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1. LAGRANGIAN METHODS

1.1 Constrained optimization

The general problem of optimization under constraints that we will consider in this

course may be expressed as
P: minimize f(z) subjectto g(z)=0b, =z€X

where
(i) f:R™ — R is known as the objective function of the problem and the compo-
nents of its argument & = (z1,. .. ar:n)-r are the variables to be chosen to optimize
the objective function subject to the constraints;
(ii) X C R™ is the constraint region;
(iii) g : R* — R™ defines m functional constraints; and
(iv) b= (b1,..- ,bm)T is a fixed element of R™, sometimes known, prosaically, as the

right-hand side of the constraints.

The convention throughout will be that all vectors are column vectors. While we will
formulate the general problem as a minimization one may move between maximization and
minimization problems by observing that maximizing f is equivalent to minimizing —f.
The region X, which is a subset of R", is usually a set such as the non-negative orthant
X ={x: x > 0}, and in some problems the functional constraints may take the form of
inequalities g(x) < b; these inequality constraints may be turned into equality constraints

by the addition of non-negative slack variables z = (21, ..., zm)T to give

It can be seen from this that there may be a degree of arbitrariness in how the constraints
on x are divided between functional constraints and the constraint region but it is usually

clear from the context of the problem how each should be formulated.
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The set Xp = {z: ¢ € X, g(x) = b} is known as the set of feasible solutions of the
problem P, so the constrained problem is to find a feasible £* € X, that minimizes the
function f over Xp, that is, f(x*) < f(x) for all x € Xp; such a z* is said to be optimal
for the problem P. Techniques of unconstrained optimization are usually straightforward,
to minimize f the first step would be to set the gradient of f equal to zero; when the
problem is constrained such an approach may not be immediately helpful as the optimum
will not necessarily occur when the gradient of f is zero. For example, consider the case
when f(z) = 22 and X = {z : £ > 2}; the minimum trivially occurs when z = 2 but
f'(2) # 0. The Lagrangian approach is a powerful method which enables many constrained
problems to be turned into unconstrained optimization problems which can then be tackled

by conventional means.

1.2 The Lagrangian Sufficiency Theorem

The Lagrangian for the problem P is defined to be the function
L(z,X) = f(z) + AT (b-g())

where A € R™; here, L : R* x R™ — R and the components of A = (Al,...,Am)T are
known as the Lagrange multipliers of the problem. The following very simple result is

central to the Lagrangian technique.

Theorem 1.1 (Lagrangian Sufficiency Theorem) Suppose that there ezist x* and
A* such that
L(z*,\") < L(z,X") forall z€ X,

and x* is feasible for P, then x* is optimal for P.

Proof. For any x € Xy,
L(z,\) = f() + AT (b - g()) = f(z),
which shows that

f(z*) = L(z*,A\") < L(z,A"), forallze X;
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but L(z,A\*) = f(z) for * € Xp and hence f(z*) < f(z) for all z € X}, which is the
result. O

The Lagrangian Sufficiency Theorem leads to the following procedure which may be
used to solve a wide class of constrained optimization problems.
Lagrangian Method for Constrained Optimization

1. For each A for which infaex L(z,A) > —oo, choose z*(\) € X so that
L(z*(A), ) =212§L(w,)\).

That is, for each A, we minimize L(z,\) over  in X, unconstrained by the
functional constraints g(x) = b, to get the minimizing *(A). We may exclude
any A for which infgex L(z,X\) = —oo for such A cannot satisfy the conditions
of Theorem 1.1.

2. Now choose A = A* so that z* = x*(A\*) € X, (in other words, to satisfy
g (x*(A*)) = b so that x* is feasible for the problem P); then z*, A* satisfy the

conditions of Theorem 1.1 and hence 2* is optimal for P.

Example 1.2 Use of the Lagrangian Method
Consider the problem
minimize 2In(1/z1) + 3In(1/z9) + In(1/z3)
subject to 3xz;+2x34+x3=1, x1 >0, 2 >0, z3 > 0.

The Lagrangian is
L(z,\) =2In(1/z1) + 3In (1/z2) + In (1/z3) + M1 — 3z1 — 229 — 3),

which we have to minimize over the variables 1 > 0, x5 > 0 and xz3 > 0. We set the first

derivatives of L with respect to each of these to zero to get

oL 2
o = "3 A=
0L 3
0L 1
P

which give z7(X) = —2/(3)X), z5(X\) = —3/(2)), z5(X) = —1/); we need to ensure that this
turning point of L(z,)\) is a minimum, so consider the Hessian matrix of L (the matrix of

second derivatives)

> 2/z2 0 0
Hp = (66(; ) = 0 3/98% 0
TiO%i /i 0 0 1/z3

which shows that these values give a minimum. Substitute z()), i = 1,2,3, into the

constraint 3z, + 229 + 3 =1

2 3 1
(o) +2 (o) 2

to determine the value of A which makes these feasible for the problem and we obtain

A = —6, to give the optimal solution as 7 = 1/9, z3 = 1/4 and z3 = 1/6. O

1.3 Inequality constraints and complementary slackness

When the functional constraints in the problem P are in inequality form so that the
problem becomes

P: minimize f(z) subjectto g(x)<b, x€X
it may be expressed in the previous form with equality constraints using slack variables as
minimize f(x)  subject to g(x)+2z=>b, x€ X andz>0.
The Lagrangian now becomes
L(z,z,A) = f(z) + AT (b—g(z) — 2)

and it must be minimized over x € X and z > 0. When minimizing over the slack variables
2= (21,00, zm)T > 0, one must be careful not to set dL/0z; = 0, and then conclude that
Ai = 0, since the optimum may occur at the boundary of the region z; > 0, viz. at z; =0
when OL/dz; is not necessarily zero.

Consider the term in the Lagrangian involving z;, viz. —\;z;; if A; > 0 then letting

z; become arbitrarily large shows that this term can be made to approach —oo which
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implies that infeex .30 L(x,2,A) = —oo. Thus, for a finite minimum of the Lagrangian
we require that A\; < 0, in which case the minimum of the term —\;z; is 0, since we could
take z; = 0. Thus, with inequality constraints in the problem, minimizing the Lagrangian
always leads to sign conditions on the Lagrange multipliers, in this case A < 0, and also a

joint condition on the Lagrange multipliers and the slack variables in that
Xizi =0 foreachi=1,...,m, orequivalentlyy, ATz =0.

This condition is known as a complementary slackness condition; at least one of the
variables A; and z; must be zero (at the optimum solution) for each i.

To understand what the complementary slackness condition is saying about the opti-
mal solution to the constrained optimization problem, notice that, at the optimum,

(i) if 2; > 0 then necessarily A\; = 0; and

(ii) if A; < 0 then necessarily z; = 0.
The statement (i) is saying that if at the optimum the ¢th constraint is not tight, that is,
gi(x) < b;, then the Lagrange multiplier ); for that constraint must be zero, so that the
term involving the ith constraint is not required in the Lagrangian. Alternatively, (ii) says
that if \; is not zero, so the term in the Lagrangian for the sth constraint is required, then

necessarily z; = 0 so the ¢th constraint is tight at the optimum.

A =0 9:(T) = b,
Optimum —>,
A <0~ B gl(il:) =b

Feasible set

Sometimes when the optimum to the problem falls on one constraint but inside another
(as illustrated in the diagram above and the Example below) the cases \; = 0 and X\; < 0

may need to be considered separately for each constraint.

Example 1.3 Complementary slackness

Consider the problem
minimize 1 — 3z2

subject to  x? + 23 <4
1+ 29 < 2.
Adding slack variables the problem becomes
minimize x; — 3z,
subject to @ +zi+2 =4
z1+zo+22=2, 220, 20 20.
It is easy to see (by drawing a picture) where the optimum for this problem occurs, but

we will use it as an illustration of the methods of this section. The Lagrangian for the

problem is
L=x1—3z9+ )\ (4—x%—x%—z1)+)\2(2—$1—x2—z2),

which must be minimized over z;, 3 € R and 27, 22 > 0. Minimizing over 2; > 0 and
z9 2 0, the arguments above show that for a finite minimum we must have A\; < 0, A2 <0
and at the optimum the complementary slackness conditions A;z; = 0 and As22 = 0 must

hold. Minimizing L in z; and za, we have

L
—6 = 1—2)\1$1—)\2=0
8$1

L
6—2—3—2)\1$2—)\2 =0,
6:’32

which will give a minimum because the Hessian matrix

_(-2xn 0
HL_( 0 —2>\1)’

is non-negative definite since we have A\; < 0. Notice that we cannot have A\; = 0, since it

would give inconsistent values Ay = 1 and Ay = —3. Suppose that A; < 0, so necessarily
z; =0, and
J} _17}\2 .’E __3+)\2_
1= 2)\1 5 2 = 2)\1 3
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if we further assume that Ao < 0 so that zo = 0 and substitute into the two constraints to

2 2
1—X n 34+ Ay —4
2\ 21
1—Xs B 3+ Ao —9
2 22 )

From the second equation we have Ay = —1 — 2); and substituting into the first equation

2 2
14+ X\ " 1-X\ —4,
Ay Ay

which reduces to A2 = 1 or A\; = £1. Since necessarily A; < 0, we must take the case

get A1 and Ay we obtain

gives

A1 = —1 giving Ay = 1 > 0 which is not allowed. Lastly consider the case A\; < 0 and

X2 = 0; substitute into the constraint z7 + z2 = 4, which is tight because z; = 0, to get

1 2 3 2
i — ] =4
(2)\1) - (2)\1) ’

and solve to obtain A\; = —+/10/4. Thus the optimal values for the problem (and the

Lagrange multipliers for the Lagrangian Sufficiency Theorem) are
wizf 2/5’ w;:3v2/5a )\1‘:7@/47 )‘;:0

You should draw a picture to see that the optimum lies on the first constraint and ‘inside’

the second. O

1.4 Shadow prices
The most important approach to understanding the role of Lagrange multipliers in
the solution of optimization problems is to regard the problem

P: minimize f(x) subject to g(x)=b, xze€X

as one of a family of problems indexed by the right-hand side in the constraints, b. To this

end let ¢(b) be the minimum value of the objective function f subject to the constraints
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in P, so that ¢(b) = inf {f(z):x € X, g(x) = b}. With this notation then there is an

important relation between the Lagrange multipliers for the problem and ¢ in that

a9

==, 1=1,...,m.
1 abla ? ’ s

It should be noted that this relation is also true if the functional constraints in P are
formulated as inequality constraints, g(z) < b, and ¢(b) = inf {f(z) : € X, g(x) < b}.

We illustrate by considering a generalization of the problem in Example 1.3.
Example 1.4 Consider the problem
minimize 1z — 39
subject to  x? +z5 < by
z1 + 22 < b,
where here b; and b are positive constants, which we will assume satisfy b2 > %bl (see

below). We may add slack variables and carry through the same arguments as before to

rule out both Ay < 0 and Ay < 0; we would need

1-2\? [/3+x)° _ 1- X 3+
(2)\1 ) +< o ) hoed )l )T

From the second equation we have Ag = —1 — by \; and substituting into the first equation

9 2 _ 2
+ by . 2 — by — by,
21 21

which reduces to Ay = —2//2by — b; if 2b; < b2 it is clear that there can be no solution

with both A\; < 0 and Ay < 0 while if 2b; > b% then take Ay = —1 + 2by/+/2by — b% which
gives Aa > 0 if 502 > 2b;. As before, we must have the case \; < 0 and Ay = 0; substitute

gives

into the constraint 22 + z% = b; to get

1 2 3 2
(m) * (m) =bo

from which we deduce that the optimal values for the problem are

2t = —/b1/10, a3 =3v/b1/10, X =—+/10/(4b1), A3 =0.
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We then have ¢(b) = z} — 3z5 = —/10b; from which we can confirm that

9 _ —/10/(4b;) = A}, and 29 - A5
81)1 Bbz

You should think about what happens when b3 < %bl; compute ¢(b) and confirm that
Af = 0¢/0b; in this case. O

Because of the relationship A} = d¢/0b; the Lagrange multipliers are often known
as shadow prices for the problem. The terminology makes most intuitive sense if we

formulate the problem as a maximization as

P’: maximize f(x) subject to g(xz)<b, xeX

and we think of some company with production processes 2 = 1,...,n which are operated
at levels z; to give a total profit f(x). There are m different raw materials, j = 1,...,m
such that if the production processes are at levels z = (z1, ..., xn)T then an amount g;(x)

of raw material j is consumed where the available supplies are b;, 1 < j < m. The fact
that we require £ € X may represent some technological constraints (incidental to the
consumption of raw materials). Then the problem is one of choosing the production levels
with the aim of maximizing the profit subject to using no more than the available supply
of the raw materials. Then ¢(b) = sup {f(z) : ¢ € X, g(z) < b} is the maximal profit.

If one considers now how much the company should be prepared to pay to secure Ab;
extra units of raw material j, then one can see that the marginal price, p;, that it would
be prepared to pay should be given by

26

0
p;Ab; = —¢Abj or Pi= g T

5, AL

1.5 The dual problem

A further important idea coming from the Lagrangian approach to constrained opti-
mization is the notion of a related optimization problem, known as the dual problem, to
the original problem

P: minimize f(z) subjectto g(z)=0b, xe€ X,
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known as the primal problem. In a large class of cases the solutions to the primal and
dual problems are very closely related and studying the dual problem gives insight into

the solution of the primal problem and vice-versa. To formulate the dual, let
A= {)\: inf Lz, ) > —oo}
zeX

be the set of Lagrange multipliers for which the minimum of the Lagrangian for P is finite.
For each A € A let h(A) = infzex L(z, A). The dual problem is

D: maximize h(X)  subject to X €A.

The function h is the objective function for the dual problem and the set A is the set of

feasible solutions to the dual. We let

¥(b) = sup {h(X) : A€ A},
represent the optimal value of the dual problem. An important relation between the two
problems is contained in the following simple result.

Theorem 1.5 Weak duality If x is any feasible solution for the primal problem P

and A is any feasible solution for the dual problem D then
hA) < £(@).
In particular, it follows that ¥(b) < ¢(b).

Proof. For any feasible x, g(x) = b which implies that L(z,\) = f(z), and so

h(A) = inf L(z',A) < L(z, ) = f(z);

z'eX
maximizing over the left-hand side and minimizing over the right-hand side shows that
¥(b) < ¢(b). U
Example 1.6 The dual problem
Consider the problem of Example 1.2 but with a general right-hand side 6 > 0,

minimize 2In(1/z1)+ 31In(1/z9) + In(1/z3)

subject to  3z1+2x3+2x3=05, x1 >0, 2>0, 3> 0.
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The Lagrangian is now
L(z,\)=2In(1/z1) +3In(1/z2) + In(1/z3) + A(b — 3z1 — 222 — 3),

which is minimized, as before, at zj(\) = —2/(3X), z5(\) = —3/(2)), zi(\) = —1/X
(and the choice of A to make these feasible for the problem is A\* = —6/b); note that

A ={X: X< 0}, and substituting these values gives
h(\) = inf L(@,A) = \b+61n(—A) +21n(3/2) + 31n(2/3) + 6.

The dual problem is to maximize h()A) in A < 0; we see that the maximizing value is

M* = —6/b and we can verify that in this case ¢(b) = ¥(b). a

Remarks

1. The weak duality result shows that the value of the objective function at a feasible
solution for the dual problem provides a lower bound for the objective function
for the primal problem at any feasible solution for the primal problem; the largest
such lower bound is the value of the dual problem.

2. The conclusion in this example, that the maximum value of the dual problem
equals the minimum value of the primal problem, is true for any problem that
can be solved using the Lagrangian method, that is for any problem for which
there exists a A* for which

mig{L(:c,)\*) = zien)f(bL(:c,)\*) = mien)f(b f(z),
where these terms are > —oo; the general proof of this fact, which is known as
strong duality, is beyond the scope of this course, but we will exploit it later
for a particular class of problems, viz. linear programming.

3. The primal problem here is formulated as a minimization; if the primal problem
is formulated as a maximization, then the dual objective function is obtained by

maximizing the Lagrangian and the dual problem involves a minimization.
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4. To get a feel for why the maximization and minimization are interchanged when
going between the primal and dual problems, note that if we maximize the La-
grangian in the Lagrange multipliers we get, for € X,

f(=) if g(x) =1,
sup L(z,A) = sup [f(z) + AT (b—g(z)] =
A A 00 otherwise;

this is because the Lagrange multipliers here can be either sign so that if any

entry of b — g(x) is non-zero the corresponding entry of A can be taken large

(either positive or negative) to get oo as the supremum. Thus the primal and

dual problems are
Primal: min {maxL(m,)\)] Dual: max [min L(m,/\)} ,
zeX | A AT |zeX

and when the primal and dual problems have the same value it is the same as the

statement that mingex maxy L = maxy mingex L.

1.6 Lagrangian necessity

One may ask under what circumstances will the problem
P: minimize f(z) subject to g(z)=b, xze€X

(or its inequality version) be such that it can be guaranteed to be solved using the La-
grangian approach; that is, there will exist a A* satisfying the condition in Remark 2 of
the previous section.

Consider the region {(g(x), f(z)): € X} in R™ x R, illustrated in the diagram.
The function ¢(-) is the lower boundary of that region, and whether or not the problem P
can be solved by minimizing the Lagrangian for appropriate Lagrange multipliers depends
on whether or not the function ¢ has a tangent plane, at the point b, which lies entirely

below the function (known as a supporting hyperplane).

Theorem 1.7 For the problem P, there exist Lagrange multipliers X* satisfying

inf L(z,A\*) = inf L(z,\*
3:1161X (m ) :nlenXh (13 )
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¢(b) -

¢(b) + (A")T(c-b)

b —c(eRm)

if and only if at the point b the function ¢ has a supporting hyperplane with slope X*; i.e.,

o(e) = ¢(b) + (A" (¢ —b) for all c.

Proof. 'The condition (in the statement of the Theorem and in Remark 2) is equivalent to

6(b) = inf L(z,X*) = inf [f(z) + (A)T (b g(x)]

®eX zeX

=inf inf [f(z)+(A")T(b—g()]

¢ xzeEX.

= inf [(c) + (A) (b~ )
it is immediate that this is equivalent to ¢(b) + (A*)T(c — b) < ¢(c) for all c. a

Remarks
1. There remains the question of how one can tell from properties of the functions f
and g and of the set X whether or not the function ¢ has a supporting hyperplane
at the relevant point. If ¢ has a supporting hyperplane at every point then
necessarily it is a convex function. Recall that a function f : R® — R is convex

ifforallz, y e R® and 0, 0 < 6 < 1,
f0z+(1-0)y) <O0f(x)+ (1-0)f(y);

this is equivalent to requiring that the region {(y, f(z)): y > f(z), = € R*}
lying above the function f is a convex set in R x R™. A function f : R® — R™ is
convex if each component function is convex. Recall that a set X C R™ is convex

if, for all z, y € X and 0, 0 < 6 < 1, then 6z + (1 — 0)y € X. That is, if ¢ and

13

y are in X then the whole line segment joining  and y also lies in X. It follows

(by induction on k) that if f is a convex function

k k
f (Z ow) < 0if (@),
i=1 i=1

for any choice of ¢; € R®, and 6; > 0,7 =1,...,k, with Zle 0; = 1.

. For the problem P, it is sufficient that f be a convex function, g be a linear

function and X be a convex set to ensure that ¢ is convex and consequently the

problem can be solved by minimizing the Lagrangian.

. For the inequality formulation of the problem

minimize f(x)  subject to g(x)<b, xz€X

then ¢ is the lower boundary of the region {(g(x) + 2, f(z)): z € X, z >0} in
R™ x R; in this case to ensure that ¢ is convex (and so as before, we can obtain
the solution by minimizing the Lagrangian) it is sufficient that f and g are convex

functions and X is a convex set.

. It should be noted that the conditions in the situation of 3 are not enough in the

context of 2. To see this, consider minimizing f(z) = z2 subject to g(z) = 2* = b,

with b > 0, then ¢(b) = b2/ which is not convex.
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