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Abstract

This paper presents a general framework for studying diverse beliefs in dynamic
economies. Within this general framework, the characterization of a central-planner
general equilbrium turns out to be very easy to derive, and leads to a range of inter-
esting applications. We show how for an economy with log investors holding diverse
beliefs, rational overconfidence is to be expected; volume-of-trade effects are effectively
modelled; a range of sample moments from macroeconomic growth data can be closely
approximated; and the Keynesian ‘beauty contest’ can be modelled and analysed. We
remark that models where agents receive private information can formally be considered
as models of diverse beliefs.

1 Introduction.

Dynamic general equilibrium models provide us with perhaps our best hope of under-
standing how markets and prices evolve, but are often frustratingly difficult to solve.
Representative agent models are an exception, but the limitations of the representative
agent assumption are only too plain. Stepping up to models with many heterogeneous
agents drastically reduces the available range of tractable examples, but is a necessary
approach to realism. The simplest form of heterogeneity one could consider is one where
agents have different preferences, and perhaps different endowments, but such models
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are not immediately suited to explaining effects arising from different information, or
from different beliefs, since the causes are not being modelled.

In a recent survey, Kurz [27] discusses the literature on models with different infor-
mation or beliefs, presents a compelling critique of models with private information, and
expounds his own theory of how to handle diverse beliefs. Models where agents receive
private signals about random quantities of interest have been extensively studied, but
are in general hard to work with; see, for example, Lucas [31], Townsend [38], Gross-
man & Stiglitz [14], Diamond & Verrecchia [11], Singleton [37], Brown & Jennings [6],
Grundy & McNichol [15], Wang [41], He & Wang [19], Judd & Bernardo [24], Mor-
ris & Shin [32], [33], Hellwig [20], [21], Angeletos & Pavan [2]. Problems such as the
Grossman-Stiglitz paradox, and the Milgrom-Stokey no-trade theorem necessitate the
introduction of exogenous noise into the models, but nonetheless the treatment of pri-
vate information is only tractable under very restricted modelling assumptions. There
are also problems at a conceptual level, as Kurz points out. Firstly, what is private
information? In reality, the majority of agents’ information is common, such as macroe-
conomic indicators or the past performance of the stock, so we have to accept that a
very small amount of private information might have a significant impact. Secondly, if
private information does exist, what could we say about it? The private nature of the
information would make it very difficult for us to verify any model that relied upon it.

For these reasons, we prefer to examine the class of models where all agents have
the same information, but interpret that information differently. Although Kurz dis-
tinguishes such models from private information models, we can make the simple but
important observation1: a private information model can be considered as a model where
all agents have common information, but have different beliefs about that information.
Indeed, given a model where different agents receive private signals, we could regard this
as a model where all agents receive the same information but interpret it differently:
every agent gets to see all the private signals, but believes that the signals received by
the others are independent of everything else in the economy!

In our treatment, the agents’ different beliefs are modelled as different probability
measures P

j defined over the same stochastic base (Ω,F , (Ft)t≥0). Contrast this with
the situation of private information, where all agents share the same probability P, but
work over different stochastic bases (Ω,F j , (F j

t )t≥0). The diverse beliefs setting is far
easier to work with, and, as we shall show, leads to simple but effective analyses. The
literature on diverse beliefs is surveyed by Kurz, and includes the papers of Harrison &
Kreps [18], Leland [29], Varian [39], [40], Harris & Raviv [17], Detemple & Murthy [10],
Frankel & Rose [13], Kandel & Pearson [25], Cabrales & Hoshi [8], Wu & Guo [43], [44],
Buraschi & Jiltsov [7], Fan [12], Jouini & Napp [23]. Among these, we would pick out
the elegant early contribution of Leland [29], which treats a static problem2, and the
more recent contributions of Buraschi & Jiltsov [7], and of Jouini & Napp [23]. Buraschi

1We do not claim that understanding diverse beliefs models as presented here renders irrelevant all studies
on private information. The inclusion remarked on is too general to permit useful conclusions.

2Agents aim to maximise their expected utility of terminal wealth in a complete-markets model. Agents
act as price takers; Leland does not derive equilibrium prices.
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& Jiltsov propose a continuous-time model with a single asset whose log-dividend is a
Brownian motion with Ornstein-Uhlenbeck drift, together with a signal process whose
drift depends linearly on the drift in the asset. Two agents start with different priors for
the drift, and filter from the observations. Lengthy calculations with the specific form of
the model lead to equilibrium prices for stock and option. In view of this, the derivation
of the multi-agent equilibrium which we present in the next section is disquieting; how
can it be so easy? The reason is that we are handling the equilibrium problem at a higher
level of generality, expressing the solution in terms of the likelihood-ratio martingales of
the individual agents. The likelihood-ratio martingales which Buraschi & Jiltsov need
are given by quite lengthy expressions, but we do not need to write them down explicitly
in order to see the form of the equilibrium solution. Indeed, the form of the state-price
density process given by (2.8) is one of the main contributions of this paper. The paper
of Jouini & Napp [23] uses a similar3 formulation and the same first-order conditions
for equilibrium that we use, but with a somewhat different objective. Their aim is to
interpret the equilibrium arising in terms of a representative agent whose beliefs are to
be discovered, and who assigns consumption to the different agents in some possibly
different way. Our goal is rather to study the equilibrium as it stands, without trying
to assign a particular interpretation to it.

Our model supposes mutiple agents take positions in a single4 asset which pays a
continuous dividend stream, and is in unit net supply. There is a riskless asset, in
zero net supply. The agents have different beliefs, represented as different probability
measures, which we assume with no loss of generality5 are absolutely continuous with
respect to some reference measure. Though we have diverse beliefs, we stress that we
do not take a continuum of stochastically identical agents; agents’ diversities do not just
get replaced by an average. The form of the agents’ beliefs is otherwise unrestricted:
the agents could be stubborn bigots who assume they know the true distribution of the
processes they observe and never change their views, they could be Bayesians updating
their beliefs as time evolves, there could be linkages between the beliefs of the different
agents - all such structure is irrelevant at the first pass.

Having derived the central-planner equilibrium in Section 2, we immediately show
how this framework gives with no effort the result that all agents are ‘rationally over-
confident’ - they all think that the particular consumption stream that they have chosen
is better than those chosen by the others.

Obtaining explicitly-soluble examples with diverse beliefs is no easier than in the
situation where all beliefs are the same, and from Section 3 onwards we make the
simplifying assumption that all the agents have log utilities. This allows us to identify the
state-price density process quite explicitly, and to obtain expressions for the equilibrium
price of the asset, and for the riskless rate of return. We are also able to identify
explicitly the portfolio of the risky asset over time for each of the agents. In contrast

3We endow each agent with an initial wealth, Jouini & Napp gives each an endowment stream.
4The restriction to a single asset is for notational convenience only; the entire analysis works also for

multi-assets situations.
5If agent j has probability measure P

j , we could use the average of the P
j as a reference measure.
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to the common-beliefs situation, the portfolios have non-zero quadratic variation, which
we interpret as a proxy for the volume of trade, and we study this in Section 6.

Section 4 addresses the ‘beauty contest’ metaphor of Keynes [26]. In this Section, we
consider whether the individual agents in the model would do better to publicly profess
beliefs they do not believe in. The point of doing this is that their objective is defined in
terms of their true beliefs, yet the equilibrium is characterised by the professed beliefs
which guide their trading and consumption decisions. It may be (and it turns out to be)
that they can improve their objective by adopting beliefs which are in some precise sense
a dynamic mixture of their true beliefs and a population-average of beliefs. We contrast
this with the recent study of Allen, Morris & Shin [1], where the asset prices are defined
in terms of average expectation operators which do not compose in a time-consistent
fashion. One consequence of this is that the prices are not derived from a state-price
density, whereas in our situation they are. We believe that the time-inconsistency of their
average-expectation operators depends strictly on the overlapping-generations structure
assumed in their model, where each individual lives for just two periods. In such a story,
an agent cannot directly compare consumption now and consumption five periods in the
future, because five periods in the future he will not be consuming. The comparison
can only be via the intermediate pricing achieved in markets at the intervening times.
Indeed, in an overlapping-generations model with diverse beliefs but with agents who
live for a random length of time which may be arbitrarily large, Brown & Rogers [5]
find a state-price density which determines prices in the usual way.

In the next section, Section 5, we study the discrete-time analogue of the continous-
time situation of Section 3, but with a difference. Starting from the observation that
it is typically much easier to gather information on the stock price of a firm than on
its dividend process, we imagine now that some agents think that the stock price is
a multiple of the dividend (as it would be in a homogeneous market.) Otherwise,
they believe that the changes in the log dividend are independent identially-distributed
normal variables, whose variance they know, but whose mean has a normal prior, which
they attempt to learn. Their beliefs are updated by the changes in price; but their beliefs
enter into the calculation of the price also, so there is a natural feedback mechanism
from beliefs into prices. It is possible to carry the analysis quite a long way, but the
story is ultimately too complicated to study in general except by simulation. We present
some simulation results which show how the mistaken belief that the stock is a multiple
of the dividend can produce some very substantial and abrupt changes in price - bubbles
and crashes. In general terms, having more diligent6 agents in the economy reduces the
frequency and severity of these big changes.

We place in an appendix a very simple-minded model-fitting exercise; this is not
because the study is not of intrinsic interest, but rather because it differs in style from
the mainly theoretical body of the paper. We take the diverse-beliefs model with log
agents and try to fit it to various sample moments of the dataset of Shiller7, as Kurz, Jin

6We shall refer to an agent as diligent if he actually uses the changes in log dividend - not the changes in
log price - to update his beliefs.

7This dataset can be downloaded from http://www.econ.yale.edu/∼shiller/data.htm
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& Motolese [28] do. We find good agreement using a model with just three agents, and
having reasonable parameter values. This supports the view that diverse beliefs may be
able to resolve the equity premium puzzle, but the ability to match a few moments is not
of course sufficient to justify a statistical model. Weizmann [42] and Jobert, Platania
& Rogers [22] both analyze the equity premium puzzle from the point of view of a
representative Bayesian agent, and find reasonable values for parameter estimates, but
do not present evidence that the fitted models do any better than just fitting constants
to the data.

Section 7 concludes and maps out directions for future research.

2 Diverse beliefs equilibria.

We are going to derive a general equilibrium for a dynamic economy with J ≥ 2 agents,
containing a single productive asset, whose output process (δt)t≥0 is observable to all
agents. We shall suppose that time is continuous, and that δ is adapted to a filtration
(Ft)t≥0 which is known to all agents. To cover various technical issues, we shall assume
that the filtered probability space (Ω,F , (Ft)t≥0, P

0) satisfies the usual conditions; see
[36] for definitions and further discussion.

Though the J agents all have the same information, they do not share the same
beliefs about the distributions of the processes they observe. We suppose that agent j
thinks that the true probability is P

j, a measure locally equivalent to P
0, with density

process Λj

Λj
t =

dP
j

dP0

∣

∣

∣

Ft

, (2.1)

which is a positive martingale.
The objective of agent j is to obtain

supEj

∫ ∞

0
Uj(t, c

j
t )dt (2.2)

where the supremum is over all consumption policies which keep the wealth of agent j
positive. Here, Uj is some strictly increasing time-dependent utility, such that Uj(t, ·)
satisfies the Inada conditions. Notice that even if all agents have the same Uj, their
objective is calculated taking expectations under their different P

j, and so differences in
beliefs will result in different optimal behaviour.

We use this to find the state-price density process ζj of agent j. Agent j’s objective
can be written in the equivalent forms

Ej

∫ ∞

0
Uj(t, c

j
t )dt = E0

∫ ∞

0
Λj

tUj(t, c
j
t )dt. (2.3)

Now consider the price that agent j is willing to pay at time s for a contingent claim
which pays amount Yt at time t > s. Denote this price by πj

s(Yt)
8. By considering

8Here, Yt is some bounded Ft-measurable random variable
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the change in agent j’s objective from buying this (marginal) contingent claim, the first
order conditions give:

0 = πj
s(Yt)U

′
j(s, c

j
s)Λ

j
s − E0

[

YtU
′
j(t, c

j
t )Λ

j
t |Fs

]

. (2.4)

Rearrangement gives

πj
s(Yt) = E0

[

Yt

U ′
j(t, c

j
t )Λ

j
t

U ′
j(s, c

j
s)Λ

j
s

∣

∣

∣

∣

Fs

]

(2.5)

So we see that agent j has state price density given by:

ζj
t = U ′

j(t, c
j
t )Λ

j
t (2.6)

If we assume that the market is complete (or that we have a central planner equilibrium),
then the agents must agree on the price of all contingent claims. So looking at the
expression for πj

s(Yt) and recalling that Yt is arbitrary, we must have

ζj
t,s =

U ′
j(t, c

j
t )Λ

j
t

U ′
j(s, c

j
s)Λ

j
s

(2.7)

is the same for all j. Hence

ζtνj = U ′
j(t, c

j
t )Λ

j
t (2.8)

where νj is some Fs random variable. In particular, if there exists some value t0 such
that Ft0 is trivial9 then we deduce that νj is in fact just a constant.

Now that we have (2.8), deriving equilibrium prices follows from market clearing in the
usual way. In more detail, defining10 the inverse marginal utilities Ij by

Ij(t, U
′
j(t, y)) = y (2.9)

for any y > 0, then
Ij(t, ζtνj/Λ

j
t ) = cj

t .

Summing on j and using market clearing gives

∑

j

Ij(t, ζtνj/Λ
j
t ) = δt. (2.10)

This is an implicit equation for the unknown ζ in terms of the known quantities δ
and Λj. In most examples, it will not be possible to invert this relationship explicitly,
though under special assumptions, such as the assumption of log utilities made in the
next section, we can do something.

9This will be the case in the example looked at in this paper
10The assumed properties of Uj ensure that Ij is well defined.
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Thus starting from the dividend process, and the agents’ beliefs, we have obtained
an expression for the state-price density, which allows us to price contingent claims; for
example, the time-t price of the stock is simply

St = E0

[
∫ ∞

t

ζuδu

ζt
du

∣

∣

∣

∣

Ft

]

. (2.11)

Remarks. (i) In the case where all agents have the same beliefs (thus ΛJ ≡ 1 for all j),
this reduces to the familiar expression for the state-price density as the marginal utility
of optimal consumption.

(ii) Notice that the situation is completely general; there is no assumption about the
nature of the stochastic processes, nor is there any assumption about the nature of the
diverse beliefs. No such assumption is needed for (2.8).

(iii) Rational overconfidence. Kurz remarks that “a majority of people often expect
to outperform the empirical frequency measured by the mean or median”. In other
words, each of the agents believes that they will usually do better than the average. In
our setup, this result comes for free. If c̃t is any consumption stream and cj

t is agent j’s
optimal consumption stream, then we have

Ej

∫ ∞

0
Uj(t, c

j
t )dt ≥ Ej

∫ ∞

0
Uj(t, c̃t)dt (2.12)

This follows simply from the fact that cj
t is agent j’s optimal consumption stream. In

general, different agents will choose a different consumption stream, even if they have
the same utility functions; even if they do have the same utilities, each agent believes
that he will do better (on average) than all the other agents.

3 Log agents.

Getting a reasonably explicit form for the state-price density process ζ is key to making
progress, and for the rest of the paper unless explicitly stated to the contrary we shall
make the simplifying assumption

Uj(t, x) = e−ρjt log x (3.1)

for some positive ρj. This leads to an explicit form for the state-price density, and from
that, expressions for the wealth processes of the individual agents, the equilibrium price
of the stock, and the equilibrium dynamics of the riskless rate when we assume specific
dynamics for the dividend process.

Under the assumed form (3.1) for the utility, the relation (2.8) for the state-price
density simplifies to

e−ρjtΛj
t

cj
t

= νjζt. (3.2)
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The wealth process of agent j is thus

wj
t = E0

[

∫ ∞

t

ζucj
u

ζt
du

∣

∣

∣

∣

Ft

]

= E0

[

∫ ∞

t

e−ρjuΛj
u/νj

ζt
du

∣

∣

∣

∣

Ft

]

= ζ−1
t e−ρjtΛj

t/νjρj (3.3)

= cj
t/ρj (3.4)

The derivation exploits the fact that Λj is a P
0-martingale.

Using (3.2), market clearing gives

δt =
∑

j

cj
t = ζ−1

t

∑

j

e−ρjtΛj
t

νj
,

and hence by rearrangement

ζt = δ−1
t

∑

j

e−ρjtΛj
t

νj
. (3.5)

Since the stock is in unit net supply, and the bank account in zero net supply, we can
quickly identify the stock price, using (3.3):

St =
∑

j

wj
t = ζ−1

t

∑

j

e−ρjtΛj
t

ρjνj
. (3.6)

Substituting from ζ from (3.5) leads to

St = δt

∑

j e−ρjtΛj
t/ρjνj

∑

j e−ρjtΛj
t/νj

Notice that in this case the price-dividend ratio takes a particularly simple form:

St

δt
=

∑

j e−ρjtΛj
t/ρjνj

∑

j e−ρjtΛj
t/νj

, (3.7)

which we shall have need of later when it comes to fitting various moments to the Shiller
dataset in Section A. If all the agents have the same beliefs, this is just a deterministic
function of time, but with heterogeneous beliefs this becomes a random process. Notice
also that the price-dividend ratio depends only on the likelihood-ratio martingales, and
not on the underlying dividend process, though this property is special to the log case.
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This is about as far as we can get without some more specific assumptions on the
nature of the dividend process. We shall now assume that the dividend process satisfies

dδt = δtσt(dXt + α∗
t dt) (3.8)

where X is an (Ft)-Brownian motion under P
0, and σ is some strictly positive bounded

previsible process. The process α∗ is of course unknown to the agents. Concerning the
agents’ beliefs, we suppose that

dΛj
t = Λj

tα
j
tdXt (3.9)

where the αj are previsible processes. Thus under the measure P
j the process X becomes

a Brownian motion with drift αj (by the Cameron-Martin-Girsanov Theorem; see [36],
IV.38 for an account).

The equation (3.5) for the state-price density gives

ζtδt =
∑

j

e−ρjtΛj
t

νj
≡ Lt, (3.10)

say. A little Itô calculus gives us

dLt = Lt(ᾱt dXt − ρ̄t dt) (3.11)

where
ᾱt ≡

∑

j

qj
t α

j
t , ρ̄t ≡

∑

j

qj
t ρj , (3.12)

and where

qj
t ≡

e−ρjtΛj
t/νj

∑

i e
−ρitΛi

t/νi
. (3.13)

The dynamics of the riskless rate follow easily from (3.10), (3.11). We have

dζt = ζt(−rtdt − κtdXt)

where

rt = ρ̄t + σt(α
∗
t + ᾱt) − σ2

t , (3.14)

κt = σt − ᾱt. (3.15)

We can also derive the dynamics of the stock price. After some routine calculations, we
arrive at

dSt = St

{

(κt + at)(dXt + κtdt) + rdt)
}

− δtdt, (3.16)

where

at ≡

∑

αj
te

−ρjtΛj
t/νjρj

∑

e−ρjtΛj
t/νjρj
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is an average of the αj
t using weights different from the qj

t . This allows us to identify
the volatility σS of the equilibrium stock price, namely

σS
t = κt + at = σt − ᾱt + at. (3.17)

In general, this is different from the volatility σt of the dividend process, even if that
volatility is constant. If all agents agreed, it is immediate from (3.7) that the volatility
of the stock is the same as the volatility of the dividend process; this illustrates again
the general principle that heterogeneous beliefs will generate fluctuations which would
be absent in a model where all agents agree. Observe also that if ρj = ρ is the same for
all j, then at = ᾱt, and hence (using (3.17)) σS

t = σt. This checks out with what we
would get from (3.7), which implies that δt = ρSt when all the impatience parameters
are the same.

4 Diverse beliefs and beauty contests.

The model assumptions are the same as in Section 3; we will additionally assume that
ρj = ρ for all j, so that the only differences between agents are their beliefs (represented
by the likelihood-ratio martingales Λj) and their initial wealths. For simplicity, we
will assume that agents are aware of the beliefs of others insofar as these are expressed
through a ‘market average’ belief, to be defined later. This is consistent with the ‘beauty
contest’ metaphor of Keynes [26], where people adjust their views in the direction of
what is perceived to be the general view.

Would it benefit agents to publicly pretend that their beliefs are different, given by
likelihood-ratio martingales Λ̃j instead of Λj? By doing this, the agents affect the equi-
librium state-price density, which is now determined by

δtζ̃t = e−ρt
∑

j

ν−1
j Λ̃j

t ≡ e−ρtΛ̄t, (4.1)

and the consumption they achieve in equilibrium, which is now given as

cj
t = e−ρtΛ̃j

t/νj ζ̃t. (4.2)

From the calculation

wj
0 = ζ̃−1

0 E

∫ ∞

0
ζ̃sc

j
s ds = (ζ̃0ρνj)

−1

we see that ν−1
j ∝ wj

0, and so the mixing weights which produce Λ̄ from the Λ̃j are

always the same, whatever Λ̃j the agents select. Notice that

dΛ̄t = Λ̄t

∑

ν−1
j Λ̃j

t α̃
j
tdXt

Λ̄t

≡ Λ̄t

(

∑

pj
t α̃

j
t

)

dXt

≡ Λ̄tᾱt dXt (4.3)
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where pj
t ≡ ν−1

j Λ̃j
t/Λ̄t, a probability distribution, and ᾱ is a suitably-chosen time-varying

convex combination11 of the individual α̃j . We can think of Λ̄ as defining a new proba-
bility P̄ defined by the usual likelihood-ratio recipe

dP̄

dP

∣

∣

∣

∣

Ft

= Λ̄t, (4.4)

and by the Cameron-Martin-Girsanov Theorem, we have that

X̄t ≡ Xt −

∫ t

0
ᾱs ds (4.5)

is a P̄ -Brownian motion.
Agent j’s objective is to maximise

E0

∫ ∞

0
e−ρtΛj

t log(cj
t ) dt = E0

∫ ∞

0
e−ρtΛj

t log(e−ρtΛ̃j
t/νj ζ̃t) dt

= E0

∫ ∞

0
e−ρtΛj

t log(Λ̃j
t/Λ̄t) dt + κ

= Ē

∫ ∞

0
e−ρt Λj

t

Λ̄t
log(Λ̃j

t/Λ̄t) dt + κ

≡ Φ + κ,

say, where κ is an unimportant constant. To develop this expression further, we note
that

Λj
t

Λ̄t
= E((αj − ᾱ) · X̄)t, (4.6)

where E denotes the Doleans exponential. Thus agent j tries to maximize

Φ = Ē

∫ ∞

0
e−ρt E((αj − ᾱ) · X̄)t log(E((α̃j − ᾱ) · X̄)t) dt

= Ē

∫ ∞

0
e−ρt E((αj − ᾱ) · X̄)t

{
∫ t

0
(α̃j

s − ᾱs) dX̄s − 1

2

∫ t

0
(α̃j

s − ᾱs)
2 ds

}

dt

= Ē

∫ ∞

0
e−ρt

∫ t

0
E((αj − ᾱ) · X̄)s

{

(αj
s − ᾱs)(α̃

j
s − ᾱs) − 1

2
(α̃j

s − ᾱs)
2

}

ds dt

= Ē

∫ ∞

0
ρ−1e−ρs E((αj − ᾱ) · X̄)s (α̃j

s − ᾱs)(α
j
s −

1

2
(ᾱs + α̃j

s)) ds

= Ej

∫ ∞

0
ρ−1e−ρs (α̃j

s − ᾱs)(α
j
s −

1

2
(ᾱs + α̃j

s)) ds.

This expression is to be maximised over the professed beliefs α̃j , which it must be
remembered are also present in ᾱ. To make this dependence explicit, let us temporarily
drop the time subscript, and write

ᾱ = pjα̃j + bj ≡ pjα̃j +
∑

i6=j

piα̃i.

11... different, of course, from the ᾱt defined at (3.12) ..
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The task is therefore to maximise the quadratic

(α̃j(1 − pj) − bj)(α
j − 1

2
bj − 1

2
(1 + pj)α̃j)

over α̃j . Routine calculus yields

α̃j =
pj bj

1 − (pj)2
+

αj

1 + pj

Cross-multiply this equation to learn

1 − (pj)2

pj
α̃j = bj +

αj(1 − pj)

pj
,

and now add pjα̃j to both sides to discover

(

1 − (pj)2

pj
+ pj

)

α̃j = ᾱ +
αj(1 − pj)

pj
.

From this now we have
pjα̃j = (pj)2 ᾱ + αjpj(1 − pj), (4.7)

and summing on j gives us

(1 −
∑

(pj)2)ᾱ =
∑

αjpj(1 − pj).

This gives us an expression for ᾱ in terms of the known quantities pj and αj , namely

ᾱ =

∑

αjpj(1 − pj)
∑

pj(1 − pj)
. (4.8)

Combining with (4.7) allows us to express agent j’s optimal professed belief as

α̃j
t = pj

t ᾱt + (1 − pj
t)α

j
t , (4.9)

which bears this appealing interpretation: agent j will do best to profess beliefs which are
a convex combination of his own true beliefs and the ‘average’ belief of the population.
Notice also that the weights pj used in (4.9) are the same as the weights used to form the
population average ᾱ from the individual αj . Thus if agent j’s beliefs have little weight
in the population average, such as would happen if ν−1

j were small - equivalently, wj
0 is

small - then agent j gives less weight to the population average, trusting his own beliefs
more. Again, agent j’s weight is raised when Λj

t is relatively large - that is to say, if
events have proved agent j correct; then the population average is drawn towards agent
j’s beliefs, an entirely plausible effect.

Notice also that the weighted average of the professed beliefs of the various agents
is the weighted average of their actual beliefs, ᾱ: from (4.9) and (4.8),

∑

pj
t α̃

j
t =

∑

(pj
t )

2ᾱt +
∑

pj
t(1 − pj

t)α
j
t = ᾱt.
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Of course, this discussion is somewhat idealized, in that the agents would need to
know what the market average belief ᾱ was in order to know what beliefs to profess.
Nevertheless, the point is clear: by professing beliefs more consistent with the overall
beliefs of others, agents can improve their objective, and even if the agents do not
know exactly what the average belief ᾱ may be, by moving towards that, they will do
better. Thus even if an agent does not know for sure where he should shift his professed
beliefs to, he will gain even by moving partially in the right direction. Thus we have
substantiated Keynes’ verbal metaphor in a well-specified neoclassical financial model;
the only unconventional ingredient is diversity of beliefs, modelled through different
probability measures.

5 Diverse mistaken beliefs

We have seen in Section 4 how it may be advantageous to agents to pretend to believe
something which they do not actually believe; the agents know what is going on, but
they consciously act differently. In this Section, we shall study what is in some sense the
opposite situation, where the agents do not completely understand the market around
them, but nevertheless act in accordance with the analysis of Section 3. Once again,
we restrict the discussion to agents with log utilities, and for reasons which will become
apparent we shall work in discrete time.

In practice, it may be very hard to learn about the dividends of an asset; dividend
payments are infrequent, and are often smoothed in various ways which limit their
usefulness as indicators of the state of a firm. On the other hand, the stock price is
usually easy to get hold of; it is available daily or more frequently; and it provides what
is arguably a more sensitive indicator of the state of the firm. In a market of log agents
with common beliefs and common impatience parameter ρ, the stock price is simply a
multiple of the dividend process, δt = ρSt; see (3.7). So we shall consider a situation
where agents observe the stock price, and assume that it is a constant multiple of the
dividend process. This introduces a natural and simple feedback mechanism from prices
to beliefs. The agents assume that the log returns of the observed stock prices are
actually the changes in log δ, and they modify their beliefs in the light of this knowledge
- but those modified beliefs then feed back into the stock prices.

To carry this analysis further, we record the following result, whose proof is a
straightforward exercise.

Proposition 1. Suppose that X1,X2, . . . are independent N(µ, τ−1) random variables,
where τ is known, but µ is not known. Starting with a N(µ̂0, (K0τ)−1) prior for µ, the
posterior mean µ̂t for µ, and the posterior precision τt given Yt ≡ σ(X1, . . . ,Xt), satisfy

τt = Ktτ ≡ (t + K0)τ, (5.1)

Ktµ̂t = K0µ̂0 +

t
∑

i=1

Xi. (5.2)
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The joint density of (X1, . . . ,Xt) is

λt ≡ exp

{

−
τ

2

t
∑

1

X2
i +

τ

2
(Ktµ̂

2
t − K0µ̂

2
0)

} (

τ

2π

)t/2√K0

Kt
. (5.3)

Remarks. (i) Notice that the joint density of (X1, . . . ,Xt) under the assumption that
these are independent gaussians with zero mean and variance τ−1 will be

λ0
t ≡ exp

{

−
τ

2

t
∑

1

X2
i

} (

τ

2π

)t/2

.

Thus if we take this as the reference measure, the likelihood-ratio martingale takes the
simple form

Λt = λt/λ
0
t = exp

{

τ

2
(Ktµ̂

2
t − K0µ̂

2
0)

}
√

K0

Kt
. (5.4)

(ii) How does λt change to λt+1 when the new observation Xt+1 is seen? If we write

Xt+1 = µ̂t + ε, (5.5)

then some simple calculations from (5.2) give us the updating

µ̂t+1 = µ̂t +
ε

Kt+1
. (5.6)

Using this and (5.3) we are able to derive the updating

2 log(λt+1/λt) = −τε2 Kt

Kt+1
+ log

(

Kt

Kt+1

)

+ log τ (5.7)

for λ.

Working in discrete time, the arguments of Sections 2 and 3 go through with minor
change, giving us

ζtδt =
∑

j

e−ρjtΛj
t/νj (5.8)

exactly as before (3.5), and the analogue

ζtSt =
∑

j

e−ρjtΛj
t

νj(eρj − 1)
(5.9)

≡
∑

j

e−ρjtΛj
t

ν̃j
(5.10)

of (3.6) for the ex-dividend stock price St at time t.
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As we remarked earlier, the agents are supposed to see the stock price and assume
that it is a multiple of the dividend process. The discrete-time analogue of the dynamics
(3.8) assumed previously for δ is to suppose that the random variables Xt ≡ log(δt/δt−1)
are independent N(µ, τ−1). Thus the agents will assume that the random variables
log(St/St−1) are independent gaussians with common (unknown) mean and (known)
precision12. If we have determined the λj

n and Sn for n ≤ t, we use the price/dividend
ratio from (5.8) and (5.9) to determine the value of ξ ≡ log(St+1/St):

St+1

δt+1
=

Ste
ξ

δt+1

=

∑

j e−ρj(t+1)λj
t+1/ν̃j

∑

j e−ρj(t+1)λj
t+1/νj

=

∑

j e−ρj(t+1)(λj
t+1/λ

j
t )λ

j
t/ν̃j

∑

j e−ρj(t+1)(λj
t+1/λ

j
t )λ

j
t/νj

. (5.11)

In the expression (5.11), everything is known except the ratios λj
t+1/λ

j
t ; and these are

related (via (5.7) and (5.5)) to the unknown value ξ = log(St+1/St). Hence we are
able to find (numerically) the value of ξ which solves the updating equation, and from
this work out how the price of the asset evolves. To make a meaningful comparison,
we consider the ratio of the price St (which arises under the mistaken belief that the
price is a multiple of the dividend) to the price S∗

t which arises if the agents are able to
observe the dividend process exactly. If this ratio is close to one, then the effects of the
mistaken assumption is small.

The combined effects of all these assumptions are too complicated to be analyzed
except numerically, so we have carried out a number of simulations. Throughout, we
supposed that the annualised volatility of the dividend process is 0.25, the actual an-
nualised growth rate is 1.5%, and the time between observations is one day (thus the
moments of each log price change are those implied by the annualised figures).

The characteristics of the agents are generated randomly. One feature which we
took care to build in is that if we perform a simulation with n1 agents, and then repeat
with the same random seed but with n2 > n1 agents, then the first n1 agents in the
second simulation are identical to the n1 agents used in the first. The distributions of
the different characteristics are as follows. The ρj are supposed to be drawn uniformly
from [0.04, 0.33], corresponding to mean look-ahead times ranging from 3 to 25 years.
The assumed values of τ for the agents are drawn uniformly from [0.4τ∗, 1.05τ∗], where
τ∗ is the true value used for the simulations. The prior means for the annualised growth
rate were drawn uniformly from [−0.05, 0.15], and all the νj are assumed to be equal to
1.

We performed a number of runs with the same random seed (and therefore the same
realised sample path of δ) for 30 agents, and for 50 agents. The different runs were also

12We move to discrete time because in continuous time the quadratic variation of the price process would
immediately tell the agents that this hypothesis is false.
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distinguished by the different numbers of agents who are assumed to be diligent, in the
sense that some of the agents might update their posteriors seeing the true values of δ,
and believing that they are correct. Thus if all the agents were diligent, then the prices
observed are formed exactly as described in Section 3; the ratio of the ideal stock price
S to the dividend process is given by (3.7).We denote this ideal stock price by S∗ for
the purposes of the discussion of this section, to distinguish it from the price S actually
computed at (5.11). The various figures shown come as two panels, the upper showing
the log of the ratio S∗/δ, and the lower showing the log of the ratio S/S∗. The different
figures differ in the number of agents assumed to be diligent; for the same total number
of agents, the upper panel should be the same, and visual inspection shows that this is
the case.

For 30 agents, we show in Figure 1 the behaviour of the price when no agent is
diligent; the repeated ramping up followed by sharp falls is the most obvious feature13,
and the range of values covered is quite high, from about -0.2 to nearly 0.4. Changing
one agent to diligent, we still see a choppy price path, Figure 3, though the ramp-ups
are less pronounced, and the overall range of the trajectory is smaller. The overall level
however is quite different. Increasing the number of diligent agents to 5, Figure 3 largely
eliminates the peaky behaviour of the previous two plots, and it would be natural to
conjecture that this more orderly behaviour becomes more prevalent as the number of
diligent agents rises, but the plot Figure 4with 10 diligent agents suggests otherwise.
The final plot Figure 5 in the series, with 25 diligent agents, still shows quite a wide
range of variation of S from S∗; only one in six of the agents is mistakenly interpreting
the price as a multiple of the dividend, and yet the log of the price ratio ranges from
below -0.2 to over 0.1.

The Figures 6, 7, 8, 9, 10, 11, show the corresponding results for 50 agents, with
similar qualitative features; notice particularly the dramatic crash when no agent is
diligent!

What we see in the various results are qualitative features which in other contexts
might be described as herding, or attributed to behavioural effects. The present frame-
work is able to generate such qualitative features strictly within the neoclassical frame-
work of finance; all agents are behaving rationally, the only point is that they have
misinterpreted what the market prices actually are. This market is definitely not always
right.

6 Volume of trade.

Having derived an expression (3.3) for the wealth, taking an Itô expansion gives

dwj
t = wj

t{−ρjdt + (αj
t + κt)dXt + (rt + κ2

t + αj
tκt)dt} (6.1)

13Other simulations generate ramping down followed by sharp rises.
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However, the wealth dynamics of agent j can be expressed in terms of the portfolio
process πj as

dwj
t = πj

t (dSt + δtdt) − cj
tdt + (wj

t − πj
t St)rtdt. (6.2)

Comparing coefficients and using (3.17) leads to the identification

πj
t =

wj
t (α

j
t + κt)

∑

i w
i
t(α

i
t + κt)

=
wj

t (α
j
t + κt)

St(at + κt)
. (6.3)

Equation (6.3) gives us an expression for the amount of the risky asset held by agent j.
In the case where all the agents have the same belief, we have that:

πj
t =

e−ρjt/νjρj
∑

i e−ρit/νiρi

hence there is no volatility in the evolution of πj
t . However, when agents do disagree,

then there will be a lot of volatility in πj
t . To show what can happen, we will suppose

that σ is constant, all the αj are constant, and that ρj = ρ for all j. The expression
(6.3) for the proportion held by agent j is now simply

πj
t =

wj
t (α

j + σ − ᾱt)

σSt

=
ζtw

j
t (α

j + σ − ᾱt)

ζtσSt

=
Λj

t (α
j + σ − ᾱt)

σνj(
∑

Λi
t/νi)

(6.4)

The defining expression for ᾱt, simplified in this situation to

ᾱt =

∑

αjΛj
t/νj

∑

Λj
t/νj

, (6.5)

leads after some calculations to

dᾱt = −ᾱ2
t dXt +

∑

(αi)2Λi
tνi

∑

Λj
t/νj

dXt + finite-variation terms

=

∑

(αi − ᾱt)
2Λi

t/νi
∑

Λj
t/νj

dXt + finite-variation terms

≡ vt dXt + finite-variation terms,

say. Suppose that dπj
t = θj

tdXt+ finite-variation terms. Multiplying (6.4) throughout
by

∑

Λi
t/νi, and expanding gives

{

θj
t + πj

t ᾱt

}

(

∑

Λi
t/νi

)

=
Λj

t

σνj

{

αj(σ + αj − ᾱt) − vt

}
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after some calculations. Rearranging, and recalling (3.13), we obtain the expression

θj
t = −πj

t ᾱt + qj
t

{

αj(σ + αj − ᾱt) − vt

}

/σ (6.6)

= qj
t

[

(αj − ᾱ)2

σ
−

vt

σ
+ αj − ᾱ

]

(6.7)

with some calculation.
Notice that the sum of the θj is zero, as it must be. The absolute value of θj

t can
be interpreted as the volume of trade in the risky stock by agent j. Hence the square
root of the quadratic variation of the vector θ can be interpreted as the total volume
of trade. The representation (6.7) shows that in general terms the volume of trade gets
bigger with greater diversity of beliefs.

7 Conclusions

This paper has shown how to deal with diverse beliefs of agents in a completely general
manner; the key observation is that we should model agents’ beliefs as probability mea-
sures, whose likelihood-ratio martingales enter naturally into the optimality criterion,
and thence into equilibrium prices. Abstract expressions for the state-price density and
for the equilibrium stock price arise simply from the analysis, and are visibly analogous
to (but extensions of) the corresponding expressions with no diversity of belief. An
immediate first result is an explanation of the phenomenon of rational overconfidence.

By specializing to the case of log agents, the equilibrium can be computed quite
explicitly, and its properties studied. We find quite simple and explicit expressions
for the riskless rate, the stock price, the risk premium and the volatility of the stock
price, in terms of the fundamentals of the problem, namely, the dynamics of the dividend
process and the beliefs of the agents, expressed as likelihood-ratio martingales. Diversity
of belief generates an active market, and we are able to find an expression for the
volatility of the agents’ holdings of the stock, which we interpret as a proxy for volume
of trade. Moreover, we are able to show that under the assumption of diverse beliefs,
there is benefit to individual agents to act as if their beliefs were different from what
they truly believe; such actions modify the equilibrium in such a way that the agents
true objectives are improved. This is therefore an analysis which explains the ‘beauty
contest’ phenomenon commented on and postulated by Keynes, using no modelling
elements other than rational expectations equilibrium and diverse beliefs. In particular,
it is not necessary to introduce any ‘behavioural’ concepts, nor are the agents’ objectives
in any way unconventional.

Staying within this strictly neoclassical financial framework, we find a mechanism to
generate bubbles and crashes, by supposing that some agents assume that the observed
stock prices are actually constant multiples of the dividend process (as would be the case
in a homogeneous market). We do not need to resort to the paraphernalia of behavioural
finance - the bubble is generated by entirely rational agents, some of whom happen to
be rational and mistaken.
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There remain many interesting questions to be studied in this area. For example, can
diverse beliefs create an economic rôle for money, by (say) imposing leverage constraints
which more money will ease? The paper [30] is a first step down this road. Are there
tractable examples where the agents have utilities different from log, and if so, what
do the solutions look like? These and other questions are in principle amenable to a
correctly-formulated modelling of diverse beliefs, which this paper has attempted to
present.
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A Fitting annual return and consumption data.

Kurz [27] uses his model of diverse beliefs to fit various sample moments of the Shiller
data set, and we perform a similar study here.

We take a very simple version of the model, with just three agents who never change
their beliefs, so we assume that the αj are constant. We also take σt to be constant.

The quantities of interest are shown in the table below; we list both the empirical
value14 and the values as produced by fitting our model.

Table 1: Simulation Results

Fitted Empirical
Mean price/dividend ratio 25.74 25
Standard deviation of price/dividend ratio 3.67 7.1
Mean return on equity 0.072 0.07
Standard deviation of return on equity 0.108 0.18
Mean riskless rate 0.010 0.01
Standard deviation of riskless rate 0.057 0.057
Equity Premium 0.0615 0.06
Sharpe Ratio 0.330 0.33

The results shown were generated by choosing σ = 0.543, α∗ = −0.01, α1 = 0.209, α2 =
0.711, α3 = −0.05, ρ1 = 0.158, ρ2 = 0.01, ρ3 = 0.680, ν1 = 7.88, ν2 = 3.39, ν3 = 1.

From the table above, we see that the diverse beliefs model with these parameter
values gives quite a good fit to the sample moments considered by Kurz et al.. Only the
standard deviation of the price/dividend ratio is substantially off the empirical value,
a sample moment which we note was not fitted very closely by Kurz either, probably
because the volatility of recorded annual consumption is in general too small to explain
the observed volatility in stock returns. Nevertheless, the model seems to be doing a
reasonable job explaining these figures given the very specific assumptions made.

B Bayesian learning.

The case in which all the α are constant corresponds to that in which the agents all start
with a belief about the behaviour of the dividend process and stick with this forever.
Such a setup is in some senses unsatisfactory, because even if the agents were to observe
that the behaviour of the dividend were very different to their initial beliefs about it,
they would still keep with these initial beliefs.

14These empirical values are calculated by Kurz and are based on the Shiller data set. They are based on
monthly data from the S&P 500 between 1871 and 1998. See [27] and [28] for further details.
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We therefore consider the case of Bayesian agents, who learn as they observe data.
Bayesian learning is a huge topic which has been studied by [3], [4], [16], [9], [35] among
others. For example, Guidolin and Timmermann [16] look at a discrete time case in
which the dividend process can have one of two different growth rates over each time
period and the probability of each growth rate is unknown to the agents. The agents are
learning, so this affects the way that the stock price is calculated and hence the dynamics
of the stock and options prices. Again, David and Veronesi [9] look at a continuous time
model in which at any given time, the economy can be in one of two states; boom and
recession. The agents do not observe this state directly, but instead must infer it from
their observations of the dividend process.

We take a very unsophisticated model of Bayesian learning, which for completeness
summarises a story told before else where; see, for example, Brown, Bawa & Klein [3],
Brennan & Xia [4], or Rogers [35] for much the same material.

An agent observes a Brownian motion with drift:

Yt = Xt + bt

where X is a P-Brownian motion and b is some unknown constant. Instead of making
an initial guess at the value of b and sticking with it, the agent gives a prior distribution
to the unknown parameter b and then updates this prior distribution as time progresses.
If the agent was sure about b, then he would have:

dP

dP0

∣

∣

∣

∣

Ft

≡ Λt = exp{bXt −
1

2
b2t}

However, the agent gives b a normal prior distribution with mean β and precision ǫ. 15

It follows that the change of measure the agent works with is given by:

Λt =

∫ ∞

−∞

√

ǫ

2π
exp{−

ǫ

2
(b′ − β)2 + b′Xt −

1

2
(b′)2t}db′

=

√

ǫ

ǫ + t
exp

{

X2
t + 2βǫXt − ǫ(β)2t

2(ǫ + t)

}

This gives:

Λt = ΛtαtdXt

where:

αt =
Xt + βǫ

ǫ + t
(B.1)

This is of the form described in Section 2, but the αt are now adapted processes
rather than constants. Thus, our model can deal with intelligent agents who update
their beliefs, as well as the simple agents who always hold the same beliefs.

15This is equivalent to having variance ǫ−1
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