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1 Introduction

The theory and practice of finance today requires many skills - computing, applied
mathematical, probabilistic, statistical, economic - and it is a sad observation that there
are many colleagues working in finance who are expert in their own area, but know little
of even the basic ideas from the other areas. This article is addressed to those who want
to fill in their background a little, and learn something about the fundamental economic
ideas which have inspired the development of finance, even though the subject has now
become so refined that we may often study it without being aware of its intellectual
pedigree. There is nothing original in this article, in the sense that a good financial
economist would read it and say, ’Well, of course’. On the other hand, for those who
have not seen this way of thinking of things, there are miraculous revelations ahead; we
shall see how martingales, stochastic integration and the notion of equivalent martingale
measures leap out of the page, for example - these are not just mathematical irrelevancies
foisted on the subject by self-satisfied probabilists, they are inevitable consequences of
economic thinking. As befits a pedagogical approach, we feel free to cut corners; what
follows is rigorous by the standards of physics or applied mathematics, but not rigorous.
Indeed, making some of the arguments into proofs would be onerous if not impossible,
but the importance of the ideas is that they guide our thinking.

The fundamental concept is that of an economic equilibrium. Imagine a market with
many agents, each of whom begins with some assets, and may trade them. 1 The
objective of each agent is to maximise his utility, which is some function of the assets

∗This article appears in Risk Management and Analysis, Vol. 2, ed. C. O. Alexander, Wiley,
Chichester, 1998, pp81–94.

1We might also allow the possibility of other economic activities, such as production; this does not
alter the essential features of equilibrium, so we shall omit them and discuss only a pure exchange
economy.
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held at the end of trading. When two or more agents meet, if there were any mutually
advantageous trades available to them, then they would trade, and all benefit. If trading
has taken place to the point where no more such mutually advantageous trades are
possible, then the market is in equilibrium. The essential insight (due to Arrow and
Debreu) is that in equilibrium, there are equilibrium prices for the different assets in
terms of each other, and the allocations held by each agent are what the agents would
optimally choose to hold if they were alone in the world, but could buy the different assets
at those equilibrium prices.

This allows us to understand an equilibrium by firstly studying what an agent would
optimally choose to do if faced with certain prices for the assets; and then adjusting
those prices so that the markets clear, that is, the total amounts of the different assets
demanded by the optimally-behaving agents are the total amounts present initially in
the market.

We shall follow this recipe in a market evolving randomly in time. To begin with
(Section 2), we shall study the possible choices available to an agent, and then we shall
see (in Section 4) what are the consequences of optimal behaviour of such an agent. This
leads naturally to a notion of equivalent martingale measures, and gives a methodology
for pricing contingent claims, even in incomplete markets. Finally in Section 5, we
take the simple binomial market and see how these ideas work through in that setting,
leading eventually to the Black-Scholes equation when we take a suitable limit. Section 3
provides a digression into the background of martingales and equivalent measures, which
hopefully many readers will already know. In the Appendix, we show how risk-neutral
pricing follows from two completely different approaches, an axiomatic approach, and
the no-arbitrage approach. These two routes to risk-neutral pricing are even shorter
than that of Sections 2 and 4, but less illuminating.

2 Portfolio choices.

We shall consider a market developing in time, in which there are n shares, the price at
time t of the ith share being denoted Si

t . There is also a ‘zeroth share’, whose price at
time t will be written Rt; we often think of this rather differently, as the value at time
t of a unit of money invested at time 0 in a deposit account, though this interpretation
is not essential. For brevity, we write

St ≡ (S1
t , . . . , S

n
t )T , S̄t = (Rt, S

1
t , . . . , S

n
t )T ,

where a superscript T denotes transpose. At time t, the agent holds a portfolio

θ̄t ≡ (ϕt, θ
1
t , . . . , θ

n
t )T

where θi
t is the number of i-shares held at time t, and ϕt is the number of 0-shares held

at time t. The market value of the portfolio at time t is therefore

(2.1) Vt = θ̄t · S̄t ≡ ϕtRt +
n∑

i=1

θi
tS

i
t
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What portfolios can the agent choose? Clearly we cannot allow the agent to take
θi

t = exp(106.t) - how would he pay for it?! To understand this, suppose that there
are two (deterministic) times T1 < T2, and the agent holds a portfolio process

(2.2) θ̄t =

{
H, 0 6 t 6 T1

H ′, T1 < t 6 T2

at time t. Thus the value of the portfolio at any time t ∈ [0, T1) is just H · S̄t, and the
change of value at time T1 is

(H ′ −H) · S̄(T1),

where we use the equivalent notations S̄t ≡ S̄(t) to avoid clumsiness. If this difference is
zero, we say that the portfolio is self-financing; if the change in value is zero, no money
needs to be added or taken away to finance the change of portfolio! Assuming that the
portfolio is self-financing, for any t ∈ (T1, T2] the value of the portfolio satisfies

Vt = H ′ · S̄t

= H ′ · (S̄t − S̄(T1)) + H · S̄(T1)

= H ′ · (S̄t − S̄(T1)) + H · (S̄(T1)− S̄0) + H · S̄0

(2.3)

where we have used the self-financing condition to pass from the first line to the second.
The three terms in the final expression have very simple interpretations; the first is the
change in value of the portfolio in the time interval (T1, t], the second is the change in
value in the time interval [0, T1], and the third is the initial value V0 of the portfolio.

We can easily generalise to a portfolio which gets changed at the times T1 < T2 < . . .. If
the agent chooses to hold Hi throughout the time-interval (Ti−1, Ti], and if the portfolio is
self-financing (so none of the changes involve any alteration in the value of the portfolio),
then the value at time t will be

Vt = V0 + H1 · (S̄(T1)− S̄(0)) + H2 · (S̄(T2)− S̄(T1))

+ . . . + Hk · (S̄(t)− S̄(Tk−1))(2.4)

if Tk−1 < t ≤ Tk. This can be written more concisely as

(2.5) Vt = V0 +

∫
(0,t]

θ̄u · dS̄u.

The two alternative expressions can be thought of as the definition of the integral
notation appearing on the right of (2.5); later, we need to consider what the integral
might mean for more complicated portfolio processes θ̄, but for piecewise-constant θ̄ the
notational equivalence of (2.4) and (2.5) is unmistakeable. Thus we may write

Vt − V0 =

∫
(0,t]

θ̄u · dS̄u.

Even though we may not yet know how to define the integral appearing on the right of
(2.5) for every θ̄, it is clear that for the piecewise constant θ̄ being used here it could
only be defined as (2.4). The right-hand side of (2.5) is called the gains from trade; it
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is the change in value of the portfolio arising from the fluctuations in the prices of the
assets. Thus we have the key result that for a self-financing portfolio,

Change in value = Gains from trade

This principle holds in complete2 generality, so that (2.5) is true whatever the portfolio
process θ̄. To make sense of this, we would need to make a definition of the (stochastic)
integral appearing on the right of (2.5), and this is not a minor task as the processes
Si may often have paths of unbounded variation. But perhaps we could get by with
using only simple piecewise-constant integrands of the type we have looked at so far?
We shall soon have an answer to this question.

Is there any easy way to tell when a portfolio is self-financing? This will obviously be
important. To understand this, let us suppose initially that Rt = 1 for all t. Then for
any self-financing portfolio θ̄

(2.6) Vt = ϕt + θt · St = V0 +

∫
(0,t]

θu · dSu.

So we see that we can choose any θ, and then adjust ϕ to make the above equation hold.
This is intuitively reasonable; we may hold any portfolio of the shares provided we take
the money out of our deposit account to pay for it. More generally, if we assume that
R grows continuously and define Ṽt ≡ Vt/Rt, S̃t ≡ St/Rt, we have

(2.7) Ṽt = Ṽ0 +

∫
(0,t]

θu · dS̃u.

In words, the change in the discounted value of the portfolio is the integral of the portfolio
process with respect to the discounted asset price processes; if we realise that working
with discounted prices is effectively changing the bank account process to be constant,
it is not surprising that we get the same characterisation of self-financing portfolio
processes as we had at (2.6). This characterisation of the possible wealth processes from
self-financing portfolio choice is the starting point for our understanding of the optimal
behaviour of an agent.

3 Some notions and notations from probability.

Everything in this section is quite standard, so please quickly skim it, and if the contents
are familiar go immediately to the next section.

As will by now be clear, we are in the business of studying random processes developing
in time. The time parameter set, to be denoted T , will always be either the set of non-
negative integers, {0, 1, 2, . . .} - the ‘discrete-time’ setting - or the set of non-negative
reals - the ‘continuous-time’ setting. As time passes, an agent gets to know more and
more, and his decisions may only be made in the light of information known at the time
the decision had to be taken. Thus the choice θ̄t of portfolio to be held at time t must

2Of course, there have to be some restrictions; θ̄ needs to be non-anticipating in a precise sense, and
not to grow too wildly - local boundedness is certainly sufficient.
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depend only on the information available at time t - the ‘technical’ way to say this is
that θ̄t should be Ft−measurable, where Ft is the σ-field of events known at time t. It
is intuitively clear that if an agent is investing in discrete time in 5 assets, then his choice
of portfolio to be held on day n should be a function only of the prices of the 5 assets on
earlier days, up to an including the (n−1)th. In this simple setting, this is equivalent to
what the ‘technical’ statement says; however, the ‘technical’ statement holds unaltered
for much more general situations (continuous time, with an uncountable infinity of
available assets, say) in which the notion of ‘a function of earlier prices’ oversteps what
the mathematics or the imagination can support!

A stochastic process (Xt)t∈T is a family of random variables, and is said to be adapted
if Xt is Ft-measurable for each t ∈ T . The classic example is an asset price process;
assuming perfect information, the price of an asset at time t is always known at time
t! The portfolio θ̄t an agent holds at time t is also an adapted process, but it is even
a little more; as the discrete-time example above illustrates, the portfolio held on day
n had to be decided on day n − 1, so was known in advance. Such a process is called
previsible; there is an analogous concept in continuous time, but it is much harder to
define, so we shall not even attempt to - suffice it to say that previsibility is the natural
measurability restriction on portfolio processes.

Probably the most important class of processes is the class of martingales. We give
here only the briefest summary of the definitions; for the perfect account of martingale
theory in discrete time, you have to consult Williams [8]. A martingale is an adapted
process (Mt)t∈T with the properties that E|Mt| < ∞ for every t, and

Ms = Es Mt(3.1)

≡ E[Mt|Fs]

for all s ≤ t in T . In words, for any s < t, the expected value of Mt given Fs is Ms.
The equivalent notations EsY and E[Y |Fs] for the conditional expectation of a random
variable Y given information known by time s are defined by the two properties that
EsY is always Fs-measurable, and

(3.2) E(Y IF ) = E(Es(Y )IF )

for all events F ∈ Fs. Here, IF is the random variable which is 1 on the event F , and
is otherwise 0; it is an indicator random variable, which indicates whether an event
has happened or not. An easy and common example from finance would be where the
random variable Y is the payoff of a European call option on a share, and the event
F is the event that the price of the share has not dropped below 50 before the option
expires. In that case, Y IF is the payoff of a down-and-out call option, with knockout
barrier at 50.

To rephrase (3.1) and (3.2) then, a process (Mt)t∈T is a martingale if for any s < t and
any F ∈ Fs

(3.3) E[(Mt −Ms)IF ] = 0,

and in this form we shall presently meet the martingale condition again.
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The only other notion we need to introduce for now is that of a change of measure. At
one level, this is a formal procedure, and very easy to handle as such. Suppose we are
given some non-negative random variable Z, for which 0 < c ≡ EZ < ∞. Then we can
use it to define a new probability P∗, say, via the recipe

(3.4) P∗(A) = c−1E[ZIA].

Notice that this is a probability - the countable additivity of P∗ is a consequence of
properties of the integral, and the fact that P∗(Ω) = 1 follows from the definition of
c. It is clear that P∗ is absolutely continuous with respect to P in the sense that if
P(A) = 0 then also P∗(A) = 0 - this is a basic property of integrals. The fact that a
measure P′ which is absolutely continuous with respect to P in this sense must have a
representation of the form (3.4) for some random variable Z is a deep and important
theorem, the Radon-Nikodym theorem.

As an example of how these things can arise in practice, let’s consider a game where you
bet on N successive tosses of a coin. This coin lands H with probability p, and lands
T with probability q = 1 − p. You win 1 each time the coin lands H, you lose 1 each
time the coin lands T . Let Sn denote your accumulated gains after the nth toss of the
coin, so that S0=0, and |Sn−Sn−1| = 1 for all n ≥ 1. The situation is extremely simple;
there are just 2N possible outcomes in the sample space, a typical outcome ω being just
a sequence of N symbols, H or T . The probability of a particular sequence ω is simply

pjqN−j,

where j is the number of Hs in the sequence ω. This could equivalently be written as

p(N+SN )/2q(N−SN )/2 ≡ ϕ(p, SN),

say. If we took as our basic probability P the probability which arises in the situation
where p = 1/2, we could express the probability Pp corresponding to a coin with H-
probability p via the change-of-measure

Z =
ϕ(p, SN)

ϕ(1/2, SN)
.

In this example, the gains process under P is actually a martingale, as you are as likely
to win 1 as to lose 1 at each toss. If p was different from 1/2, that is, if the coin were not
fair, the gains process would not be a martingale, because you would tend on average
to win if p > 1/2 or to lose if p < 1/2. What we see in this example then is that by
changing measure from Pp to P, we convert the process S into a martingale! This is an
important technique in finance, which we are going to justify by economic reasoning in
the next section, and in two other ways. It is also important to understand that it is
only a technique; the transformed probability has no ‘real’ status, in that it does not
describe how assets behave in the real world 3, it merely allows us to compute prices and
(in some cases) to calculate hedges. The transformed probability can be given various
interpretations, as we shall see, and these are illuminating.

3The paper Rogers & Satchell [7] gives a stark warning about the difference between real-world and
so-called ‘risk-neutral’ probabilities.
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4 Optimal investment.

There are many different optimisation problems we could pose for the agent, which all
lead to broadly similar conclusions. Here is one which is easy to work with. We assume
that the agent has a utility function U , which is strictly increasing and strictly concave
4 on (0,∞), a fixed investment horizon T > 0, and aims to

max E U(VT )

starting from initial wealth V0. Suppose that the optimal wealth is V ∗
T , achieved by using

the self-financing portfolio θ∗. If we now consider changing slightly from this optimum
θ∗ to θ∗+ εη, where ε is very small, the discounted terminal wealth R−1

T V ∗
T gets changed

to

R−1
T VT = R−1

T V ∗
T + ε

∫
(0,T ]

ηudS̃u ≡ R−1
T (V ∗

T + ∆V ),

from (2.7). Using the first two terms U(VT ) = U(V ∗
T ) + U ′(V ∗

T ) ∆V + . . . of the Taylor
expansion, we find that to first order in ε

E U(Vt) = E
[
U(V ∗

T ) + U ′(V ∗
T ) · ε

∫
(0,T ]

ηudS̃u ·RT

]
+ o(ε) 6 E U(V ∗

T ),

the inequality coming from the fact that V ∗ is optimal. From this, we learn that

E
[
U ′(V ∗

T ).RT .

∫ T

0

ηudS̃u

]
≤ 0,

and by arguing similarly for the perturbation −η the conclusion is that for any
(admissible) perturbation η

E
[
U ′(V ∗

T ).RT .

∫ T

0

ηudS̃u

]
= 0,

which we may re-express as

(4.1) E∗
[∫ T

0

ηudS̃u

]
= 0

when we define the probability P∗ by

dP∗

dP
= c.U ′(V ∗

T ).RT ,

the constant c being chosen for correct normalisation; see (3.4). By taking especially
simple perturbations η, we have a remarkable conclusion. Fixing t ∈ (0, T ), taking some
event F ∈ Ft and using the perturbation

ηu = I{t<u≤T}IF ,

the little change in discounted wealth ε
∫

(0,T ]
ηudS̃u becomes (S̃T −S̃t)IF , statement (4.1)

becomes
E∗

[
(S̃T − S̃t)IF

]
= 0

4The strict increase of U is natural, and the strict concavity reflects the agent’s risk aversion
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and we recognise (see (3.3)) that

under P∗, discounted price processes are martingales.

So without any contrivance, we have seen that the existence of a probability P∗ equivalent
to the original P under which all discounted asset price processes are martingales follows
from simple ideas of equilibrium!

Remarks. (i) In recent years, the mathematical finance literature has been full of papers
proving various forms of the so-called ‘Fundamental Theorem of Asset Pricing’ 5 which
broadly says that in a market there are no arbitrage opportunities if and only if there is
an equivalent measure under which all asset price processes are martingales (an EMM).
This literature sprang from the original papers of Harrison & Kreps [3] and Harrison &
Pliska [4], but perhaps the most important issue is why one should think of formulating
such a statement in the first place!! David Kreps, being a good economist, would
undoubtedly have been familiar with the kind of arguments we have just seen, and
in the light of this, the formulation of the Fundamental Theorem of Asset Pricing is
explained.

It is clear that in equilibrium there can be no arbitrage, and we have just seen that in
equilibrium there is an EMM. The fact that these two consequences of equilibrium are
equivalent is remarkable and very important (or, depending on your point of view, very
unimportant!)

(ii) The optimal portfolio in the general continuous-time setting will not typically be a
simple piecewise-constant portfolio, so we really do need a general theory of stochastic
integration to underpin the sort of analysis carried out above.

In general, there will be no uniqueness of EMMs; any two agents in the same market
would generate an EMM, and these will in general be different. In a complete market,
which is a market where every contingent claim can be perfectly replicated by suitable
trading in the underlying securities, there is of course a unique price for any contingent
claim, namely the intial wealth needed to finance the replicating portfolio. We shall
study an example of such a market in the next section. The well-established theory
of complete markets has been extensively developed in the last twenty years, but
incomplete markets (which are much more difficult to handle) have been comparatively
neglected. Various mathematicians have made peculiar attempts to define a price
of a non-marketed contingent claim in an incomplete market, demonstrating thereby
their unfamiliarity with the kinds of arguments sketched above. And indeed, the ideas
sketched above need only minor extension to price contingent claims in an incomplete
market. Here’s how.

If Y is a bounded non-negative contingent claim whose value will be known by time T
(for example, the payoff of a European put option), what would be a fair price pε for
our agent to pay at time 0 in order to receive εY at time T? If he paid out p at time

5The definitive version of this result appears now to have been proved by Delbaen & Schachermayer
[2]. We shall sketch the main ideas of the result in the Appendix.
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0, his deposit account would be short by an amount pRT at time T . To offset this, he
would be free to go into the market and invest in the assets traded there; the best he
could do by trading in the market, his maximised expected utility of terminal wealth,
would then be just

sup E U(VT + εY − pRT ).

As p increases, this expression decreases, and if p were zero it would certainly be better
than E U(V ∗

T ), which is the best he could do if he did not enter into any deal involving
Y . So there will be (under mild assumptions) a unique pε at which he would be just
indifferent to this deal, where

E U(V ∗
T ) = sup E U(VT + εY − pεRT ).

This value of p is the agent’s maximal buying price for Y ; he would always want to buy
Y if it were offered at less than pε, and would never pay more than pε for Y . Notice
that the sup is at least what he would achieve if he used the portfolio θ∗ and obtained
wealth V ∗

T , so
E U(V ∗

T ) > E U(V ∗
T + εY − pεRT ).

Expanding the right-hand side to order ε we get

E U(V ∗
T ) > E [U(V ∗

T ) + U ′(V ∗
T )(εY − pεRT )] + o(ε).

Rearranging, dividing by ε and letting ε drop to zero, we obtain

lim
ε↓0

1

ε
pε ≥ E∗ [

R−1
T Y

]
.

If we now consider the analogous argument for buying −εY , that is, selling εY , we
obtain

lim
ε→0

1

ε
pε = E∗ [

R−1
T Y

]
that is, the fair time-0 marginal price of a contingent claim is the P∗-expectation of its
value discounted back to time 0. Thus different agents would have different notions of a
fair price for a given contingent claim. There’s much more lurking here, 6 but let’s leave
it now, and look at a simple example.

5 The binomial market, and the Black-Scholes

formula.

In general, the kind of optimisation problem needed to find an EMM by the route
described above will not be easy to solve. Here is a very simple example where we can
get round the problem altogether.

To start with, assume that we are in discrete time, with a deposit account which starts
the period worth 1, and a share that starts the period worth 1. At the end of the period

6For example, the result of Jacka [5] that a contingent claim is attainable if and only if its price is
the same with respect to all equivalent martingale measures.
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the share will be worth u if the period was good, and d < u if the period was bad;
the deposit account will be worth ρ ∈ (d, u) whatever the type of period. Suppose we
have an agent who is trying to maximise his expected utility of wealth at the end of the
period, in the manner described in the last section. He will end up with a measure P∗ on
the set of possible outcomes, which in this easy example contains just two points, ‘good’
and ‘bad’. If p denotes the probability of ‘good’ under P∗, we know that the discounted
share price process becomes a martingale under P∗, so the expectation of its discounted
value at the end of the period must be its value at the beginning of the period:

p
u

ρ
+ (1− p)

d

ρ
= 1

From this, simple algebra leads to the conclusion

(5.1) p =
ρ− d

u− d

Now we see that the value of p is unique; it does not depend on the preferences of the
agent. 7

Now we extend the model, assuming that u = 1/d,8 and consider one period after
another, all independent of each other, and all behaving as in the one-period model
above; each period, the share’s value gets multiplied by u (on a good period) or by d (on
a bad period), and the deposit account’s value always gets multiplied by ρ. As before,
there is a unique EMM, and under this the log-price process X becomes a random walk
with ‘up’ probability given by (5.1).

We’ll now begin to think of the model with N periods as representing the movement
of the asset prices during some fixed time interval [0, T ], each period corresponding to
∆t ≡ T/N units of time. If the compound interest rate of the deposit account is r, we
should therefore express the one-period return of the deposit account as ρ = exp(r∆t),
and we shall similarly write u = exp(∆x), where we think of ∆x as small, and we have
in mind ultimately to let both ∆x and ∆t tend to zero appropriately. In these terms,
we shall translate (5.1) to

(5.2) p =
er∆t − e−∆x

e∆x − e−∆x
,

and in keeping with this way of thinking we shall write X(N) for the log-price process;
X(N) is a simple random walk, with steps which take values ∆x and −∆x only, with
probabilities p and 1− p respectively, given by (5.2).

Now consider a contingent claim

Y = f(X
(N)
N∆t) ≡ f(X

(N)
T )

7This is because the market is complete, and every contingent claim can be replicated perfectly. See
any introductory text on finance for the story.

8With this assumption, the set of possible values for the share at any time is contained in
{un : n ∈ Z}.
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At time t = j∆t < T , when X
(N)
t = m∆x, what is the ’fair’ price to pay for the

contingent claim Y to be delivered at T? It has to be the expected discounted value of
the contingent claim:

(5.3) VN(j∆t,m∆x) = E∗ [exp(−(N − j)r∆t) . Y ]

Because we know that the log-price process is a simple random walk, we could rewrite
this in terms of an expectation with respect to the binomial distribution: writing
q = 1− p we have

VN(j∆t,m∆x) = e−(N−j)r∆t

N−j∑
i=0

piqN−j−i

(
N − j

i

)
f((m + 2i−N + j)∆x)

But this can be expressed equivalently (and more usefully) as

VN(j∆t,m∆x) = e−r∆t{pVN((j + 1)∆t,(m + 1)∆x)+

qVN((j + 1)∆t, (m− 1)∆x)}
(5.4)

with the boundary conditions VN(N∆t,m∆x) = f(m∆x). We can verify (5.4) directly
using Pascal’s triangle, or we can preferably interpret it as the Bellman equation of
dynamic programming. From this, we obtain

VN(j∆t,m∆x)− e−r∆tVN((j + 1)∆t,m∆x)

= e−r∆t

(
1

2
[VN((j + 1)∆t, (m + 1)∆x)− 2VN((j + 1)∆t,m∆x)

+ VN((j + 1)∆t, (m− 1)∆x)]

+ (p− 1

2
)VN((j + 1)∆t, (m + 1)∆x)

+ (q − 1

2
)VN((j + 1)∆t, (m− 1)∆x)

)

(5.5)

which looks quite a bit more complicated than (5.4). But the grouping of the terms is
appropriate for what we intend to do next, which is let N go to infinity, while preserving
the relation

(∆x)2 = σ2∆t.

If we do this, then from (5.2) we see that

p− 1

2
∼

(r − 1
2
σ2)∆t

2∆x

so dividing (5.5) by ∆t and letting ∆t go to zero, the differencing operations having been
grouped appropriately converge to corresponding differential operators, and we get in
the limit

(5.6)
∂V

∂t
+ rV =

σ2

2

∂2V

∂x2
+ (r − σ2

2
)
∂V

∂x

This formal calculation has led us to the celebrated Black-Scholes PDE. We are being
rather cavalier in assuming that the discretely-defined value functions VN have a smooth
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limit for which the analogue (5.6) of (5.5) holds, but this is indeed true. The best way
to see this is as a consequence of the weak convergence of the random walks X(N) to
the process Xt = σWt + (r − σ2/2)t, a Brownian motion with constant drift. As a
consequence, the value functions VN expressed in the form (5.3) converge pointwise to
the limit function

V (t, x) = E[f(XT )|Xt = x],

at least if f is bounded and continuous (as would be the case for a European put option,
for example). But now it is an easy matter to deduce that V solves the Black-Scholes
PDE (5.6), since we can write

V (T − s, x) =

∫
exp(−y2/2σ2s)f(x + y + (r − σ2/2)s)

dy√
2πσ2s

,

and directly verify from this that V solves (5.6). Solving the PDE (5.6) with the
boundary condition

V (T, x) = (K − ex)+

gives the Black-Scholes formula for the price of a European put option with strike K.

6 Appendix: two other approaches

In this Appendix, we present two very different approaches, which both lead to risk-
neutral pricing. Each is quite direct, indeed, arguably simpler than the route we took
earlier in Sections 2 and 4, but does not yield the insight of that (economic) approach.
To emphasise this, note that each of the approaches here yields only the existence of a
risk-neutral pricing measure, but gives no guidance on which to choose when there is
more than one.

AXIOMATIC APPROACH. We put ourselves in a filtered probability space
(Ω, (Ft)t≥0, P) such that the σ-field F0 is trivial, and suppose that we have pricing
operators (πtT )0≤t≤T for contingent claims; if Y is some bounded random variable which
is FT measurable, the time-t ‘market’ price of Y is

πtT (Y ).

This will be a bounded Ft-measurable random variable; any sensible definition of ‘the
market price’ at time t would have to be a random variable, as the information contained
in Ft would inevitably affect what the market was willing to pay for Y .

We shall assume that the pricing operators (πtT )0≤t≤T satisfy certain axioms:

(A1) Each πtT is a bounded positive linear operator from L∞(FT ) to L∞(Ft);

(A2) If Y ∈ L∞(FT ) is almost surely 0, then π0T (Y ) is 0, and if Y ∈ L∞(FT ) is
non-negative and not almost surely 0, then π0T (Y ) > 0;

(A3) For 0 ≤ s ≤ t ≤ T and each X ∈ L∞(Ft) we have

πst(XπtT (Y )) = πsT (XY );
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(A4) For each t ≥ 0 the operator π0t is bounded monotone-continuous - which is to say
that if Yn ∈ L∞(Ft), |Yn| ≤ 1 for all n, and Yn ↑ Y as n →∞, then π0t(Yn) ↑ π0t(Y ) as
n →∞.

Axiom (A1) says that the price of a non-negative contingent claim will be non-negative,
and the price of a linear combination of contingent claims will be the linear combination
of their prices - which are reasonable properties for a market price. Axiom (A2) says
that a contingent claim that is almost surely worthless when paid, will be almost surely
worthless at all earlier times (and conversely) - again reasonable. The third axiom, (A3),
is a ‘consistency’ statement; the market prices at time s for XY at time T , or for X
times the time-t market price for Y at time t, should be the same, for any X which is
known at time t. The final axiom is a natural ‘continuity’ condition which is needed for
technical reasons.

Let’s see where these axioms lead us. Firstly, for any T > 0 we have that the map

A 7→ π0T (IA)

defines a non-negative measure on the σ-field FT , from the linearity and positivity (A1)
and the continuity property (A4). Moreover, this measure is absolutely continuous with
respect to P, in view of (A2). Hence there is a non-negative FT -measurable random
variable ζT such that

π0T (Y ) = E[ζT Y ]

for all Y ∈ L∞(FT ). Moreover, P[ζT > 0] > 0, because of (A2) again. Now we exploit
the consistency condition (A3); we have

π0t(XπtT (Y )) = E[XζtπtT (Y )] = π0T (XY ) = E[XY ζT ].

Since X ∈ L∞(Ft) is arbitrary, we deduce that

πtT (Y ) = Et[Y ζT ]/ζt,

which shows that the pricing operators πst are actually given by a risk-neutral pricing
recipe, with the state-price density process ζ. In practice, the state-price density process
is often decomposed as the product of the discount factor exp(−

∫ t

0
rsds) and the change-

of-measure martingale.

NO-ARBITRAGE APPROACH. The proof that the absence of arbitrage implies
that there exists an equivalent measure under which all discounted asset prices are
martingales was first given in discrete time by Dalang, Morton & Willinger [1]. The
full story for continuous time is much harder; a non-trivial part of the difficulty lies in
the fact that the obvious definitions of ‘no arbitrage’ don’t work for various reasons,
and the framing of the correct definition is a major part of the work of Delbaen &
Schachermayer [2]. We shall here just give the flavour of the proof of the discrete-time
result from Rogers [6], which you will see has a lot in common with the ideas of Section
4 above.

Suppose we are in a one-period world, and that there are n assets. Also assume for
simplicity that there is no discounting: R ≡ 1 in the notation of Section 2. The changes
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in the prices of the n assets from the start to the end of the period is denoted by the
random vector X ≡ (X1, . . . , Xn)T , so that if the agent chooses to hold the portfolio
θ ∈ Rn during the period, his gain by the end of the period will just be η ≡ θ ·X. The
no-arbitrage assumption is that there is no θ for which P[η ≥ 0] = 1, and P[η > 0] > 0;
in words, you cannot make a gain without also facing some risk of losing. Without loss
of generality, we can assume that there is no a ∈ Rn for which P[a · X = 0] = 1, for
then X would lie in a smaller-dimensional subspace, and we could drop down to that
subspace and work there.

The theorem says that if the no-arbitrage assumption holds, then there is a measure P∗
equivalent to P under which

E∗[X] = 0;

the random vector X is a vector of martingale differences.

The idea is to consider the moment-generating function

a 7→ ϕ(a) ≡ E exp(a ·X) (a ∈ Rn)

which we assume without loss of generality is everywhere finite. 9

Now consider α ≡ inf{ϕ(a) : a ∈ Rn}. There are two cases to deal with: either this
infimum is attained, or this infimum is not attained.

In the first case, suppose that the infimum is attained at a∗. Then for any non-zero
θ ∈ Rn we shall have

0 ≤ ε−1[ϕ(a∗ + εθ)− ϕ(a∗)]

= ε−1E[exp(a∗ ·X) (exp(εθ ·X)− 1)]

→ E[exp(a∗ ·X) θ ·X]

and by applying the same argument to −θ we obtain the conclusion

E[exp(a∗ ·X) θ ·X] = 0

whatever θ, which is what we were after; the measure whose density with respect to P
is proportional to exp(a∗ ·X) will be an equivalent martingale measure.

In the second case, the infimum is not attained, is at least zero (since ϕ > 0) and is less
than 1 = ϕ(0). So there is some sequence of points an such that ϕ(an) < α + n−1. The
sequence must be unbounded, otherwise there would be an accumulation point where,
by Fatou’s lemma, ϕ would have to be equal to α and the infimum would be attained.
By passing to a subsequence, we may suppose that an/|an| converges to some point γ
on the unit sphere. The claim is that

P[γ ·X > 0] = 0,

9If not, we would replace P by the equivalent measure P̃ defined by P̃ = c. exp(−|X|2)P, for a suitable
normalising constant c. For this measure, the moment generating function of X is everywhere finite,
and the argument proceeds as given.
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for, if not, there would be some neighbourhood U of γ such that P[θ · X > 0] > 0 for
all θ ∈ U . Since an/|an| ∈ U for large enough n, it would follow that ϕ(an) → ∞ as
n →∞, a contradiction. Thus P[γ ·X > 0] = 0, and so (since X does not lie in a proper
subspace) it has to be that P[γ ·X < 0] > 0, and investing in the portfolio −γ gives us
an arbitrage. So under the assumption of no arbitrage, the second possibility cannot in
fact occur.
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