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Portfolio turnpike theorems show that if preferences at large wealth levels are
similar to power utility, then the investment strategy converges to the power
utility strategy as the horizon increases. We state and prove two simple and
general portfolio turnpike theorems. Unlike existing literature, our main result
does not assume independence of returns and depends only on discounting of
future cash flows. We also provide a critique of portfolio turnpike results, based
on the observations that (1) the time required for convergence is often too large to
be relevant, and (2) there is no convergence for consumption withdrawal problems.

Turnpike theorems in finance make a seductive promise: when the horizon
is long, we can obtain essentially optimal portfolio weights by solving a rel-
atively simple problem assuming power utility with a shape similar to that
of the correct utility function at large wealth levels. Although the literature
contains a number of these results with different technical variations, the
main assumptions that are common in the existing literature are (1) returns
are independent over time (and in most articles i.i.d.), and (2) investments
can grow over time because the riskless rate is positive. It is the purpose of
this article to provide a critical examination of this literature and provide a
new perspective on these results. There are two main contributions in this ar-
ticle. One is to provide a simple and general turnpike result that helps to put
the literature in perspective. The second is to provide numerical examples
that indicate whether convergence is fast enough for practical use. Our main
findings are (1) it is the growth of the economy as reflected in interest rates
or discount bond prices, not independence, that is critical for the results, and
(2) convergence is too slow to be of practical interest, provided we assume
real rates of interest are small enough to be plausible. We conclude that
while portfolio turnpike theorems enhance our intuition and understanding
of portfolio problems, they are not particularly useful in practice.
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The term “turnpike theorem” has its origins in growth theory. According
to Dorfman, Samuelson, and Solow (1958),

It is, in a sense, the single most effective way for the system to grow, so
that if we are planning long-run growth, no matter where we start and
where we desire to end up, it will pay in the intermediate stages to get into
a growth phase of this kind. It is exactly like a turnpike paralleled by a net-
work of minor roads. There is a fastest route between any two points; and
if origin and destination are close together and far from the turnpike, the
best route may not touch the turnpike. But if origin and destination are far
enough apart, it will always pay to get on to the turnpike and cover distance
at the best rate of travel, even if this means adding a little mileage at either
end. The best intermediate capital configuration is one which will grow
most rapidly; even if it is not the desired one, it is temporarily optimal.

Based on this analogy, these results are called turnpike theorems, and a
significant literature has grown out of this idea. For an agent maximizing
expected utility of terminal wealth at a distant horizon, portfolio turnpike
theorems say that the agent’s optimal portfolio is insensitive to properties
of the utility function at low wealth levels. Such results always assume a
market which is growing indefinitely (as they clearly must); it is then not
surprising that the values of the utility at low wealth levels are unimportant,
as the agent can always get away from these low levels simply by following
the growing market. In particular, portfolio turnpike theorems say that for all
utility functions that are similar (in some suitably defined sense) to a power
utility function at large wealth levels, the optimal portfolio strategy spends
most of its time over a large horizon following a portfolio strategy similar
to the portfolio strategy of the power utility function, a neighborhood of
which is the turnpike.

To introduce turnpike theorems without the full weight of the formal
model, we provide examples in Section 1. These examples form the basis of
our critique of turnpike results. Our critique looks at two separate problems.
First, the optimal path may not lie near the turnpike unless one has an
extremely long horizon. Examples with reasonable parameter values suggest
that it may take a horizon in excess of 50 or 100 years before the optimal
portfolio choice is close to its asymptotic value, even if the utility function
is identical above the initial wealth level. The rate of interest, properly
interpreted as a real rate of interest, seems to be a critical parameter in
determining the rate of convergence. Faster convergence would require us
to assume an unreasonably large real rate of interest. The slow convergence
suggests that the portfolio turnpike results are of little practical import:
using the asymptotically correct strategy may be far from optimal, even at
the largest horizons likely to be encountered in practice.

The second problem with the turnpike results is that they do not hold for
consumption-withdrawal problems. While many investment problems may
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have overall horizons that are very large or even unbounded (such as the
management of a university endowment), these problems involve ongoing
withdrawals for consumption, which are assumed away by the structure of
the portfolio turnpike models. Portfolio turnpike theorems can be relied on
as a useful approximation only when the time until the first consumption
withdrawal is very large, and this is unlikely to be encountered in practice.

In Section 2 we describe the formal model and state our main result,
Theorem 1; this is a comparison theorem that contains many existing results
in the literature. We show that if two agents have similar marginal utilities at
large consumption levels, they must have nearly the same wealth process and
portfolio strategy at early times when the horizon is distant. The intuition for
our main result is simple: assuming positive interest rates (or something like
that), our portfolio outgrows the low wealth levels for which the two utility
functions are significantly different. If all reinvestment were at the riskless
rate, it would be obvious that it is the shape of the utility function at large
wealth levels that governs the indirect utility function at short horizons.
What is more subtle is to see that the states of nature with low optimal
consumption at the end, while occuring with positive probability given the
presence of risk taking, are not very significant economically, and have a
small influence on initial portfolio choice. From the previous literature it
might seem that this follows from independence of returns and some sort of
law of large numbers; our results do not require independence and therefore
we conclude that it is discounting alone, not discounting combined with
independence, that drives turnpike results.

This main result assumes complete markets in a continuous-time model;
the local means and variances of security returns can follow fairly general
adapted processes. We impose regularity through existence of moments of
the state price density rather than through specific assumptions about the
returns themselves, such as assuming that returns are independent over time
or that stock prices are diffusions. We consider the portfolio strategies of
two agents, and unlike the literature, we do not assume that either agent
necessarily has constant relative risk aversion. Utility functions satisfy a
uniform continuity property which certainly holds if the relative risk aver-
sion is bounded above and below.

One result which is not covered by Theorem 1 is that of Huberman
and Ross (1983). Apart from the inessential difference of being stated in
discrete time, their result uses a weaker notion of equivalence of utilities
(regular variation of marginal utilities, with the same exponent), but it makes
a stronger assumption (independence over time) about returns. Under the
continuous-time analogues of these assumptions, we prove (Theorem 2)
the continuous-time analogue of the Huberman–Ross result. This is the first
continuous-time result of this sort, and it provides a bridge between the
discrete- and continuous-time literatures. One innovation in this result is
that we assume much less smoothness on preferences than do Huberman
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and Ross or the rest of the literature. This is possible because of a result that
shows that there is a smooth utility function with a slightly different horizon
that has exactly the same portfolio choice and wealth process. This result
permits us to apply the results assuming smooth preferences to preferences
with kinks.

The literature on portfolio turnpike theorems includes discrete-time mod-
els [Mossin (1968), Leland (1972), Hakansson (1974), Huberman and Ross
(1983)] and continuous-time models [Cox and Huang (1992), Huang and
Zariphopoulou (forthcoming)]. All of these articles assume i.i.d. returns,
with the exception of Huberman and Ross. Huberman and Ross assume
returns are independent across periods, with bounded support. We do not
assume independence in our main result. In all of the previous literature,
it was also assumed that the reference utility function has constant relative
risk aversion, which we have not assumed [instead, we assume the weaker
uniform continuity condition of Equation (27)].

There are different assumptions in the literature regarding how the utility
function converges to the reference utility function at large wealth levels.
In order to compare our Equation (26), made in Section 2, to the previous
literature, we need to specialize our model by assuming the reference utility
function has constant relative risk aversion. With this specialization, Equa-
tion (26) is the same assumption made by Huang and Zariphopoulou and is
strictly more general than the assumptions of Mossin, Leland, and Cox and
Huang. However, it is less general than that of Huberman and Ross, and
apparently simply different from Hakansson’s.

The proofs of both Theorem 1 and Theorem 2 are relegated to an ap-
pendix, although the text does outline the main ideas of the proofs. Con-
vergence of relative risk aversion implies regular variation, which in turn
implies the regularity condition of Theorem 1, which shows that many re-
sults in the literature can be read off from our main results. These results
and related comparisons are shown in Lemma 1. Section 3 closes the article,
and the Appendix contains the proofs.

1. Examples and Critique

The portfolio turnpike results tell us that, given utility functions that are
asymptotically similar at large wealth, the portfolio strategies are asymp-
totically similar at large horizons. This section uses examples to help the
reader to develop an intuition for the turnpike results and their limitations.

The major limitations of the turnpike results may be summarized in
two critiques: first, examples show that, with reasonable parameter values
(especially when the real riskless rate is reasonably small), the convergence
may be slow (even when the utility function differs from a power function
only at levels below the initial wealth, we may not be near convergence even
with a horizon as long as 100 years!); and, second, we should not expect any
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turnpike results in consumption withdrawal problems. This second critique
is implicit or explicit in many of the turnpike articles, but it is worthy of
attention, especially in combination with the other critique: no consumption
withdrawal over 50 years seems unusual.

In later sections of the article, we will specify our formal model more
precisely, but for now we will present just enough notation to be able to
present the examples without proof. Throughout the article, we will assume
a continuous-time model in which the underlying uncertainty is generated by
a standard Wiener process that may be multidimensional. For the examples
we will specialize this to fixed coefficients in a world with a one-dimensional
Wiener process and a single riskless asset. We will taker to be the fixed
riskless rate,µ to be the fixed mean return on the risky asset, andσ to
be the fixed standard deviation of return on the risky asset. As is well
known, the effective budget constraint in this problem can be written as
W0 = E[CξT ], where W0 is initial wealth,C is consumption,T is the
horizon, andξt = exp(−(r − γ 2/2)t − γ Zt ) for γ ≡ (µ− r )/σ . Finally,
we choose in this section to remain vague on the definition of when two
utility functions are “similar at large wealth levels.” Suffice it to say that
there are a number of definitions in the literature and that our examples have
utility functions that are similar whatever definition we use (although as an
inessential matter they may not satisfy regularity assumed by the literature
at low wealth levels). Formal definitions are given in Section 2.

Example 1
Here we take utilities

u0(C) ≡
{

C1−R

1−R for C > 0
−∞ for C ≤ 0

(1)

and

u1(C) ≡
{
(C−K )1−R

1−R for C > K
−∞ for C ≤ K

(2)

whereK is the translation andR> 0 is the shared risk-aversion parameter.1

It is easy to verify that these two utility functions are similar in the sense of
Equation (26) given that theR’s are the same.

With u0 and u1 defined in this way, the solutions for the two utility
functions are closely related for reasons given by Cass and Stiglitz (1970).
By a simple change of variables that converts the problem for one utility

1 Formally, whenK is negative we want to relax the nonnegative wealth constraint in a way that does not
create an arbitrage so negative consumption can be permitted, for example, by some sort ofL p integrability
condition or a looser lower bound on wealth. Addressing this purely technical issue in detail would take
us too far afield of our main purpose.
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Table 1
Distance from the turnpike: positively translated CRRA

Years to maturity
r 1 2 5 10 25 50 100

2% 96.12 92.45 82.62 69.31 43.53 22.54 7.26
4% 92.45 85.72 69.31 50.41 22.54 7.26 0.92
6% 88.99 79.68 58.83 37.82 12.56 2.55 0.12
8% 85.72 74.24 50.41 28.98 7.26 0.92 0.02

10% 82.62 69.31 43.53 22.54 4.28 0.34 0.00

The table gives the percentage error from using the asymptotic value
instead of the optimum. For example, if it is optimal to invest 50%
of wealth in the risky asset, an entry of 10.00 in the table implies the
asymptotic rule would give 55% instead. The utility function is constant
risk aversion translated by 50% of initial wealth, that is,K = W0/2.
The entries in this table are not sensitive toµ (if not equal tor ), σ (if not
zero), orR (if positive). The annual (real) riskless rater and the number
of years to maturityT are varied in the table.

function into the other we have that any solution has the property that

C1T = K + W0− K E[ξT ]

W0
C0T (3)

relates the two consumptions. If we taker to be constant (as we will for the
calculations), the portfolio investment needed to achieveK uses only the
riskless asset, and the portfolios are related by

θ1t;T = W0− Ke−rT

W0
θ0t;T , (4)

since the discount factor isE[ξT ] = e−rT whenr is constant. By the turnpike
theorem (or by direct computation), the two portfolio strategies converge
asT increases. According to this result, the relative error for agent 1 from
using the asymptotic risky asset portfolioθ0t;T instead of the correct one,
defined to be

(θ0t;T − θ1t;T )/θ1t;T ,

is given byK/(W0erT − K ), independent ofR and the parameters of the
risky asset return processes.

For power utility translated by 50% of initial wealth, Tables 1 and 2 show
the percentage error we would make in choosing what is optimal for the
power utility (as is asymptotically correct as the horizon increases) instead
of what is actually optimal. At reasonable real interest rates (2% or 4%),
convergence is probably too slow to make this a useful approximation.

Example 2
The class of examples based on translated power utility is very suggestive
that convergence tends to be slow. However, one weakness of this class of
examples is that the entire utility function is changed (at least somewhat)
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Table 2
Distance from the turnpike: negatively translated CRRA

Years to maturity
r 1 2 5 10 25 50 100

2% −32.89 −32.45 −31.15 −29.05 −23.27 −15.54 −6.34
4% −32.45 −31.58 −29.05 −25.10 −15.54 −6.34 −0.91
6% −32.01 −30.72 −27.03 −21.53 −10.04 −2.43 −0.12
8% −31.58 −29.88 −25.10 −18.34 −6.34 −0.91 −0.02

10% −31.15 −29.05 −23.27 −15.54 −3.94 −0.34 0.00

The table gives the percentage error from using the asymptotic value instead of the
optimum. For example, if it is optimal to invest 50% of wealth in the riskless asset, an
entry of−10.00 in the table implies the asymptotic rule would give 45% instead. The
utility function is constant risk aversion translated by−50% of initial wealth, that is,
K = −W0/2. The entries in this table are not sensitive toµ (if not equal tor ), σ (if
not zero), orR (if positive). The annual (real) riskless rater and number of years to
maturityT are varied in the table.

by the translation. To counter this, Example 2 assumes power utility above
W0 and globally minimal utility (corresponding to the limit of infinite risk
aversion) belowW0:

u1(C) ≡
{

C1−R

1−R for C ≥ W0

−∞ for C < W0
(5)

The first-order condition for an optimum implies that

C =
{
(λξT )

−1/R for λξT ≤ W−R
0

W0 otherwise,
(6)

whereλ > 0 is chosen to satisfy the budget constraint

W0 = E[CξT ]. (7)

This is a standard option pricing problem.2

Table 3 shows how the portfolio choice for preferences of the form in
Equation (5) depends on the interest rate and time to maturity. Parameter
choices are motivated by the U.S. markets:σ = .2 annually andµ− r = .1
annually. The interest rater and time to maturityT are varied in the table.
The risk-aversion parameterR is chosen to make it optimal to keep exactly
half of one’s wealth in equities in the limit asT → ∞. Sincer should be
a real interest rate, a small value such as 2% or 4% is most relevant. Even
with the extreme assumption that preferences are identical aboveW0, the

2 Consumption is equal toW0, the payoff of a riskless bond, plusλ−1/R max(ξ−1/R
T −W0λ

1/R,0), the payoff

of a numberλ−1/R of call options with exercise priceW0λ
1/R on an asset payingξ−1/R

T . Givenλ, the

value beforeT of receivingξ−1/R
T atT follows a lognormal distribution with constant variance, so pricing

is according to Black–Scholes. We computeλ by a one-dimensional search for the value satisfying the
budget constraint.
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Table 3
Portfolio weights: CRRA aboveW0 and infinitely risk averse below

Years to maturity
r 1 2 5 10 25 50 100

2% 0.16 0.20 0.28 0.34 0.42 0.47 0.50
4% 0.25 0.31 0.40 0.45 0.49 0.50 0.50
6% 0.32 0.39 0.46 0.49 0.50 0.50 0.50
8% 0.37 0.43 0.48 0.50 0.50 0.50 0.50

10% 0.41 0.46 0.49 0.50 0.50 0.50 0.50

The table gives the proportion of wealth invested initially in the risky
asset. The utility function is taken to be−∞belowW0 and has constant
relative risk aversion 2(µ− r )/σ 2 aboveW0. The proportion of wealth
in the risky asset converges to one-half as maturity increases, but
slowly. The stock return has meanr + 10% per year and standard
deviation 20% per year. The riskless rater per annum and years to
maturity are varied in the table.

portfolio mix can be significantly different from its asymptotic value even
at as long a maturity as 25 years.

Example 3
Our final example on convergence assumes that risk aversion is zero (rather
than infinity) belowW0. The utility function has the form

u1(C) ≡


C1−R

1−R for C ≥ W0
W0

1−R

1−R −W0
−R(W0− C) for 0≤ C < W0

−∞ for C < 0

, (8)

which is a power function aboveW0, linear belowW0, and chosen to be
continuous and differentiable atW0. The marginal utility in this case is given
by C−R for C ≥ W0, by W0

−R for C ∈ (0,W0), and the range [W0
−R,∞)

atC = 0. The first-order condition for an optimum implies that3

C =
{
(λξT )

−1/R for λξT ≤ W−R
0

0 otherwise,
(9)

whereλ > 0 is chosen to satisfy the budget constraint

W0 = E[CξT ]. (10)

Again this evaluation is a simple option pricing problem.4

3 WhileC is indeterminate in [0,W0] whenλξT = W−R
0 , the measurable selection does not affect the random

variable since this occurs on a set of states of measure 0, because logξT has a Gaussian distribution.
4 Consumption can be viewed as the value of receiving atT an asset worth(λξT )

−1/R at T in the event the
asset is worth at leastW0 and zero otherwise. This is a close relative to a call option on the asset. Since the
asset’s value beforeT is easily seen to follow a lognormal process with constant variance, Black–Scholes
pricing obtains, and in fact the value of this asset is given by the first term (containing the stock price as a
factor) of the Black–Scholes call option pricing formula. Finding the correctλ involves a one-dimensional
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Table 4
Portfolio weights: CRRA aboveW0 and risk neutral below

Years to maturity
r 1 2 5 10 25 50 100

2% 1.46 1.27 1.02 0.85 0.66 0.56 0.51
4% 1.37 1.15 0.87 0.69 0.53 0.50 0.50
6% 1.27 1.03 0.73 0.57 0.50 0.50 0.50
8% 1.17 0.91 0.62 0.52 0.50 0.50 0.50

10% 1.08 0.81 0.55 0.50 0.50 0.50 0.50

The table gives the proportion of wealth invested initially in the
risky asset. The utility function is taken to be linear belowW0
and has constant relative risk aversion 2(µ − r )/σ 2 aboveW0.
The proportion of wealth in the risky asset converges to one-
half as maturity increases, but slowly. The stock return has mean
r + 10% per year and standard deviation 20% per year. The
riskless rater per annum and years to maturity are varied in the
table.

Table 4 shows how the portfolio choice for preferences of the form in
Equation (8) depends on the interest rate and time to maturity. Parameter
choices are motivated by the U.S. markets:σ = .2 annually andµ− r = .1
annually. The interest rater and time to maturityT are varied in the table.
The risk-aversion parameterR is chosen to make it optimal to put exactly
half of one’s wealth in equities in the limit as the horizon tends to infinity.
For reasonable parameter values, convergence can be very slow as before.

1.1 Failure of turnpike results for consumption withdrawal problems
Consider the following investment problem with consumption withdrawal,
written in terms of consumption (with the portfolio strategy implicitly sub-
stituted out).

Problem 1. Choose adapted and right-continuous{ct } to maximize
E[
∫ T

0 u(ct )e−δtdt] subject to E[
∫ T

0 ξt ctdt] = W0.

The point of this section is to show that we cannot expect to have a
portfolio turnpike theorem in a consumption-withdrawal problem such as
Problem 1. The reason is that while consumption in the far future may
reflect growth to very large levels of consumption (depending on the relation
between the impatience parameterδ and the other parameters), consumption
at nearby dates reflects the shape of the utility function at relatively small
consumption levels, even as the horizon increases indefinitely. This result
is a reminder that when we talk about convergence of a portfolio strategy
at long horizons, this should be interpreted as a long horizon until the first
consumption withdrawal, not as a long horizon for the overall problem.

search for the zero of a monotone function.
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To make the point explicitly, take the translated power case with felic-
ity function u(c) = (c − K )1−R/(1− R), which is similar to the power
function u(c) = c1−R/(1− R) at large consumption levels. The cost of
maintaining the lower bound to consumptionct ≡ K is given by the annu-
ity formula E[

∫ T
t=0 ξt Kdt] = (1− e−rT )K/r , so we can solve forct − K

with the power felicity and initial wealthW0 − (1− e−rT )K/r . But the
power function is homothetic and therefore has consumption proportional
to wealth. Therefore consumption in the translated power case is given by
K plus 1− (1−e−rT )K/rW0 times consumption in the power case, which
does not converge to the power consumption asT →∞. Furthermore, the
risky portfolio investment is a factor 1− (1− e−rT )K/rW0 times what it
would be in the power case, which does not converge to the power portfolio
choice either. These results depend only on a fixed interest rate, existence
of solutions, and some asset always having a nonzero risk premium (so the
power portfolio choice is not the riskless asset).

2. Formal Model and Two Turnpike Theorems

In this section we present two turnpike theorems in continuous time. These
theorems are intended to synthesize and generalize existing results in the
literature. Both results look at preferences that are similar to some bench-
mark that may not be power utility as in the literature. Theorem 1 puts
very little restriction on security returns (beyond the underlying Brown-
ian model), while Theorem 2 assumes less regularity on preferences but a
strong assumption (i.i.d.) on security returns. With i.i.d. returns, we require
less regularity on preferences, since investing to timeT with nonsmooth
preferences is fully equivalent to investing to an earlier time with smooth
preferences.

To begin with, we specify the market, which we shall refer to as the
standard Brownian market. Portfolio returns are defined using the standard
continuous-time model of a complete securities market. There areN locally
risky assets indexed byn ∈ {1,2, . . . , N} and a single locally riskless asset.
The underlying uncertainty is modeled by the complete filtered probability
space(Ä, (Ft )t≥0,F, P) generated by anN-dimensional Wiener process
{Zt |t ∈ [0,∞)}with independent components, and all processes are adapted
to (Ft )t≥0. Conditional expectation with respect toFt will be denoted by
Et . The riskless asset bears an interest rate following a processr and local
returns to the risky assets are given by

µtdt + σtd Zt , (11)

where theN-vector processµ gives the mean returns and the nonsingular
N × N matrix processσ relates the random part of stock returns to the
underlying sources of noise. We denote by6 ≡ σσ ′ the covariance matrix
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of returns.5 We define thediscountprocess by

βt ≡ exp

(
−
∫ t

τ=0
rτdτ

)
, (12)

and therisk-neutral change of measureprocess by

ρt ≡ exp

(
−
∫ t

τ=0
γ ′τd Zτ − 1

2

∫ t

τ=0
|γτ |2dτ

)
, (13)

whereγt ≡ σ−1
t (µt−rt1), and1 is a vector of ones. By its definition,ρ is

a local martingale; we shall assume

ρ is a martingale, (14)

so that we may consistently define the risk-neutral probability measureQ
by

EQ
t [x] ≡ E[ρt x] (15)

for any boundedFt -measurable random variablex. As a last piece of nota-
tion, we shall define thestate-price densityprocess

ξt ≡ ρtβt . (16)

We make the regularity assumption that for allt , ξt has all moments, positive
and negative:

(∀η ∈ <, t <∞) E[ξηt ] <∞. (17)

This is a relatively modest assumption, which would follow ifr andσ−1(µ−
r 1) were assumed to be bounded processes (which would also suffice to
makeρ a martingale.) This completes the definition of the standard Brow-
nian market.

Within this framework, the wealth processwt of an agent who at timet
holds the vectorθt of dollar investments in the locally risky assets satisfies

wt ≡ W0+
∫ t

τ=0
(rτwτdτ + θ ′τ {(µτ − rτ1)dτ + στd Zτ }), (18)

whereW0 is the agent’s initial wealth, and we require the nonnegative wealth
and consumption constraints

(∀t) wt ≥ 0 (19)

5 Nonsingularity ofσ and an equal number of assets and sources of noise is a convenience. What is actually
needed to avoid arbitrage is that the vectorµ− r 1 of excess returns must be in the span of the columns of
σ to ensure that priced risk has positive variance. For Theorem 1, we also require thatσ should have full
column rank for completeness. (For Theorem 2, essential completeness, over the states distinguished by
security returns, is always true even ifσ does not have full column rank.) The theorems and proofs are
otherwise the same except using appropriate left-inverses or generalized inverses.
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and

C ≤ wT , (20)

which rule out borrowing without repayment, doubling strategies, and re-
lated arbitrages. In terms of thediscounted wealth process

w̃t ≡ βtwt , (21)

the budget equation [Equation (18)] takes the simple form

w̃t = W0+
∫ t

τ=0
θ̃ ′τ {(µτ − rτ1)dτ + στd Zτ }, (22)

whereθ̃ ≡ βθ . Applying Itô’s lemma toρtwt shows that the discounted
wealth process is aQ-local martingale.

A typical agent solves the following problem.

Problem 2. Choose C and adapted{θt } to maximize Eu(C) subject to
Equations (18), (19), and (20).

The horizonT is fixed, but is thought of as extremely large, and where
the von Neumann–Morgenstern (vN–M) utility functionu of the agent is
convenient in the sense now to be defined. A utility functionu : (C,∞)→
< is said to beconvenientif it is strictly increasing and strictly concave, and
has a continuous first derivative, withu(C) equal to the right limit atC if
the limit exists.

To manage the boundary atC, whether or not the derivative is finite there,
wewill consider thederivativecorrespondence (or support correspondence)6

defined by

u′(C) ≡ {m ∈ <|(∀D > C)u(D) ≤ u(C)+m(D − C)}, (23)

where we identify the set containing a single element with the element to
allow us the usual notation at points of differentiability (which are allC > C
given our assumptions).

Here then is the main result of the article.

Theorem 1.Consider two agents 0 and 1 with convenient utilities u0 and
u1 respectively, with common initial wealth W0, each solving Problem 2 in

6 Using the derivative correspondence can handle interior points of nondifferentiability as well as boundary
points, although to simplify our theorems we restrict ourselves to utility functions that are differentiable
on the interiors of their domains.
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the standard Brownian market. Assume that the market grows indefinitely:7

lim
T→∞

E[ξT ] = 0, (24)

and that the horizon T is large enough that the initial wealth will satisfy
the subsistence requirements of both agents at that time, in the sense that
for i = 1,0

W0 > E[ξT ]Ci . (25)

Assume that the two utilities are similar at infinity in the precise sense8 that

lim
C→∞

u′1(C)
u′0(C)

= 1, (26)

and moreover that the utilities have the uniform continuity property that for
all sequences an, bn→∞,

bn

an
→ 1 iff

u′i (bn)

u′i (an)
→ 1. (27)

If wi t ;T denotes the optimal wealth process of agent i with horizon T , and
if θi τ ;T denotes the corresponding portfolio process, then for each t> 0

lim
T→∞

EQ|w̃0t;T − w̃1t;T | = 0, (28)

and

plim
T→∞

∫ t

τ=0
(θ1τ ;T − θ0τ ;T )′6τ(θ1τ ;T − θ0τ ;T )dτ = 0. (29)

(We think of theplim as being taken in actual probabilities P, but of course
this is equivalent to taking theplim in the equivalent probability measure
Q.)

Moreover,

plim
T→∞

sup
s≤t
|w1s;T − w0s;T | = 0. (30)

The formal proof of this result is in the Appendix, and we provide a sketch
of the proof in the text, but first we comment briefly on the conditions
on preferences and specifically the uniform continuity condition, which

7 This condition is that the riskless discount factor (the value today of one dollar at maturity) goes to zero as
maturity increases. This is certainly valid if the interest rate is constant and positive, and it would appear
to be a feature of any reasonable term structure model.

8 This is the same as requiring that for each representation, the ratio of marginal utilities tends to a constant;
in the proofs we will take the constant to be 1 so that Equation (26) holds.
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is a very weak condition, especially compared with the conditions in the
literature. First note that the Inada condition

lim
C→∞

u′i (C) = 0 (31)

follows directly from the uniform continuity property and strict concavity
of ui . Then, to see the sense in which Equation (27) is a uniform conti-
nuity property, for any convenientu satisfying the Inada condition [Equa-
tion (31)] with correspondingC, choose anya > log(max(C,1)) and
define f : [a,∞) → < by f (x) = logu′(ex). This function f is the
function we are plotting if we plotu′(·) with logarithmic scales on the
axes. Given Equation (31) and thatu is convenient, this is a continuous
and strictly decreasing function and hence has a continuous inverse with
domain f [a,∞) = (−∞, f (a)]. Equation (27) is equivalent to uniform
continuity of f and f −1 on their domains, given the assumptions (positiv-
ity, continuity, strict monotonicity, and the Inada condition) already made
aboutu′i .

The CRRA case of the existing literature is the special case of linear
f and f −1, but Equation (27) also holds for a significantly larger class
of functions, including, for example, all twice continuously differentiable
functions whose relative risk aversion is bounded above and bounded below
away from zero, as well as allu for whichu′ varies regularly at infinity with
exponent−R < 0. In effect, regular variation would say that the utility
function looks similar to a power function at large consumption levels; for
our Equation (27) it suffices for the function to look similar to different
power functions in a bounded set of powers along different sequences of
large wealth levels. While we have stated that this condition must hold
symmetrically for both utility functions, it suffices to assume it for one
utility function, since it must then follow for the other given Equation (26);
since it is satisfied by CRRA preferences, a much stronger form of this
assumption has been assumed in all the previous literature. For the reader
wishing to know more about the connection between this assumption and
other forms of regularity, we offer the following lemma which is proven in
the Appendix.9

9 On a minor technical point, Huberman and Ross assume the marginal utility function is regularly varying
with index−R, 0 < R < 1. They state that this is equivalent to relative risk aversion converging to
R as wealth tends to infinity. However, convergence of relative risk aversion is a stronger condition.
Consider a utility function defined forx > C ≥ 0 as an integral of the marginal utility functionu′(x) =
x−R exp(−γ sinx/x) for some constantγ . For γ sufficiently close to zero, one can show thatu′′ < 0,
so the utility function is a strictly monotone, concave function. This marginal utility function is regularly
varying at infinity with coefficientR. This means that limx→∞ u′(ax)/u′(x) = a−R for all a > 0.
However, the coefficient of relative risk aversion isR+ γ cosx − γ sinx/x, which does not converge to
R asx→∞.

It is important to note that the counterexample does not affect Huberman and Ross’s main result, which
assumed the weaker condition of regular variation.
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Lemma 1. Assume a convenient utility function satisfying the Inada condi-
tion [Equation (31)]. Then the implications

(i )⇒ (i i )⇒ (i i i )⇔ (i v)⇒ (v)⇔ (vi )⇔ (vi i )

hold among the statements (i)–(vii) defined below. As above, f(x) ≡ log(u′
(exp(x))) and a is any number larger thanlog(max(C,1)).

(i) Relative risk aversion converges as wealth increases: u is twice contin-
uously differentiable with(∀C)u′′(C) > 0 andlimC↑∞ −Cu′′(C)/u′(C) =
R∗ > 0.

(ii) Relative risk aversion bounded above and below away from zero: u
is twice continuously differentiable and(∃R, R)(∀C ∈ [exp(a),∞))(0 <
R< −Cu′′(C)/u′(C) < R).

(iii) Lipschitz condition on f and f−1: (∃K , K > 0)(∀x, y ∈ [log(a),
∞), y > x)(K (y − x) ≤ f (x) − f (y) ≤ K (y − x)). (Note that this
expression combines the Lipschitz conditions for f and f−1 given that we
know f′ < 0.)

(iv) Declines in marginal utility are bounded above and below by power
functions:(∃k, k′)(∀C ∈ [exp(a),∞),∀C′ > C)(1 > (C/C′)k > u′(C′)/
u′(C) > (C/C′)k′).

(v) Uniform continuity of f and f−1: (∀ε > 0)(∃δ > 0)(∀x, y ∈
[a,∞))((|x − y| < δ)⇒ (| f (x)− f (y)| < ε)) and the analogous condi-
tion for f−1.

(vi) Equation (27) for all sequences{an}, {bn} taking values in[a,∞).
(vii) Equation (27) for all sequences{an}, {bn} → ∞ taking values in

[a,∞).
Proof. The formal proof is in the Appendix. One of the critical observations
in the proof is that whenu is twice differentiable,f ′(x) = exu′′(ex)/u′(ex),
which provides the link betweenf and the relative risk aversion.

Now we sketch the proof of Theorem 1; the formal proof is in the Ap-
pendix. The proof is in six steps. The first and third steps are by now standard
[see, e.g., Karatzas (1989)], but we include them for completeness.

The first step shows that the budget constraint and nonnegative wealth
constraint can be collapsed to a “static” budget constraint,E[ξTwT ] ≤ W0.

The second step shows that the similarity and uniform continuity of
marginal utility functions imply corresponding properties of the inverse
marginal utility functions.

The third step constructs and characterizes the unique optimum for each
agent; as is well known, agenti ’s optimal wealth for horizonT can be
expressed aswiT ;T = Ii (λiT ξT ) for someλiT > 0, whereIi is the inverse
to u′i .

The fourth step establishes convergence of the Lagrange multipliers that
characterize the optima; limT→∞ λ0T

λ1T
= 1.
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The fifth step shows the two wealth processes converge [Equation (28)],
and the last step deduces the remaining statements [Equations (29) and (30)]
from Equation (28) using the Burkholder–Davis–Gundy inequalities.

As announced in the introduction, we also state here the second main
result of this article, which is the continuous-time analogue of the result of
Huberman and Ross (1983), albeit with less smoothness assumed for the
preferences. This result assumes i.i.d. returns and a benchmark portfolio
that exhibits CRRA (as did Huberman and Ross), but the sense of similarity
[Equation (33)] is much weaker than the sense [Equation (26)] in Theorem 1.
One particular innovation in the proof is the smoothing of preferences by
randomization that comes from looking at a slightly different time horizon:
the portfolio choice for preferences for whichu′′(·) does not exist is the
same as the portfolio choice of a very smooth utility function at a slightly
shorter horizon. This proof technique allows us to construct a proof for the
very smooth case (based on Fourier inversion and exact formulas for the
wealth and portfolio processes) and then use the smoothing to extend the
proof to the general case when preferences are less smooth.

Theorem 2.Consider two agents in a standard Brownian market in which
the processes r,σ , andµ are all deterministic, and in which the market
growth condition [Equation (24)] holds. Suppose that agent 0 has marginal
utility

u′0(C) = C−R C > 0, (32)

where R> 0 (corresponding to power or log utility), and that agent 1 has a
convenient utility function whose marginal utility varies regularly at infinity
with exponent−R, which is to say

(∀a > 0) lim
C↑∞

u′1(aC)

u′1(C)
= a−R. (33)

The agents start with the same initial wealth W0 and solve Problem 2.
(i) Then for large horizons the optimal wealth processes are close in the

sense that for all t> 0

lim
T→∞

EQ|w̃0t;T − w̃1t;T |2 = 0, (34)

from which we deduce that we even have

lim
T→∞

EQ

[
sup

s∈[0,t ]
(w1s;T − w0s;T )2

]
= 0, (35)
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and convergence of portfolios

lim
T→∞

EQ

[
ess sup

s∈[0,t ]
|θ1s;T − θ0s;T |2

]
= 0. (36)

(ii) The portfolio strategy and wealth process for agent0 do not depend
on the horizon T and can be written as

θ0t = w0t R
−16−1

t (µt − rt1) (37)

and

w0t = W0ξ
−1/R
t exp

(
−(R−1− 1)

∫ t

s=0
(rs+ κs/2R)ds

)
(38)

where

κs ≡ (µs− rs1)′6−1
s (µs− rs1). (39)

Agent 1’s portfolio proportions converge to agent 0’s proportions in the
sense that for each t> 0

ess sup
s∈[0,t ]

∣∣∣∣ θ1s;T
w1s;T

− R−16−1
s (µs− rs1)

∣∣∣∣ T↑∞−→ 0, (40)

in probability.

The proof of this result is also in the Appendix, but we give here some
comments on the conditions and an outline of the strategy of the proof.
The assumption of adeterministicstandard Brownian market is the ana-
logue of the assumption of independent returns used by Huberman and
Ross in their discrete-time result; the returns in the deterministic standard
Brownian market are indeed independent over disjoint time intervals. We
cannot apply Theorem 1 because (for example) the utilityu1 for which
u′1(x) = x−R/ log(2+ x) satisfies Equation (33), but the comparison con-
dition [Equation (26)] needed for Theorem 1 fails. It is not surprising that the
conclusions of Theorem 2 are stronger than those of Theorem 1, in view of
the stronger assumptions; however, we conjecture that the main conclusion
[Equation (28)] of Theorem 1 may remain true even if the utilities satisfy
only the less stringent conditions of Equations (32) and (33) of Theorem 2
rather than Equation (26).

The essential part of the proof is to notice that in the deterministic stan-
dard Brownian market, the expressionwiT ;T = Ii (λiT ξT ) and the fact that
the discounted optimal wealth process is aQ-martingale allow us to write
the optimal wealth process asws;T = h(ξs, s, T), whereh(x, s, T) ≡
E[ξsT I (xλTξsT)] andξsT ≡ ξT/ξs is the state-price density for purchase at
s of a claim atT . By carrying out the Itˆo expansion of the optimal wealth
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process, we can identify the optimal portfolio, which we deduce must be

θs;T = −ξshx(ξs, s, T)6
−1
s (µs− rs1). (41)

Now if we formally differentiate the expression forh with respect tox, we
find that

hx(x, s, T) = E[λTξ
2
sT I ′(xλTξsT)]

= −x−1E

[
ξsT

I (xλTξsT)

R(I (xλTξsT))

]
, (42)

where R(·) is the familiar risk aversion function defined to beR(x) ≡
−xu′′(x)/u′(x). The form of agent 0’s optimal portfolio now follows (since
R is constant); the asymptotic similarity of the policies for the two agents
requires analysis ofhx for agent 1, showing that the main part of the expec-
tation is due to sample paths for whichR(I (xλTξsT)) is very close toR.

There is a technical point in the proof, namely that the formal differen-
tiation of h cannot lead to any expression of the form we have givenif I
is not differentiable; and we have made no assumption of differentiability
of I1. The way round this point is to introduce a smoothed version of the
utility of agent 1, smoothed in a cunning way so that the optimal behavior
of the original agent 1 and the smoothed agent 1 agree on [0, t ]. The aux-
iliary results needed to deal with this are given separately as Lemma 2 and
Proposition 1.

3. Conclusion

Portfolio turnpike theorems are interesting conceptually because they de-
scribe the limiting behavior of portfolio strategies as the investment horizon
increases. Unfortunately their practical importance is limited by the slow
rate of convergence.

4. Appendix

Proof of Lemma 1. Recall that a utility functionu : (C,∞)→ < is said to beconvenient
if it is strictly increasing and strictly concave, and has a continuous first derivative, with
u(C) equal to the right limit atC if the limit exists.

(i)⇒ (ii): Under the assumptions,R(C) ≡ −Cu′′(C)/u′(C) is continuous on [a,∞)
and converges at∞ to R∗ > 0, which implies thatR(·) is bounded on the whole interval.
The smallest value is eitherR∗ > 0 achieved in the limit asC increases, or it is achieved
at some finiteC∗. Sinceu′′(C∗) < 0 andu′(C∗) > 0, the minimum is positive.

(ii) ⇒ (iii): Since f ′(x) = exp(x)u′′(exp(x))/u′(exp(x)) = −R(exp
(x)), 0> −R< f ′(x) < −R, and f Lipschitz follows from integrating this expression.
Similarly the derivative off −1(x) is 1/( f ′ ◦ f −1)(x), which is bounded between−1/R
and−1/R, from which it follows that f −1 is Lipschitz.

(iii) ⇔ (iv): This follows immediately from substitution of the definition off .
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(iii) ⇒ (v): Simply takeδ = ε/K to prove uniform continuity off , or δ = εK to
prove uniform continuity off −1.

(v) ⇔ (vi): Actually the “only if” part of Equation (27) is equivalent to uniform
continuity of f , and the “if” part of Equation (27) is equivalent to uniform continuity
of f −1. We prove the equivalence for the “only if” part of Equation (27) and uniform
continuity of f ; the proof of the other part is identical. Lettingxn ≡ log(an) and
yn ≡ log(bn) and using the definition off , the “only if” part of Equation (27) is
equivalent to|yn−xn| → 0⇒ | f (yn)− f (xn)| → 0. But this is just uniform continuity
of f by definition of the limits.

(vi)⇔ (vii): This equivalence follows because the continuity off and f −1 implies
uniform continuity on compact sets. Therefore any failure of one of the limits must
happen on an unbounded pair of sequences, which can be taken without loss of generality
(by taking an increasing subsequence) to tend to∞. Conversely, if we have convergence
on all unbounded pairs of sequences tending to∞, uniform continuity on compact sets
implies convergence for all sequences.

Proof of Theorem 1. The proof contains the six steps described in the text.

Step 1: Feasible consumption. We will omit the subscriptsi for the agent andT for
the horizon in this part. Given the horizonT , the set of random terminal consumptions
C consistent with Equations (18) and (19) is the set of nonnegative random variablesC
satisfying

E[ξTC] ≤ W0. (43)

The necessity of Equation (43) follows from applying Itˆo’s lemma toξtwt [as defined in
Equations (16) and (18)] and observing that it is a local martingale and by nonnegativity
therefore a supermartingale. Consequently, by Equation (20),E[ξTC] ≤ E[ξTwT ] ≤
E[ξ0w0] = W0. Conversely, if nonnegativeC satisfies Equation (43), setwT = C +
(W0− E[ξTC])/E[ξT ]. ThenE[ξTwT ] = W0. Let W0+

∫ t

τ=0
φ′τd Zτ be the predictable

representation of the martingaleMt ≡ Et [ξTwT ], whereEt indicates expectations based
on information (Zs for 0 ≤ s ≤ t) known att . Setwt = ξ−1

t Mt . Then Equations (20)
and (19) follow from Equation (43) and positivity ofξ , andw andθt ≡ ξ−1

t (σ ′)−1φ +
wt6

−1
t (µt − rt1) satisfy Equation (18).

Step 2: Inverse marginal utility functions. Agenti ’s inverse marginal utility function,

Ii (x) ≡
{
(u′i )

−1(x) for x < limC↓C
i
u′i (C)

Ci otherwise,
(44)

will play an important role in the analysis. Note thatu′i may be a correspondence but
not a function, since if limC↓C

i
u′i (C) <∞, u′i (Ci ) = [limC↓C

i
u′i (C),∞). However, by

positivity, continuity, and monotonicity ofu′i and the Inada condition [Equation (31)],
Ii (x) is a well-defined and continuous function for all positivex. Equation (27) on the
marginal utilities implies an analogous property for the inverse marginal utilities: for all
sequencesxn, yn ↓ 0,

Ii (yn)

Ii (xn)
→ 1 iff

yn

xn
→ 1. (45)

Given monotonicity ofu′i and the Inada condition [Equation (31)], this follows immedi-
ately from Equation (27) if we setbn ≡ Ii (yn)andan ≡ Ii (xn). And, given Equation (45),
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Equation (26) implies a similar condition on inverse marginal utility functions:

lim
x↓0

I1(x)

I0(x)
= 1. (46)

To see this, note that

I1(x)

I0(x)
= I0(u′0(I1(x)))

I0(x)

=
I0(

u′
0
(I1(x))

u′
1
(I1(x))

x)

I0(x)
. (47)

As x ↓ 0, u′0(I1(x))/u′1(I1(x)) converges to 1 by Equation (26), so the expression in
Equation (47) converges to 1 by Equation (45).

An additional implication of Equation (45) is thatI (x) grows no faster than a power
of x asx ↓ 0. Specifically, Equation (45) implies that there existsγ < 1 andε > 0 such
that

(∀x ∈ (0, ε), y ∈ (γ x, x))
I (y)

I (x)
≤ e.

Otherwise there would existγn ↑ 1,xn ↓ 0, andγn ≤ yn/xn ≤ 1 such thatI (yn)/I (xn) >

e> 1, which would contradict the “if” part of Equation (45). This implies that forx < ε,

I (x) = I (ε)
I (γ ε)

I (ε)

I (γ 2ε)

I (γ ε)
· · · I (γ Nε)

I (γ N−1ε)

I (x)

I (γ Nε)
≤ I (ε)eN+1,

whereN is defined by

εγ N+1 ≤ x ≤ εγ N .

This, in conjunction with monotonicity, yields

(∀x > 0) I (x) ≤ A+ Bx1/ logγ (48)

for some constantsA andB, that is,I (x) is bounded by a constant plus a power times
a constant.

Step 3: Existence and characterization of unique optimal demandAgain we omit
subscripts indicating the agent and the horizon. The optimal consumption for an agent
maximizesEu(C)among random variables bounded below byC subject to the constraint
of Equation (43). The first-order necessary conditions for this optimization are

(∃λ ≥ 0) C = I (λξT ) (49)

together with the constraint of Equation (43) as an equality. To see that this is sufficient
whether or not limC↓C u′(C) is finite, note thatλξT is always a member of the derivative
correspondenceu′(I (λξT )) and therefore for any other random consumptionD satis-
fying the budget constraintE[DξT ] ≤ W0, Eu(D) ≤ E[u(I (λξT ))+ λξT (D − C)] ≤
E[u(I (λξT ))], where the last inequality follows from the budget constraints. To verify
thatE[u(I (λξT ))] is finite, setD = W0/E[ξT ] to compute a lower bound, and substitute
Equation (23) atC = C+1 to apply Equations (48) and (17) to compute an upper bound.
(As with other variables,λ varies with the agent and horizon, but we are suppressing
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this dependence.) Therefore the problem reduces to one of findingλ such that10

E[ξT I (λξT )] = W0. (50)

Since I (x) is bounded by a constant plus a power times a constant, andξ possesses
all moments,E[ξT I (λξT )] < ∞ for all λ, and by Lebesgue’s monotone convergence
theorem,E[ξT I (λξT )] is a continuous function ofλ.

The functionλ 7→ f (λ) ≡ E[ξT I (λξT )] maps(0,∞) into (CE[ξT ],∞), is un-
bounded (because of the Inada condition), and is strictly decreasing in the open interval
where f > CE[ξT ]; therefore the assumption that wealth is greater than the present
value of subsistence consumption [Equation (25)] implies that there exists a uniqueλ

satisfying Equation (50).
To summarize, there exists a unique optimal consumption given by Equation (49)

whereλ is the unique solution to Equation (50). This optimal consumption is generated
by the portfolio policy described in the derivation of Equation (43). The uniqueness
of the portfolio policy follows from uniqueness of the predictable representation and
nonsingularity ofσ .

Step 4: Convergence of Lagrange multipliers. LetλiT denote the Lagrange multiplier
described in the previous step for agenti with horizonT . We will show that

lim
T→∞

λ0T

λ1T
= 1. (51)

By symmetry, it suffices to show that lim infT→∞ λ0T/λ1T ≥ 1.
Suppose to the contrary that lim infT→∞ λ0T/λ1T < 1. Then there existsδ < 1 and

an unbounded setT of terminal times such that(∀T ∈ T )λ0T/λ1T ≤ δ. ForT ∈ T ,

W0 = E[ξT I0(λ0TξT )]

≥ E[ξT I0(δλ1TξT )]

≥ E[ξT I0(δλ1TξT ) : λ1TξT < ε], (52)

for anyε ≥ 0, where the notationE[z : A] denotes the integral of the random variable
z over the eventA.

We claim that Equation (45) implies the existence ofκ > 1 andε > 0 such that

(∀x ∈ (0, ε)) I0(δx)

I0(x)
≥ κ.

To see this, note that otherwise there would existxn ↓ 0 andκn ↓ 1 such that

1≤ I0(δxn)

I0(xn)
≤ κn ↓ 1,

which would contradict the “only if” part of Equation (45).
Equation (46) guarantees that by takingε sufficiently small we can ensure that

10 This omits one degenerate case, corresponding intuitively toλ = ∞, in whichCE[ξT ] = W0 andu(C) is
well defined. In that case, the optimum is the only feasible strategy, for which consumption isC. For the
turnpike result,E[ξT ] tends to 0 as maturity increases, and we have that the degenerate case never arises
for sufficiently largeT .
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I0(x)/I1(x) ≥ 1/
√
κ, so we have

(∀x ∈ (0, ε)) I0(δx)

I1(x)
≥ √κ > 1.

Applying this to Equation (52) gives

W0 ≥
√
κE[ξT I1(λ1TξT ) : λ1TξT < ε]

= √κW0 −
√
κE[ξT I1(λ1TξT ) : λ1TξT ≥ ε]

≥ √κW0 −
√
κ I1(ε)E[ξT : λ1TξT ≥ ε]

≥ √κW0 −
√
κ I1(ε)E[ξT ]

→ √
κW0,

where we have also used, successively, Equation (50), the monotonicity ofI1, the
nonnegativity ofξT , and Equation (24). The contradictionW0 ≥ √κW0 shows that
lim inf T→∞ λ0T/λ1T ≥ 1 and by symmetry that limT→∞ λ0T/λ1T = 1.

Step 5: Convergence of wealth processes. In this step we will establish Equation (28).
Recall from steps 1 and 3 that the optimal wealth process of agenti is

wi t ;T ≡ ξ−1
t Et [ξT Ii (λiT ξT )], (53)

so Equation (28) will follow (by the conditional version of Jensen’s inequality) from

lim
T→∞

E[ξT |I0(λ0TξT )− I1(λ1TξT )|] = 0. (54)

Consider anyγ > 0. By Equation (45), there existsδ < 1 andε > 0 such that

(∀x ∈ (0, ε))
∣∣∣∣ I0(δ

−1x)

I0(x)
− 1

∣∣∣∣ ≤ γ and
∣∣∣ I0(δx)

I0(x)
− 1
∣∣∣ ≤ γ.

Otherwise there would existδn ↑ 1 andxn ↓ 0 such that either∣∣∣∣ I0(δ
−1
n xn)

I0(xn)
− 1

∣∣∣∣ > γ or
∣∣∣ I0(δxn)

I0(xn)
− 1
∣∣∣ > γ,

and either case would violate the “if” part of Equation (45). By Equation (46), we can
takeε sufficiently small that

(∀x ∈ (0, ε))
∣∣∣ I1(x)

I0(x)
− 1
∣∣∣ ≤ γ,

so

(∀x ∈ (0, ε)) I0(δ
−1x)

I1(x)
≥ (1− γ )2 and

I0(δx)

I1(x)
≤ (1+ γ )2. (55)

By step 4, there existsT0 such that

(∀T ≥ T0) δ ≤ λ0T

λ1T
≤ δ−1.

Whenλ1TξT ≥ ε, we have

0≤ I1(λ1TξT ) ≤ I1(ε),
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for T ≥ T0,

0≤ I0(λ0TξT ) ≤ I0(δε).

Hence,

E [ξT |I1(λ1TξT )− I0(λ0TξT )| : λ1TξT ≥ ε] ≤ (I1(ε)+ I0(δε))EξT → 0,

asT →∞, by Equation (24).
Whenx ≡ λ1TξT < ε andT ≥ T0, we have from Equation (55) that

I0(λ0TξT )

I1(x)
≥ I0(δ

−1x)

I1(x)
≥ (1− γ )2,

and
I0(λ0TξT )

I1(x)
≤ I0(δx)

I1(x)
≤ (1+ γ )2.

Therefore ∣∣∣ I0(λ0TξT )

I1(λ1TξT )
− 1
∣∣∣ ≤ (1+ γ )2 − 1.

It follows that

E [ξT |I1(λ1TξT )− I0(λ0TξT )| : λ1TξT < ε]

≤
(
γ 2 + 2γ

)
E [ξT I1(λ1TξT ) : λ1TξT < ε]

≤
(
γ 2 + 2γ

)
W0,

using Equation (50) for the last inequality. Sinceγ can be taken arbitrarily small, this
establishes Equation (54).

Step 6: Convergence of portfolio processes. Fix t . From steps 1 and 3 and the defi-
nitions, the processβtwi t ;T , 0≤ t ≤T , is a Q martingale for eachi andT and is given
by

βtwi t ;T = W0 +
∫ t

τ=0

βτ θ
′
i τ ;Tστd ZQ

τ , (56)

whered ZQ
s ≡ d Zs + σs

−1(µs − rs1)ds is a Q Wiener process. Hence

1t;T ≡ βt (w1t;T − w0t;T )

is a Q martingale, and its quadratic variation from 0 tot is

[1T ]t =
∫ t

τ=0

β2
τ (θ1τ ;T − θ0τ ;T )′6τ (θ1τ ;T − θ0τ ;T )dτ. (57)

It suffices to show that this quadratic variation converges in probability to 0 asT →∞,
because ∫ t

τ=0

(θ1τ ;T − θ0τ ;T )′6τ (θ1τ ;T − θ0τ ;T )dτ ≤ [1T ]t sup
τ∈[0,t ]

β−2
τ , (58)

where the supremum is finite sinceβ is a continuous and positive process.
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Let 1∗t;T denote supτ≤t |1τ ;T |, and consider anyp ∈ (0,1). The Burk-
holder–Davis–Gundy inequalities [see, e.g., Rogers and Williams (1987), IV.42] yield,
for some absolute constantcp,

E
(
([1T ]t )

p/2
)
≤ cpE

[
(1∗t;T )

p
]
.

Convergence of [1T ]t to 0 in L p/2(Ä,Ft , Q) will imply the desired convergence in
probability (in Q and therefore inP), so it suffices to show that1∗t;T converges to 0 in
L p(Ä,Ft , Q). This will also achieve the proof of Equation (30).

Next, for eachT > t anda > 0 we apply Doob’s submartingale inequality [see, e.g.,
Rogers and Williams (1994), II.70.1] to theQ martingale1s;T , s ∈ [0, t ]. This yields

Q
(
1∗t;T > a

)
≤ a−1EQ|1t;T |, (59)

and hence in particular

Q
(
1∗t;T > a

)
≤ (a−1EQ|1t;T |) ∧ 1,

wherex ∧ y denotes the smaller ofx andy. Combining this result with the fact that for
any nonnegative random variableX and positivep,

EQ X p =
∫ ∞

a=0

pap−1Q(X > a)da,

we have that

EQ[|1∗t;T |p] =
∫ ∞

a=0

pap−1Q(1∗ > a)da

≤
∫ ∞

a=0

pap−1((a−1EQ[|1t,T |]) ∧ 1)da

= 1

1− p
EQ[|1t;T |] p. (60)

In conjunction with Equation (28), this implies that, for any increasing unbounded
sequenceT , the sequence{1∗t;T }, T ∈ T must converge to 0 inL p(Ä,Ft , Q), and we
are done.

Proof of Theorem 2. Existence of a unique optimum follows from the first part of
Theorem 1. Uniform continuity of Equation (27) follows from our regularity onu [either
Equation (32) or (33)], and existence of all moments ofξ and the martingale change of
measure follow from the boundedness on compact intervals ofrs, |µs − rs|, and|σ−1

s |.
The rest of the required assumptions are the same.

Proposition 1 (below) shows that we can restrict attention without loss of generality
to utility functionsu1, satisfying the smoothness properties (i)–(iv) of Lemma 2 (also
below), and we will take them as given from now on.

Independence of returns over time (µt , σt , andrt nonstochastic) implies that the
conditional distribution ofξT/ξt conditional onFt is the same lognormal distribution
as the unconditional distribution. Therefore dropping the label for the agent for the time
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being, Equation (53) implies we can write the wealth process as

ws;T = h(ξs, s, T) (61)

where

h(x, s, T) ≡ E[ξsT I (xλTξsT)] (62)

andξsT ≡ ξT/ξs is the state-price density for purchase atsof a claim atT . The bound (iv)
in Lemma 2 on the derivative ofI and lognormality ofξT/ξs allows us to differentiate
under the expectation to obtain

hx(x, s, T) = E[λTξ
2
sT I ′(xλTξsT)]

= −x−1E
[
ξsT

I (xλTξsT)

R(I (xλTξsT))

]
. (63)

In the risk-neutral probabilities, the discounted wealth process is a local martingale,
and from Equation (56) it is

d(βsws;T ) = βsθ
′
s;Tσsd ZQ

s , (64)

whereas expanding discounted wealthβsws;T = βsh(ξs, s, T) using Itô’s lemma and
the various definitions [Equations (16), (12), (13), and6 ≡ σσ ′] yields

d(βsws;T ) = −βshx(ξs, s, T)ξs(µs − rs1)′6−1
s σsd ZQ

s . (65)

Matching coefficients, the portfolio process must be essentially

θs;T = −ξshx(ξs, s, T)6
−1
s (µs − rs1). (66)

For agent 0, whose relative risk aversion is constant and equal toR, Equations (63)
and (61) imply that−ξshx(ξs, s, T) = R−1ws;T , and we obtain the standard expression
of Equation (37) for the reference portfolio process. The form [Equation (38)] of the
reference wealth process also follows easily.

Shortly we will prove Equation (34), but first let us explain how the remaining
conclusions of the theorem will then follow.

Sinceβt (w1t;T −w0t;T ) is aQ martingale, Doob’sL2 martingale maximal inequality
[Rogers and Williams (1987), Lemma II.31] and Equation (34) imply that

EQ

[
sup
s≤t

β2
t (w1t;T − w0t;T )2

]
T↑∞−→ 0, (67)

and sinceβs is nonstochastic and bounded below away from zero on [0, t ], Equation (35)
follows immediately.

To verify Equation (36), first note from Equation (63) that

ξ2
s (h

1
x(ξs, s, T)− h0

x(ξs, s, T))

= −Es

[
ξT

( I1(λ1TξT )

R1(I1(λ1TξT ))
− I0(λ0TξT )

R0(I0(λ0TξT ))

)]
is a P martingale and thereforeφs;T ≡ βsξs(h1

x(ξs, s, T) − h0
x(ξs, s, T)) is a Q mar-

tingale [as will be important because ofφ’s close connection to the portfolio choice in
Equation (66)], and therefore by Jensen’s inequalityEQφ2

s;T is nondecreasing ins. This
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provides the initial inequality in the following, which is also based on Equations (65)
and (66), the definition ofκs, and the assumptions thatσ is nonsingular andµ − r 1 is
nonzero:

(EQφ2
t;T )

∫ t+1

s=t

κsds ≤ EQ

∫ t+1

s=t

φ2
s;Tκsds

< EQ

∫ t+1

s=0

φ2
s;Tκsds

= EQ

∫ t+1

s=0

β2
s (θ1s;T − θ0s;T )′6s(θ1s;T − θ0s;T )ds

= EQβ2
t+1(w1,t+1;T − w0,t+1;T )2. (68)

Given Equation (34) is true for arbitraryt (including t + 1), the last expression
must go to zero asT increases. But the first expression is justEQ[φ2

t;T ] multiplied by a
positive constant. Sinceφs;T is a martingale, Doob’sL2 martingale maximal inequality
(cited above) implies thatEQ sups∈[0,t ] φ

2
s;T also tends to zero asT increases. The result

[Equation (36)] follows from the definition ofφ, Equation (66), the fact thatβs is
nonstochastic and bounded below away from 0 on [0, t ], and the fact that|µ− r 1| and
|σ−1| are nonstochastic and assumed bounded on [0, t ].

The convergence of portfolio proportions [Equation (40)] follows directly from Equa-
tions (35)–(38) and the equivalence ofP andQ for random variables measurable with
respect toFt .

We have left only to verify Equation (34). We do this by bounding

EQβ2
t (w1t;T − w0t;T )2 = EQ

∫ t

s=0

β2
sκs(ξs(h

1
x − h0

x)(ξs, s, T))
2ds (69)

using the following bound. Fix arbitraryε > 0 and chooseD such thatC > D implies
|R1(C)−1− R−1| < ε [as we can by (iii) of Lemma 2]. From two parts of Equation (63),
the arguments used to derive them, and the bound (iv) in Lemma 2,11

|x(h1
x − h0

x)(x, t, T)|
=
∣∣E[xξ2

tTλ1T I ′1(xλ1TξtT )+ R−1ξtT I1(xλ1TξtT ) : I1(xλ1TξtT ) ≤ D]

− E
[
ξtT

{ I1(xλ1TξtT )

R1(I1(xλ1TξtT ))
− I1(xλ1TξtT )

R

}
: I1(xλ1TξtT ) ≥ D]

]
− R−1E[ξtT (I1(xλ1TξtT )− I0(xλ0TξtT ))]

∣∣
≤
∣∣E[xξ2

tTλ1T (xλ1TξtT )
−1 A′(1+ (u′1(D))−γ

′
)]
∣∣+ ∣∣R−1E[ξtT D]

∣∣
+ |E[ξtT I1(xλ1TξtT )ε]| + R−1

∣∣h1(x, t, T)− h0(x, t, T)
∣∣

= A′(1+ (u′(D))−γ ′)E[ξtT ] + R−1DE[ξtT ] + εh1(x, t, T)

+ R−1|h1(x, t, T)− h0(x, t, T)|
≤ A′(1+ (u′(D))−γ ′)E[ξtT ] + R−1DE[ξtT ] + εh0(x, t, T)

11 Recall the notationE[x : y] is the same integral asE[x] except with the domain limited to the set on
which y is true.
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+ (R−1 + ε)|h1(x, t, T)− h0(x, t, T)|
≤ ε + εh0(x, t, T)+ (R−1 + ε)|h1(x, t, T)− h0(x, t, T)|, (70)

for T sufficiently large [by Equation (24)]. With Equation (69) this implies that

ψ(t) ≡ EQβ2
t (w1t;T − w0t;T )2

≤ EQ

∫ t

s=0

β2
sκs(ε + εh0(ξs, s, T)

+ (R−1 + ε)|h1(ξs, s, T)− h0(ξs, s, T)|)2ds

= EQ

∫ t

s=0

β2
sκs(ε + εw0s;T + (R−1 + ε)|w1s;T − w0s;T |)2ds

≤ 4

∫ t

s=0

κs((R
−1 + ε)2ψ(s)+ β2

sε
2 + β2

sε
2EQ[w2

0s;T ])ds. (71)

Gronwall’s lemma [Dieudonn´e (1969), 10.5.1.3] implies a bound onψ(t) that can be
made arbitrarily small sinceε > 0 is arbitrary, given the form [Equation (38)] ofw0t

and the uniform bounds onκs (inherited from|σ−1| and|µ− r 1|) andβs on [0, t ]. This
completes the proof.

Here is the lemma that tells us that there is a smoothed version ofu1 with nice
properties. There are many ways of performing the smoothing; the particular choice
here is one that is useful in Proposition 1 which is used in the proof of Theorem 2.

Lemma 2. Suppose the von Neumann–Morgenstern utility function u is strictly increas-
ing and strictly concave and that the marginal utility is regularly varying at infinity with
index−R for some R> 0, that is,(∀a > 0) limC↑∞ u′(aC)/u′(C) = a−R. Let I be the
inverse of u′ (as before). Fixα > 0 and define

Ĩ (x) ≡
∫ ∞

−∞
exp

(
−y2

2α

)
I (xey)

dy√
2πα

, (72)

and letũ(C) be any integral of the inverse ofĨ . Then,
(i) Ĩ ∈ C∞,
(ii) Ĩ (x)/I (x)→ exp(αR2/2) as x↓ 0,
(iii) R̃(C) ≡ −Cũ′′(C)/ũ′(C)→ R as C↑ ∞, and
(iv) (∃A′ > 0, γ ′ > 0) 0< Ĩ ′(x) ≤ x−1 A′(1+ x−γ

′
).

Proof. The proof builds on basic properties of regularly varying functions given by
Bingham, Goldie, and Teugels (1987), henceforth BGT. Sinceu′ is decreasing and
regularly varying with index−R, it follows that I is decreasing and regularly varying
with index−1/Rat the origin (by the definitions in BGT, section 1.4.2 and the inversion
theorem 1.5.12, in which the actual inverse is an asymptotic inverse). Most of the results
in BGT are stated for regular variation around infinity; to apply them toI they must
be translated through the definitions in BGT, section 1.4.2. Specifically,I (x) regularly
varying of index−1/R at the origin is equivalent toI (1/x) regularly varying of index
1/R at infinity.
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To show the existence of certain integrals, it will be useful to note an implication
of Potter’s bound (BGT, Theorem 1.5.6.iii) and positivity and monotonicity ofI . Then
there existsx∗ such that for ally > 0 and allx, 0< x ≤ x∗,

0≤ I (y)

I (x)
≤ 2 max

{
(y/x)−1/R−1,1

}
, (73)

where the first argument of the maximum comes from Potter’s bound and the second
argument comes from monotonicity ofI . In particular, settingx = x∗ implies that for
all y > 0,

0≤ I (y) < 2I (x∗)((y/x∗)−1/R−1 + 1). (74)

(i) We can rewrite Equation (72) as

Ĩ (x) =
∫ ∞

−∞
exp(−(y− log(x))2/2α)I (ey)dy/

√
2πα, (75)

and therefore the result follows from Equation (74).
(ii) By Equation (72),

Ĩ (x)

I (x)
=
∫ ∞

y=−∞
e−y2/2α I (xey)

I (x)

dy√
2πα

. (76)

By regular variation, limx↓0 I (xey)/I (x) = e−y/R, and therefore the integral of the point-
wise limit of the integrand iseα/2R2

. Substituting in the bound of Equation (73) implies
the integrand is integrable uniformly inx, so by Lebesgue’s dominated convergence
theorem, the limit of the integral is the integral of the limit.

(iii) Since R̃(c) = −d log(ũ′(c))/d log(c) and Ĩ is the inverse ofũ′, R̃( Ĩ (x)) =
(−d log( Ĩ (x))/d log(x))−1 = (−x Ĩ ′(x)/ Ĩ (x))−1. Therefore we want to show that as
x ↓ 0 (so I (x) ↑ ∞), R is the limit of

R̃(x) =
(
−x Ĩ ′(x)/I (x)

Ĩ (x)/I (x)

)−1

. (77)

We know from (ii) that the limit of the denominator iseα/2R2
, so we need to show that

the numeratorN (x) tends to−eα/2R2
/R asx ↓ 0. From Equation (75),

N (x) = − x

I (x)

d

dx

∫ ∞

y=−∞
exp(−(y− log(x))2/2α)I (ey)dy/

√
2πα

= − x

I (x)

∫ ∞

−∞

y−log(x)

xα
exp(−(y−log(x))2/2α)I (ey)dy/

√
2πα

= −
∫ ∞

−∞

y

α
exp(−y2/2α)

I (xey)

I (x)
dy/
√

2πα. (78)
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By regular variation, limx↓0 I (xey)/I (x) = e−y/R, and therefore the integral of the
pointwise limit of the integrand iseα/2R2

/R. Substituting in the bound of Equation (73)
implies the integrand is integrable uniformly inx, so by Lebesgue’s dominated conver-
gence theorem, the limit of the integral is the integral of the limit.

(iv) Since the numeratorN (x) ≡ −x Ĩ ′(x)/ Ĩ (x), Equation (78) is equivalent to

Ĩ ′(x) = − I (x)

xα

∫ ∞

−∞
y exp(−y2/2α)

I (xey)

I (x)
dy/
√

2πα. (79)

The integral can be bounded independently ofx by substituting Equation (73) into the
integrand, and the result follows from Equation (74).

Proposition 1. Under the assumptions of Theorem 2 and given fixed t, the wealth pro-
cesses and optimal demands for all s∈ [0, t ] and all T sufficiently large are the same
as for a different problem satisfying the same assumptions and for which the utility
functions satisfy additionally the smoothness properties (i)–(iv) of Lemma 2.

Proof. The intuition of the proof is that the stochastic evolution ofξ implies that the
implied preferences at a point in time before the end are smoother than the preferences
at the end. To make the smoothing comparable for differentT , it is easiest to consider
the smoothing over some fixed time interval aftert (we consider specifically the interval
[t, t +1]) rather than an interval ending atT that might not be directly comparable with
an interval ending at a differentT .

We take as given the (nonstochastic) processes forµ, r , andσ , and will specify
new (nonstochastic) processesµ̂, r̂ , andσ̂ , and a new utility functionûi preserving the
properties of preferences in the theorem but also satisfying the smoothness properties
(i)–(iv) of Lemma 2.

Definev ≡
∫ t+1

s=t
(µs − rs1)′6−1

s (µs − rs1)ds, which is equal to the variance of
log(ξt+1/ξt ) in the original problem. In the new problem we will takeûi to be an integral
of the inverse of

Î (x) =
∫ ∞

z=−∞
ezI (xez)e−z2/2v dz√

2πv
. (80)

It is easy to verify (by completing the square in the exponent) thatÎ (x) = ev/2 Ĩ (xev),
where Ĩ is defined in the statement of Lemma 2, and thereforeÎ inherits the required
smoothness properties (i)–(iv) from̃I .

For the return processes we want to make the noise inξ̂ plus the noise already
embedded intôI the same as the noise inξ , so that for allT > t + 2 and alls ∈ [0, t ],
log(ξT/ξs)) has the same distribution asz+ log(ξ̂T/ξ̂s), wherez ∼ N(0, v) is drawn
independently of̂ξ . We will also make sure thatξs andξ̂s are identical fors ∈ [0, t ]. All
this will ensure that the Lagrange multiplierλi , as in Equation (49), and consequently
the wealth process, as in Equation (53), and the implementing portfolio process are the
same in the new problem, and we will be done. To accomplish this we define

r̂ s ≡ rs, (81)

σ̂s ≡
{
σ(s+t+2)/2 for s ∈ [t, t + 2]
σs otherwise

, (82)
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and

µ̂s ≡
{

rs + 1√
2
(µ(s+t+2)/2 − r (s+t+2)/2) for s ∈ [t, t + 2]

µs otherwise
. (83)

Note Added in Proof

During typesetting, we learned of a related paper by Jin (1998) that has
turnpike results for consumption withdrawal problems. Jin’s results would
seem to be inconsistent with our examples in Section 1.1. It seems that the
explanation of the discrepancy is a hidden assumption in Jin’s proof: the
finiteness of the suprema in the definitions ofM1,ε and M2,ε toward the
bottom of page 1011 in Jin’s article is a strong condition that certainly does
not have to hold in general. It is related to regular variation ofu′−1 andU ′−1

at infinity (corresponding to small wealth levels, since marginal utilities
are decreasing), not at zero as assumed in the definition of the classŨ on
page 1007. Because of this hidden assumption and Jin’s assumption that the
pure rate of time preference is zero, the asymptotic regime considered by
Jin has verylow consumption levels approaching zero for any fixed initial
time interval. This feature is qualitatively similar to our assumption of no
consumption withdrawal before maturity: in each case the turnpike theorem
relies on having no significant consumption withdrawal in early years.
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