DPK Easter Term 2005
OPTIMIZATION (D2)

Additional Example Sheet

These questions are for further practice and revision.

1. Use the Lagrangian Sufficiency Theorem to:
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where ¢y, ¢, a1, a2, v1, v2 and c are positive constants, with ¢ > ai¢1 + asca.

2. A gambler at a horse race has an amount b to bet. The gambler assesses p;, the

probability that horse 7 will win, and knows that s; has been bet on horse 7 by others, for

i =1,...,n. The total amount bet on the race is shared out in proportion to the bets on
the winning horse, and so the gambler’s optimal strategy is to choose (z1,...,z,) to
NN pim i - .
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where z; is the amount the gambler bets on horse <.
Find the form of the gambler’s optimal strategy. Deduce that if b is small enough, the

optimal strategy is to bet only on the horses for which the ratio p;/s; is maximal.

3. Consider the problem:

maximize 3x1 + 6x9 — x3
subject to —xz1 +4x9 — z3 <2
2r1+ x4+ x3 <5
-1+ x93 +2r3<1
1, o, x3 = 0.
Write down the dual problem and find its solution. Now replace the second constraint by

2x1 + x9 + x3 < 5+ t. Find the new maximum for small values of . For what range of
values of ¢ is this solution valid?

4. Use the simplex algorithm to solve:
minimize  5z1 — 32 =f
subject to 2z — z2 +3z3 <4
1+ T +2z3<5
2x1 — xy +x3<1
T1, Ta, v3 2 0

Write down the dual problem, and solve it by inspection of the final tableau for the primal.
If the constraints on the right-hand side of the above problem are changed to 4+ €1, 5+ €2,

1 + €3 respectively, for small €1, €2, €3, by how much does the optimal value of f change?

5. A linear programming problem in the form maximize ¢z subject to Az < b, = > 0,
is solved using the simplex algorithm, starting from the initial b.f.s. given by setting the

slack variables z = b and & = 0, to give the optimal tableau

* * *

rr T2 T3 21 22 23
1 1 1 5
T2 0 1 0 3 -3 5| 3
zs | 0 0 1 1 o -L| 3
3 2 7 5
1 L0 0 -5 35 §| 3
Payoff| 0 0 0 -1 -1 -%|-8

Determine the matrix A and the vectors b and c.

6. A classical example of a degenerate linear programming problem (due to Beale) which

’cycles’ in the simplex algorithm is

Minimize — %xl + 150z — 51*0333 + 624
subject to ixl — 60x9 — 2,1—5563 + 9z4 + x5 =0
%:m — 90x9 — 51—01123 + 3x4 + g =0
T3 +xr=1, x;>20

Show that the algorithm can cycle through the bases:

(z5,26,27) — (T1,T6,27) — (T1,T2,T7)
t {

(T4, 25,27) < (x3,%4,27) < (T2,23,27).

Find the optimal solution.



7. Consider the problem

n
minimize Z |z;| subject to Az < b,
i=1
where z = (z4,..., xn)T, A is an m x n matrix and b € R™. Show how to convert the prob-
lem so that the optimal solution may be found by solving a standard linear programming

problem. What happens if you replace minimize by maximize?

8. In another version of the game Undercut, each player selects a number from 1, 2, 3, 4.
The players reveal their numbers and the player with the smaller number wins a number
of pounds equal to the absolute value of the difference in the numbers, unless the numbers
are either adjacent, when the player with the larger number wins £4, or equal, when the

game is tied with payoff zero. Find all the optimal strategies for the game.

9. Formulate the problem of finding a maximum flow through a network as a linear
programming problem. How many variables and constraints may be needed for a problem
with 7 nodes? Show that the dual problem has a solution in which the variables take only

two values and explain the significance of this result.

10. (Konig-Egervary Theorem) Consider an m x n matrix A in which each entry is
either 0 or 1. Say that a set of lines (rows or columns of the matrix) covers the matrix if
each 1 belongs to some line of the set. Say that a set of 1’s is independent if no pair of
1’s of the set lies in the same line. Use the max-flow min-cut theorem to show that the
maximal number of independent 1’s equals the minimum number of lines that cover the

matrix.

11. (Menger’s Theorem) Derive the vertex form of Menger’s Theorem which states
that if A and B are nodes of an undirected network then the maximum number of node-
disjoint paths from A to B which can be chosen simultaneously is equal to the minimum
number of nodes whose removal disconnects A and B. [Two paths from A to B are node
disjoint if the only two nodes that they have in common are A and B. The removal of a
set of nodes S disconnects A and B if any path from A to B passes through at least one
node of S.]

12. Suppose that N is a network with vertices 0, 1,2,...,2n,2n+ 1, where 0 is the source
and 2n + 1 is the sink, such that
(a) for each i = 1,...,n, there is an edge (0,1) of capacity 1;
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(b) for each j =n+1,...,2n, there is an edge (J,2n + 1) of capacity 1;
(c) the only other edges have capacity n and are of the form (4,7) with ¢ € {1,...,n}
and j € {n+1,...,2n},
and for each subset I C {1,...,n} the number of distinct vertices j such that an edge
(i,7) exists for some ¢ € I is not less that |I|, the number of elements in I. Prove that any

maximal flow in N has value n.

Hence show (the Hall ‘Marriage Theorem’) that if we have a set of n boys and a set of
n girls, such that every subset B of the boys between them know at least |B| of the girls,

then they can pair off, each boy with a girl he knows.

13. A manufacturer has to supply {5,7,9,6} units of a good in each of the next four
months. He can produce up to 8 units each month on ordinary time at costs {1, 3, 4,2} per
unit, and up to 3 extra each month on overtime at costs {2,5, 7,4} per unit (where costs
are given for each of the next four months). Storage costs are 1 per unit per month. He
desires to schedule production to minimize costs over the four-month period. Formulate

his problem as a transportation problem (with 8 sources and 5 destinations) and solve it.

Comments on this example sheet may be sent to: d.p.kennedy@statslab.cam.ac.uk
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