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Abstract

We present a simple methodology to price single and double barrier options
when the dividend process of the underlying is a Markov-modulated log-Brownian
motion, and the stock is priced in equilibrium by a CRRA representative agent.
In particular, we show how to derive the Laplace transform (in time) of the
barrier price, by solving a system of ODEs. The method proposed is extremely
simple to implement but also extremely effective. Pricing of double barrier option
in the classical Black and Scholes framework arises as a special case of the model
presented in the paper.

Keywords: barrier option, Markov-modulated, dividends, Laplace transform.

∗Wilberforce Road, Cambridge CB3 0WB, UK (phone = +44 1223 9798, e-mail =
gd259@cam.ac.uk).

†Wilberforce Road, Cambridge CB3 0WB, UK (phone = +44 1223 766806, fax = +44 1223 337956,
e-mail = L.C.G.Rogers@statslab.cam.ac.uk).

1



1 Introduction

In this paper, we present a simple but fairly general methodology to price a variety
of barrier options when the dividend process of the underlying is a Markov-modulated
log-Brownian motion, as in Di Graziano and Rogers [DGR]. Assuming a CRRA rep-
resentative agent and equilibrium pricing leads to the dynamics (2) of the stock; see
[DGR] for the derivation, the main conclusions of which are summarised in Section2.
The pricing problem reduces to solving a system of second order linear PDEs with
appropriate boundary and terminal conditions, which we simplify to a system second
order linear ODEs by taking the Laplace transform (with respect to time) of the option
price. The ODE system can be solved explicitly and option prices are recovered by
numerically inverting the Laplace transform. Sections 3 and 4 explain in detail how
this is done.

A similar methodology has been used in Jobert and Rogers [JR]. Their modelling
assumptions are different from those here, in that the dynamics of the stock price are
directly modelled as a Markov-modulated log-Brownian motion. They use a general-
ization of the Rogers-Stapleton [RS] binomial method to approximate the price of the
barrier option, whereas we obtain (at least for constant barriers) an exact solution for
the Laplace transform of the option price which we then invert numerically.

The methodology can also be applied to price (double) barrier options in the classical
Black-Scholes framework, which is a special case of the model presented in this paper;
in Section 5 we compare the results of doing this with other approaches to this problem
from the literature.

The methods presented in this paper can be extended, to include for example different
dynamics for the underlying process; the key fact in the approach is that we do not
attempt any finite-difference approximation to the diffusion part, but just handle the
problem through exact solutions to ODEs, joined together by Markov chain conditions
and technology, and this is not limited to the familiar log-Brownian motion.

2 The model

Following Di Graziano and Rogers [DGR], we assume that the dividend process δ solves
the SDE

dδt
δt

= [σ(ξt)dWt + γ(ξt)dt] , (1)
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where W is a standard Brownian motion, γ and σ denote the Markov-modulated
drift and volatility of the process δ under the pricing measure and ξ is a finite-state
irreducible Markov-chain. It is shown in [DGR] that if (1) is interpreted as the dividend
process of the single production activity in an economy with a single representative
agent with CRRA utility, then equilibrium considerations lead to a stock price process

St = δtv(ξt), (2)

where the function v is given by

v = (ρ−Q− F )−11, (3)

F = diag(f),

f(x) ≡ (1−R)

(
µ−

1

2
σ2

)
(x) +

1

2
(1−R)2σ2(x), (4)

where µ is the drift of the dividend process under the physical measure, ρ and R are
the representative agent’s discount coefficient and coefficient of relative risk aversion
respectively. The risk-neutral drift γ and the drift µ under the physical measure are
related by the following simple expression (see [DGR] for details)

γ(ξ) = µ(ξ)−Rσ2(ξ). (5)

3 Barrier Options

In this section we will show how to price barrier options when the dynamics of the stock
process follow1 (2). In particular, we will show how to price down-and-in and down-
and-out put options. Up-and-in and up-and-out call and put prices can be recovered
in a similar fashion, modulo some change in the boundary condition of the relevant
ODEs. Double-barriers can be also handled using the same methodology, only the
coding becomes slightly more complicated.

It turns out that the problem simplifies significantly if we price down-and-in type
options and then recover the down-and-out via parity arguments.

A down-and-in put can be thought of as digital option which delivers one unit of a
vanilla put option at the random time when the barrier is crossed. In order to price

1The methodology presented is more general and can in principle be adapted to other underlying
diffusion processes.
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the down-and-in option then, we will first solve for the (time to maturity) Laplace
transform of the vanilla put and then derive an expression for transform of the digital
option.

Under the pricing measure Q, the value of a vanilla put option is given by

P (t, δt, ξt) = Et

[
exp

(
−

∫ T

t

r(ξu)du

)
(K − δTv(ξT ))

+

]
, (6)

where r is the Markov-modulated short-rate process. Note that in the set up of Di
Graziano and Rogers [DGR] r takes the form

r(x) = ρ+R

(
µ−

1

2
σ2

)
(x)−

1

2
R2σ2(x). (7)

Let now τ ≡ T − t denoted the time to maturity of the option. With a slight abuse of
notation we can define the Laplace transform with respect to the time to maturity as

φ(δ, ξ) =

∫ ∞

0

e−τpP (τ, δ, ξ)dτ. (8)

Routine calculations lead us to the system of ODEs which must be satisfied by (8):

1

2
δ2σ2φ

′′

(δ) + δγφ
′

(δ) + (Q− r − pI)φ(δ) + (K − δv)+ = 0, (9)

where φ(δ) is a vector-valued function whose ith component is given by φ(δ, i), Q is the
infinitesimal generator of the chain, and σ2, γ and r are diagonal matrices whose ith

diagonal elements are equal to σ2(i), γ(i) and r(i) respectively.

By letting y = log(δ) and defining ϕ(y) = φ(δ), the ODE system (9) reduces to

1

2
σ2ϕ

′′

(y) +

(
γ −

1

2
σ2

)
ϕ

′

(y) + (Q− r − pI)ϕ(y) + (K − eyv)+ = 0. (10)

The homogenous part of system (10) admits solutions of the form

ϕ(y) = aeλy, (11)

where a is a vector of dimension d and λ is a scalar. Substituting (11) into (10), after
multiplying all the terms in (10) by 2σ−2, we obtain the following system of equations
to be solved in λ and a,

λ2a+ λ(2σ−2γ − I)a+ 2σ−2(Q− r − pI)a = 0, (12)
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which, by letting h = λa can be reformulated as

M

(
h
a

)
=

(
I − 2σ−2γ 2σ−2 (pI + r −Q)

I 0

)(
h
a

)
= λ

(
h
a

)
. (13)

Now, (13) is a standard eigenvalue problem. Following [BRW], it can be proved that
there are exactly d eigenvalues in the left half-plane and d in the right-half plane.

Let now K̄i = log (K/vi) and assume, without loss of generality, that the states of the
chain were labeled in such a way that K̄1 ≤ K̄2 ≤ · · · ≤ K̄d. The solution space of
(10) can be divided in d + 1 regions. We consider the solution in the region [0, K̄1].
Since the payoff of a put option is bounded, as y ↓ −∞ (or equivalently as δ ↓ 0), the
put price must tend to a finite limit. As a consequence we must restrict our attention
to the positive eigenvalues only of system (13). For y ≤ K̄1 then, the solution of the
homogenous part of (13) can be represented as the weighted sum

ϕ0(y) =
d∑

i=1

w0ie
λiyai (14)

where Re(λi) > 0 for i = 1, . . . , d and the coefficients w0i need to be determined.

In the region under consideration, the inhomogeneous part of (10) simplifies to K−eyv,
where K is a vector whose entries are all equal to the strike K. The particular solution
of this system will have the form

ϕP = g + fey. (15)

Vectors g and f can be derived by substituting (15) back into (10). In particular,

g = −(Q− r − pI)−1K (16)

f = (γ +Q− r − pI)−1v. (17)

We have found an expression for the solution of (10) in the interval [0, K̄1], but we still
need to determine the d coefficients w0i.

In order to do so, consider the solution of the ODE system in the intervals [K̄s, K̄s+1],
for s = 1 . . . d − 1. Since those intervals are all bounded, we can no longer restrict
our attention to the positive eigenvalues only of system (13). The solution ϕs in the
intervals [K̄s, K̄s+1] will then take the form

ϕs(y) =
2d∑

i=1

wise
λiyai + gs + eyfs. (18)
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where

gs = − (Q− r − pI)−1Ks (19)

fs = (γ +Q− r − pI)−1vs. (20)

andKs(j) = K, vs(j) = vj for j > s and zero otherwise. Finally in the interval [K̄d,∞),
we restrict our attention to the d eigenvalues λi, i = d + 1, . . . , 2d with negative real
part. The solution to (10) admits the following representation

ϕd(y) =
2d∑

i=d+1

wide
λiyai. (21)

In order to fully specify the solution of (10), we need to determine the 2d2 unknown
coefficients wis. By requiring the solution to be C1 at each node K̄s, s = 1, . . . , d, for
each state j = 1, . . . , d, we obtain 2d2 linear equations in the 2d2 unknowns wis. The
specification of the Laplace transform of the put option is thus complete.

4 Down-and-in put

Under the pricing measure Q, the value of a down-and-in put option is given by

P̃ (t, δt, ξt) = Et

[
exp

(
−

∫ T

t

r(ξu)du

)
(K − δTv(ξT ))

+; inf
t≤u≤T

δuv(ξu) ≤ b

]
, (22)

where b is the barrier. As mentioned in the previous section, a down-and-in put can
be thought of as a digital option which delivers a vanilla put at the time the barrier is
crossed.

Define b̄i = log(b/vi) and again assume without loss of generality that b̄1 ≤ b̄2 ≤ .. ≤ b̄d.
Moreover let

φ̃(δ, ξ) =

∫ ∞

0

e−τpP̃ (τ, δ, ξ)dτ. (23)

Following the line of reasoning of the previous section, it can be easily seen that in the
interval [bd,∞), φ̃(δ) solves

1

2
δ2σ2φ̃

′′

(δ) + δγφ̃
′

(δ) + (Q− r − pI)φ̃(δ) = 0. (24)
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With a little abuse of notation, it follows that

ϕ̃d(y) =
2d∑

i=d+1

w̃ide
λiyai. (25)

where the d coefficients w̃id need to be determined. Note that we have restricted our
attention to the d eigenvalues with negative real part as the ϕjd(y) must decrease to
zero as y →∞.

Suppose now the chain is in state i = d (in our set up the state corresponding to the
highest barrier b̄d). Once the barrier is crossed, the option becomes a vanilla put; this
implies that ϕ̃d(y) = ϕd(y) for y ≤ b̄d. Continuity at b̄d yields us a first equation for
the d unknown weights w̃id.

When y ∈ [b̄d−1, b̄d], the equation for the down-and-in put changes slightly. In fact, the
chain ξ can jump to state d, where the down-and-in has the same value as the vanilla
put. The function ϕ̃d−1 will thus satisfy the following system of equations

1

2
σ̂2ϕ̃

′′

(y) +

(
γ̂ −

1

2
σ̂2

)
ϕ̃

′

(y) + (Q̂− r̂ − pI)ϕ̃(y) + q̂ϕd(y) = 0, (26)

where σ̂2, γ̂, r̂ and Q̂ are obtained from the corresponding σ2, γ, r and Q by removing
the last row and column. The new term q̂ϕd(y) is defined so to take into account jumps
to state d. In particular, q̂ is a d − 1 dimensional vector such that q̂i = Qid for every
i = 1, . . . , d− 1. As before ϕd(y) is the Laplace transform of the vanilla put for ξ = d.

The homogeneous part of equation (26), can be solved similarly to (24). In particu-

lar, the eigenvector problem associated to (26) will yield 2(d− 1) eigenvalues λ̂i, with
corresponding 2(d− 1) eigenvectors âi. Finding the particular solution is also straight-
forward but requires some care. As we explained in the previous section, the Laplace
transform of the vanilla put is of the form

ϕj(y) =
2d∑

i=1

wiajie
λiy + gj + hje

y. (27)

with some of the weights wi possibly equal to zero. However, the weights wi as well as
vectors g and h depend also on y. So if for example, wi, g and h are not constant over
the interval [b̄d−1, b̄d], then we need divide the previous interval in subintervals where
the above coefficients are indeed constants and search for a particular solution to (26)
in each subinterval.
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For simplicity of exposition, assume that b̄d < k̄1, so that all the relevant coefficients
in (27) are constant over the interval [b̄d−1, b̄d]. Then the particular solution over this
interval will have the form

ϕ̂P
d−1(y) =

d∑

i=1

cie
bλiy + l + eym, (28)

and the unknown vector coefficients c, l,m can be found the usual way by substituting
(28) into (24).

Note that after solving the problem in the interval [b̄d−1, b̄d] we are left with 1 equation
and d + 2(d − 1) unknowns. By requiring the solution ϕj(y) to be C1 at b̄d for j =
1, . . . , d− 1 and simply continuous for j = d, we obtain 2d− 1 new equations and we
are so left with only d− 2 degrees of freedom.

We can follow the above procedure backwards up to the interval [b̄1, b̄2]. Finally, for
y ≤ b̄1, the Laplace transform of the down-and-in put coincides with that of the vanilla
put for all the states. This completes the specification of the Laplace transform for the
down-and-in put.

Remark 1. The price of a down-and-out put can be trivially found as the difference
between a vanilla put and a down-and-in put. This comes with no additional compu-
tational costs, since we have already derived the Laplace transform of the vanilla put
in order to price the down-and-in option.

Mutatis mutandis up-and-in and up-and-out puts can be priced using the methodology
described for the corresponding down barriers.

Barrier call prices can be derived following the same methodology after modifying
the appropriate boundary and terminal conditions. Indeed, we only need to find the
Laplace transform for the vanilla call price. The pricing of the down-and-in call is
identical to the one described above (with φ(δ) replaced by the transform of the vanilla
call)

Remark 2. Pricing double barrier options is also straightforward in the present frame-
work. In particular the price of a double-in put is given by

P (t, δt, ξt) = Et

[
exp

(
−

∫ T

t

r(ξu)du

)
(K − δTv(ξT ))

+; τl ∧ τu < T

]
, (29)

where τl and τu are the first hitting time of the lower and upper barrier respectively.

In order to derive the price of the double-in put, all we need to do is to simultaneously
solve for the Laplace transform of a down-and-in and an up-and-out put using the
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approach highlighted above. More precisely, let bu, bl be the up and down barrier and
let φ(y) be the vector valued Laplace transform of the double barrier (in) put. Then
for y ∈

[
b̄ld, b̄

u
1

]
, ϕ(y) solves (24), in particular we have that

ϕj(y) =
2d∑

i=1

wiajie
λiy. (30)

where λi and ai, i = 1 . . . 2d are the eigenvalues and eigenvectors associated with (24)
respectively. On the left of b̄ld we can proceed as in the down-and-in case, whereas on
the right of b̄u1 we can follow the up-and-in case. As usual we need to determine the
unknown coefficients. Imposing the usual continuity conditions at the barriers leaves
us with exactly d degree of freedom after solving on the left of b̄ld. Proceeding the same
way for y > b̄u1 , we are left with no degree of freedom and the double barrier problem
is solved (up to the inversion of the relevant Laplace transform).

Remark 3. If the risk neutral dynamics of stock price process are modeled by a
GBM with Markov-modulated coefficients with no jump component of the form (see
for example [JR]),

dSt

St

= [σ(ξt)dWt + r(ξt)dt] , (31)

then the approach proposed in this paper simplifies significantly. Both barrier (b̄) and
strike (K̄) thresholds become independent of the state of the chain. This implies that,
both for the vanilla put and the down-and-in put, the solution space for the Laplace
transform is divided in only two regions. In other words, we need to solve only one
eigenvalue problem and 2d linear equations (d for the vanilla and d for the barrier) to
determine the unknown coefficients.

Also, pricing double barrier options amounts to solving d extra equations to determine
the d additional unknowns due to presence of the upper barrier. In particular, for
d = 1 (i.e. if we are in the classical Black and Scholes framework), deriving the
Laplace transform of the double barrier reduces to solving trivial a second order linear
ODE (see [GY] and [Pe] for alternative approaches).

5 Numerical examples

We will now present some numerical examples where we apply the techniques presented
in the previous sections. The inversion of the Laplace transform was performed using
the Hosono method (see [Ho], [AW]).
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As highlighted by Di Graziano and Rogers ([DGR]), when µ(ξ) and σ(ξ) in (1) are
constant functions of the chain ξ, we recover the classical Black and Scholes framework
for stocks paying a constant dividend rate. For example, for S0 = 100, K = 100,
γi = 0.05, σi = 0.25, for i = 1 . . . 2, ρ = 0.09 and R = 3, b = 75 and any Q-matrix,
the down and in put is worth 11.1442 and the down and out put has a price of 2.9374,
which is exactly what we have in the standard Black and Scholes case.

Figure 1 shows the prices of a vanilla, down-and-in and the down-and-out put as a
function of the spot, when we use the parameters shown above and S0 ranges from 30
to 150. The barrier is at 60.

Figure 2 compares prices of standard Black and Scholes down and in puts with barrier
at 75, with high volatility (σ = 0.35) and high drift (γ = 0.15), low volatility (σ = 0.25)
and low drift (γ = 0.1), with the prices obtained using the model of [DGR], where we
let σ1 = 0.25, σ2 = 0.35, γ1 = 0.10, γ2 = 0.15, ρ = 0.09, R = 3 and Q-matrix

Q =

(
−1 1
3 −3

)
(32)

As a further check to our methodology, we computed the price of a few double barrier
knock-out options. Obviously when coefficients r and σ are constant functions of the
chain, or equivalently when the chain has only one state, we recover the classical Black
and Scholes solution for no dividend paying stocks. We compared our results (see table
5) with those obtained by Geman and Yor [GY] , Kunimoto and Ikeda [KI] and Rogers
and Zane [RZ2]. In the table below, L stands for lower barrier and U for upper barrier.
The table shows that the prices obtained using the method presented in this paper

Table 1: Double barrier knock out prices under different approaches
σ 0.2 0.5 0.5
r 0.02 0.05 0.05
T 1 1 1
S0 2 2 2
K 2 2 1.75
L 1.5 1.5 1
U 2.5 3 3
GY 0.0411 0.178 0.07615
KI 0.041089 0.017856 0.076172
RZ 0.041079 0.017837 0.076147
DGR 0.041089 0.017857 0.076172

match (almost) perfectly those of [KI] in all the three cases considered.
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Of course, Markov-modulated models are best appreciated when the drift and volatility
are non-constant functions of the chain. Assume, for example that S0 = 100, K = 100,
U = 150 and L = 75, T = 1 and σ1 = 0.7071, σ2 = 0.5 and finally Q12 = 0.01 and
Q21 = 0.01, then the price of the double barrier are 1.26 and 3.7930 for initial state 1
and 2 respectively compared with 1.2598 and 3.7932 of [JR].

6 Conclusions and further research

We have presented a simple but effective semi-analytical procedure to price various
barrier structures when the underlying dividend process is modelled as a log Brownian
motion with Markov-modulated coefficients. The procedure simplifies significantly if
we model the stock process itself as a log Brownian motion with Markov-modulated
coefficient, as in [JR], because of the absence of the jump component. The methodology
presented turned out to be accurate, fast and easy to implement. The ideas presented in
the paper extend to pricing barrier options with general underlying diffusion dynamics,
provided that the corresponding ODE system (9) admits a closed form solution.
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Figure 1: Put prices as functions of spot.
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Figure 2: Comparison of put prices.
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