OPTIMIZATION (D2)

Additional Example Sheet

These questions are for further practice and revision.

1. Use the Lagrangian Sufficiency Theorem to:

minimize
$$\frac{v_1}{x_1} + \frac{v_2}{x_2}$$

subject to
$$c_1x_1 + c_2x_2 = c,$$

$$x_1 \geqslant a_1, \ x_2 \geqslant a_2,$$

where c_1 , c_2 , a_1 , a_2 , v_1 , v_2 and c are positive constants, with $c \ge a_1c_1 + a_2c_2$.

2. A gambler at a horse race has an amount b to bet. The gambler assesses p_i , the probability that horse i will win, and knows that s_i has been bet on horse i by others, for i = 1, ..., n. The total amount bet on the race is shared out in proportion to the bets on the winning horse, and so the gambler's optimal strategy is to choose $(x_1, ..., x_n)$ to

maximize
$$\sum_{i=1}^{n} \frac{p_i x_i}{s_i + x_i}$$
 subject to $\sum_{i=1}^{n} x_i = b$, $x_i \ge 0$, $1 \le i \le n$,

where x_i is the amount the gambler bets on horse i.

Find the form of the gambler's optimal strategy. Deduce that if b is small enough, the optimal strategy is to bet only on the horses for which the ratio p_i/s_i is maximal.

3. Consider the problem:

$$\begin{array}{lll} \text{maximize} & 3x_1+6x_2-&x_3\\ \text{subject to} & -x_1+4x_2-&x_3\leqslant 2\\ &2x_1+&x_2+&x_3\leqslant 5\\ &-x_1+&x_2&+2x_3\leqslant 1\\ &x_1,\,x_2,\,x_3\geqslant 0. \end{array}$$

Write down the dual problem and find its solution. Now replace the second constraint by $2x_1 + x_2 + x_3 \le 5 + t$. Find the new maximum for small values of t. For what range of values of t is this solution valid?

1

4. Use the simplex algorithm to solve:

minimize
$$5x_1 - 3x_2 = f$$

subject to $2x_1 - x_2 + 3x_3 \le 4$
 $x_1 + x_2 + 2x_3 \le 5$
 $2x_1 - x_2 + x_3 \le 1$
 $x_1, x_2, x_3 \ge 0$.

Write down the dual problem, and solve it by inspection of the final tableau for the primal. If the constraints on the right-hand side of the above problem are changed to $4 + \epsilon_1$, $5 + \epsilon_2$, $1 + \epsilon_3$ respectively, for small ϵ_1 , ϵ_2 , ϵ_3 , by how much does the optimal value of f change?

5. A linear programming problem in the form maximize $c^{\top}x$ subject to $Ax \leq b$, $x \geq 0$, is solved using the simplex algorithm, starting from the initial b.f.s. given by setting the slack variables z = b and x = 0, to give the optimal tableau

	*	*	*				
	x_1	x_2	x_3	z_1	z_2	z_3	
x_2	0	1	0	$\frac{1}{2}$	$-\frac{1}{3}$	1 6	<u>5</u>
x_3	0	0	1	$\frac{1}{2}$	0	$-\frac{1}{2}$	$\frac{5}{2}$
x_1	1	0	0	$-\frac{3}{2}$	$\frac{2}{3}$	$\frac{\frac{7}{7}}{6}$	2 5 2 5 2 2
Payoff	0	0	0	$-\frac{1}{2}$	-1	$-\frac{3}{2}$	$-\frac{85}{2}$

Determine the matrix A and the vectors \boldsymbol{b} and \boldsymbol{c} .

6. A classical example of a degenerate linear programming problem (due to Beale) which 'cycles' in the simplex algorithm is

Minimize
$$-\frac{3}{4}x_1 + 150x_2 - \frac{1}{50}x_3 + 6x_4$$
 subject to
$$\frac{1}{4}x_1 - 60x_2 - \frac{1}{25}x_3 + 9x_4 + x_5 = 0$$

$$\frac{1}{2}x_1 - 90x_2 - \frac{1}{50}x_3 + 3x_4 + x_6 = 0$$

$$x_3 + x_7 = 1, \quad x_i \geqslant 0$$

Show that the algorithm can cycle through the bases:

Find the optimal solution.

7. Consider the problem

minimize
$$\sum_{i=1}^{n} |x_i|$$
 subject to $Ax \leq b$,

where $\boldsymbol{x} = (x_1, \dots, x_n)^{\top}$, A is an $m \times n$ matrix and $\boldsymbol{b} \in \mathbb{R}^m$. Show how to convert the problem so that the optimal solution may be found by solving a standard linear programming problem. What happens if you replace minimize by maximize?

- 8. In another version of the game Undercut, each player selects a number from 1, 2, 3, 4. The players reveal their numbers and the player with the smaller number wins a number of pounds equal to the absolute value of the difference in the numbers, unless the numbers are either adjacent, when the player with the larger number wins £4, or equal, when the game is tied with payoff zero. Find all the optimal strategies for the game.
- 9. Formulate the problem of finding a maximum flow through a network as a linear programming problem. How many variables and constraints may be needed for a problem with n nodes? Show that the dual problem has a solution in which the variables take only two values and explain the significance of this result.
- 10. (König-Egerváry Theorem) Consider an $m \times n$ matrix A in which each entry is either 0 or 1. Say that a set of lines (rows or columns of the matrix) covers the matrix if each 1 belongs to some line of the set. Say that a set of 1's is independent if no pair of 1's of the set lies in the same line. Use the max-flow min-cut theorem to show that the maximal number of independent 1's equals the minimum number of lines that cover the matrix.
- 11. (Menger's Theorem) Derive the vertex form of Menger's Theorem which states that if A and B are nodes of an undirected network then the maximum number of node-disjoint paths from A to B which can be chosen simultaneously is equal to the minimum number of nodes whose removal disconnects A and B. [Two paths from A to B are node disjoint if the only two nodes that they have in common are A and B. The removal of a set of nodes S disconnects A and B if any path from A to B passes through at least one node of S.]
- 12. Suppose that N is a network with vertices $0, 1, 2, \dots, 2n, 2n + 1$, where 0 is the source and 2n + 1 is the sink, such that
 - (a) for each i = 1, ..., n, there is an edge (0, i) of capacity 1;

- (b) for each $j = n + 1, \dots, 2n$, there is an edge (j, 2n + 1) of capacity 1;
- (c) the only other edges have capacity n and are of the form (i, j) with $i \in \{1, ..., n\}$ and $j \in \{n + 1, ..., 2n\}$,

and for each subset $I \subset \{1, ..., n\}$ the number of distinct vertices j such that an edge (i, j) exists for some $i \in I$ is not less that |I|, the number of elements in I. Prove that any maximal flow in N has value n.

Hence show (the **Hall 'Marriage Theorem'**) that if we have a set of n boys and a set of n girls, such that every subset B of the boys between them know at least |B| of the girls, then they can pair off, each boy with a girl he knows.

13. A manufacturer has to supply $\{5,7,9,6\}$ units of a good in each of the next four months. He can produce up to 8 units each month on ordinary time at costs $\{1,3,4,2\}$ per unit, and up to 3 extra each month on overtime at costs $\{2,5,7,4\}$ per unit (where costs are given for each of the next four months). Storage costs are 1 per unit per month. He desires to schedule production to minimize costs over the four-month period. Formulate his problem as a transportation problem (with 8 sources and 5 destinations) and solve it.