 1, implies that x = y = z.

Theorem 2.1 If a linear programming problem has a finite optimum then there is an

optimal solution which is an extreme point of the feasible set.

The diagram below shows the two situations, firstly where, as a increases, the contour
of the objective function last intersects the feasible set in just one point, which is necessarily
an extreme point, and secondly where the slope of the objective function is parallel to an
edge of the feasible set (or face in higher dimensions); in this latter case there will be
(infinitely) many solutions including the two extreme points which are the endpoints of
the edge.

The upshot of this is that to solve a linear programming problem it is sufficient to
search throught the extreme points of the feasible set to find the best one. There are only
a finite number of extreme points, but the number increases very quickly with the size

of the problem so that direct enumeration is not a viable approach to find a solution in
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general.

Before we move on to explore the simplex algorithm, which is a highly effective algo-
rithm that searches through the extreme points in an efficient way, we will confirm that
D is indeed the dual of the problem P. If we write P in equality form, by adding slack

variables z > 0, we have the problem as:

maximize c¢'x subjectto Az +z=b, >0, 2> 0;
its Lagrangian is

L(z,z,\)=c 2+ AT (b— Az — z).

Maximizing in z > 0, we see that for a finite maximum we require A > 0 and then at the
maximum we will have ATz = 0, which is complementary slackness. The remaining terms
in L may be written as

L=(c—ATA) z+b"A;

maximizing over & > 0, for a finite maximum we require AT\ > ¢ and then we will have
the further complementary slackness condition (¢ — ATA) T 2 = 0 at the maximum, which
leaves

;%aJ;OL(:E,z, A)=b"A =h(N), the dual objective function.

Hence the dual problem is to minimize b A subject to the conditions that ensure a finite
minimum, viz. AT > ¢ and A > 0. One can ask what is the dual of the dual problem? As
an exercise, you should verify that here the dual of the dual is the primal problem (which

is always the case for linear programming problems).
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2.2 Basic solutions
First, we write the problem introduced in the last section in equation form:
P: maximize f = 3z + 2z9
subject to 2r1 + zo+ 21 =4
2x1 + 3o +29=6

Z1, T2 > 05 21, 22 2 0.
Now we consider the values taken on by the variables at each of the six points A, B, C,

D, E and F in the diagram of the feasible set for the problem.

Tz 21 2z f
A 0 O 4 6 0
B 2 0 0 2 6
c 3 0 -2 0 9
D 2 1 0 o0 %
E 0 2 2 0 4
F 0 4 0 -6 8

The first thing to notice is that in each case two of the variables are zero with the
other two being non-zero; this is clear from the picture since each point is determined by
the intersection of two of the lines 1 = 0, z2 = 0, 221 + z2 = 4 and 2z, + 3z2 = 6, but
these last two are also 23 = 0 and 23 = 0. Another way of thinking about these points is
that we consider the two constraints

2x1 + x9+ 21 =4

2x1 + 3x2 +29=06
and then in turn we take two of the variables, set them to zero and solve for the remaining
two; these are known as the basic solutions of these two linear equations.

To accord with later practice we will relabel the slack variables z; and 29 as r3 and
x4 so that the problem becomes

P: maximize f =3z, + 2xs
subject to 2z + z2 + x3 =4
2z1 + 3z +z4=6

T1, Ta, T3, T4 2 0,
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so that it is in what is known as standard form:

maximize ¢'x subjectto Az =b, z > 0.

(2110
A—<2301)'

In general, we will assume that A has m rows and n columns, n > m, and that the rank

For this example, the matrix

of the matrix is m; we will further assume that any set of m columns of A is linearly
independent.

Definition A basic solution, &, of the system of equations Az = b is a solution for which
at least n — m entries of x are zero.

Since any m columns of A form a non-singular matrix by our assumption above, any
basic solution may be obtained by setting n —m components of & equal to zero and solving
uniquely for the remaining m variables. The n — m variables set equal to zero are known
as the non-basic variables of the basic solution, the remaining m variables are the basic

variables.

Definition A basic feasible solution, x, of the linear programming problem (in stan-
dard form) is a basic solution of the equations Az = b for which = > 0.

If a basic feasible solution has one, or more, basic variables equal to zero it is said to be
degenerate. The problems that we will deal with will be assumed to be non-degenerate
in that they have no degenerate basic feasible solutions; we will discuss the relevance of
degeneracy to the progress of the simplex algorithm later on.

In the particular example we are considering the six points A— F are all basic solutions
but only A, B, D and E are basic feasible solutions. The importance of these ideas comes
from the following equivalence, which we will prove later but which is clear in the case of

our example.

Theorem 2.2 A point x is a basic feasible solution of Ax = b if and only if it is an
extreme point of the feasible set {x : Az = b, x > 0} for the linear programming problem.

This result, which will be proved later, gives us an algebraic characterization of ex-
treme points of the feasible set and when combined with our previous observation in

Theorem 2.1 it gives the result which is the basis of the simplex algorithm.
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Theorem 2.3 If the linear programming problem has a finite optimum then there is an

optimal solution which is a basic feasible solution.

2.3 Relationship between the primal and dual

Add slack variables to the dual problem so that it becomes a problem with constraints

in equation form:
D: minimize 4\ + 6)\s

subject to  2X\; +2X 2 — vy =3
A+ 3\ — vy =2
A, A2 20, vy, v2 > 0.
We can plot the constraints and the feasible set for the dual problem in the A;-\s plane,

and we will observe that the basic solutions for the dual problem can be paired with those

for the primal problem.

The basic solutions for D are obtained as for the primal problem by taking the intersections
in pairs of the constraint 2A\; 4+ 2X2 = 3, A1 +3X2 = 2, A\; = 0 and A2 = 0; they are paired
up with the basic solutions to the primal by seeing that complementary slackness holds,

thatis ATz =0and v’z = (c— ATA) & =0, or
)\11,‘3 =0= )\241)4 and V1T = 0= Va2,

and the fact that the values of the respective objective functions f and h for the primal

and dual are the same at the paired basic solutions. These relationships hold for all pairs
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of primal and dual linear programming problems. As we mentioned above, there are four
basic feasible solutions for the primal problem, A, B, D, and E and you should observe
that there are three basic feasible solutions for the dual, C, D and F; there is only one
basic solution which is feasible for both the primal and dual problem, viz. D, which is
the optimal solution to both problems. You should further note that the value of the dual
objective function at any basic feasible solution to the dual is greater than or equal to the
value of the primal objective function at any basic feasible solution to the primal (which we
know from weak duality) and furthermore, at the common optimal solution D the values

of the two objective functions are the same (‘the two problems have the same value’).

1 T2 I3 T4 f U1 Vg )\1 )\2 h

A 0 0 4 6 0 A -3 -2 0 0 0

B 2 0 0 2 6 B 0 -1 %2 0 6
Pp.Cc 3 0 -2 0 9 D: C o 5 0 % 9
D 3 1 0 o0 1 D o o0 2 I L

E 0 2 2 0 4 E fg 0 0 % 4

F 0 4 0 -6 8 F 1 0 2 0 8

These observations are special cases of the general relationship between the two problems:

P: maximize ¢'x  subjectto Az <b, >0,

D: minimize bT A subject to ATA>¢, A>0.
We have encountered weak duality in the context of general constrained problems and
here it says that if & is a feasible solution to P and A is a feasible solution to D then
¢z < b"A. The most important relationship between the two problems characterizes the
necessary and sufficient conditons for optimality for a point to be an optimal solution of

P.

Theorem 2.4 Necessary and sufficient conditions for optimality A vector x is
an optimal solution to the problem P if and only if there exists a vector X such that the

pair  and X satisfy:

(i) Az <b, 220 (primal feasibility)

(i) ATA>¢, 220 (dual feasibility)

(ii)) AT(b—Az)=0=z" (ATA—¢); (complementary slackness)
furthermore, if condition (iii) holds, then ¢'x = bT .
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Proof. We will only establish the sufficiency here (since it is essentially the Lagrangian
Sufficiency Theorem it drops out as easily as that result); the necessity is harder and we
will discuss it further later on. Suppose that z is primal feasible and A is dual feasible,
then

clz<ez+ AT (b—Az)=z  (c—ATA)+b'ALDTN;

-~

~~

20 <0
this statement is weak duality, with the addition of complementary slackness the two

inequalities are replaced by equalities and the sufficiency is established. O

Remark

Although the primal problem was formulated here with inequality constraints
and sign constraints on the primal variables any formulation of a primal lin-
ear programming problem (equality constraints or mixed inequality-equality con-
straints, with or without sign constraints on the variables) leads to the same
three necessary and sufficient conditions: primal feasibility, dual feasibility and
complementary slackness. The form that these conditions take will depend on

the formulation of the primal in each case.
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