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Abstract

Markov-modulated models for equity prices have recently been extensively studied in the
literature. In this paper, we apply some old results on the Wiener-Hopf factorisation of
Markov processes to a range of option-pricing problems for such models. The first example
is the perpetual American put, where the exact (numerical) solution is obtained without
discretising any PDE. We then show how the methodology of Rogers & Stapleton [22] can be
used to tackle finite-horizon problems, and illustrate the methodology by pricing European,
American, single barrier and double barrier options under Markov-modulated dynamics.

1 Introduction.

Though outstandingly successful as a leading-order model for an asset price, the familiar
log-Brownian paradigm fails to fit observation in various ways, such as the fact that implied
volatility is not constant. Among the many attempted variations and extensions, one of the
most natural is to allow the dynamics of the underlying process to be a log-Brownian motion
whose volatility and rate of return are stochastic in some way. Allowing the volatility to be
stochastic is the central theme of the extensive literature on stochastic volatility modelling,
of which [24, 15, 13, 2, 14] is a small sample. Allowing the rate of return to be stochastic is
of relevance to portfolio optimisation, but not to asset pricing1, and the literature on risk-

sensitive optimal control develops this theme in various ways; see, for example [5, 6, 3, 20].
Perhaps the simplest way to introduce additional randomness into the standard log-

Brownian model is to let the volatility and rate of return be functions of a finite-state
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Markov chain; we can imagine that such a model might describe regime-switching behaviour
of some kind, perhaps related to the business cycle, or other economic indicators. The
terms ‘regime-switching’ and ‘Markov-modulated dynamics’ are used to describe such models,
and there are already interesting contributions here, such as applications to option pricing
[12, 11, 10, 9, 8, 4, 26], portfolio optimization [27, 25] and optimal trading strategies [28]. In
applications, it is likely that the number of states of the Markov chain will be small (otherwise
estimation becomes a problem), and it is then natural to think of such a model as ‘nearly’ a
log Brownian motion, with occasional parameter shifts. Some explicit solutions can be found
for a two-state Markov chain but as the problems get harder we are soon led into PDE-related
numerical methods (smoothed approximation of boundary conditions [26], two-point bound-
ary value problems [28, 8, 10], discretization of associated dynamic programming equations
[12]). The coupled PDEs which arise in these models will rarely be soluble in closed form,
though finite-difference methods are still quite competitive.
This paper approaches such models from a different direction, by viewing the Markov-

modulated asset as ‘nearly’ a Markov chain. This approach relies on some old work on Wiener-
Hopf factorisation of Markov processes (and particular Markov chains) dating back to the
paper of Barlow, Rogers & Williams [1] from 1980; the focus is on level-crossings of the asset
price process. We find a quite different toolkit applies in this approach, namely, linear algebra;
this leads to numerical schemes that are very efficient, and quite able to handle moderate-sized
problems, which we will illustrate by pricing a perpetual American put2 on such an asset. Let
us emphasise immediately a key difference between the present approach and the traditional
PDE approach: here we shall be obtaining (numerically) exact solutions to the problem,
not just approximations. There is no need to solve any dynamic programming equation or
discretize any PDE.
Next, we move to a pricing framework with finite time horizon and Markov regimes. The

approach here extends the methodology developed by Rogers and Stapleton [22] for the stan-
dard log-Brownian model, and is illustrated by pricing the European call, the American put,
and finally double barrier options.

2 General setup and noisy Wiener-Hopf factoriza-

tion.

The stock price is modelled as

dSt = St[σ(ξt)dWt + r(ξt)dt], (1)

where Wt is a standard Brownian Motion, r denotes as usual the risk-free interest rate, σ
denotes the Markov-modulated volatility of the stock and ξ is an irreducible Markov chain
with values in the finite set I, |I| = d. Notice that the riskless rate may vary with the

2This problem was solved for a 2-state chain by Guo and Zhang [12].

2



underlying Markov chain. The log price Xt = log(St) then satisfies

dXt = σ(ξt)dWt + [r(ξt)−
1

2
σ(ξt)

2]dt, (2)

which can be rewritten as, say:

dXt = σ(ξt)dWt + v(ξt)dt. (3)

The idea of the Wiener-Hopf factorisation approach is to study the crossings back and forth
over levels of X. To help in this, define for t ≥ 03

τ±t ≡ inf{u : ±Xu > t} (4)

We aim to characterise the distribution of the times τ±t and the law of the chain at these

times, and to do this we will seek martingales M f
t of the following form:

Mf
t = exp

(

−

∫ t

0
r(ξu)du

)

f(ξt, Xt) (5)

for some function f . Itô’s formula gives, up to a local martingale part:

dMf
t

.
= exp

(

−

∫ t

0
r(ξu)du

)[

(Q−R)f +
1

2
ΣfXX + V fX

]

dt (6)

where R is the diagonal matrix whose ith diagonal element is equal to r(i), Σ is the diagonal
matrix whose ith diagonal element is equal to σ(i)2 and V = R− 1

2Σ. We therefore require

(Q−R)f +
1

2
ΣfXX + V fX = 0 (7)

Seeking separable f of the form f(ξt, Xt) = g(ξt) exp(−λXt) gives rise to the following equation
to be solved in λ and g:

(Q−R)g +
1

2
λ2Σg − λV g = 0 (8)

Now this is just the “quadratic eigenvalue” problem considered by Kennedy and Williams [17],
which can be reduced to a standard eigenvalue problem as follows. Premultiplying the above
equation by 2Σ−1 gives

2Σ−1(Q−R)g + λ2g − 2λΣ−1V g = 0. (9)

This can be reformulated as a system of equations:

{

λg = h
λh = 2Σ−1V h− 2Σ−1(Q−R)g

(10)

3With the usual convention that inf(∅) =∞.
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which can be rewritten as the following (standard) eigenvalue problem:

A

(

g
h

)

≡

(

0 I
−2Σ−1(Q−R) 2Σ−1R− I

) (

g
h

)

= λ

(

g
h

)

(11)

If (g, λ) solve (11) then

Mf
t = exp

(

−

∫ t

0
r(ξu)du− λXt

)

g(ξt) (12)

is a martingale. The argument given in [1] serves to show that there are exactly d eigenvalues
of A in the left open half plane, and d in the right open half plane, a fact that will be needed
later.

3 Markov-modulated perpetual American put.

Our goal in this section is to compute the value

v(j, x) ≡ sup
τ

E
[

exp(−

∫ τ

0
r(ξs)ds) (K − eXτ )+ | ξ0 = j,X0 = x

]

(13)

of the perpetual American put with Markov-modulated dynamics. The special case of the
problem where there is no Markov modulation (that is, |I| = 1) is well known4: the optimal
rule is to wait until the price of the asset falls below some critical boundary value L∗, and
then immediately exercise. Standard first passage time calculations for Brownian Motion lead
to the following closed-form expression for the perpetual American put:

v(x) =

{

K − exp(x) if x ≤ log(L∗),
(K − L∗)(L∗)γ exp(−γx) if x > log(L∗),

(14)

where γ = 2r/σ2, L∗ = γK/(γ + 1).
When |I| > 1, the optimal rule is to exercise when the price of the asset falls below some

critical level which depends on the current state of the modulating Markov chain ξ. This
intuitively-obvious form of the solution follows immediately from the next simple result.

Proposition 1 If ϕ(x) ≡ (K − ex)+, then for each j ∈ I the function

x 7→ v(j, x)− ϕ(x)

is non-decreasing in (0, log(K)).

4See the original solution of McKean [19], and Karatzas [16] for a discussion in a more general setting.
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Proof. Pick 0 < x < x+ δ < log(K), and let τ ∗ denote the optimal stopping time to be used
if X0 = x. We consider instead what would happen if we were to use the stopping rule τ ∗ but
with initial log-price x+ δ. Using the elementary inequality (a− b)+ ≥ a+ − b+, we get5

v(j, x+ δ) ≡ sup
τ

E[e−R(τ)ϕ(Xτ )| ξ0 = j,X0 = x+ δ]

≥ E[e−R(τ∗)ϕ(Xτ∗)| ξ0 = j,X0 = x+ δ]

= E[e−R(τ∗)ϕ(Xτ∗ + δ)| ξ0 = j,X0 = x]

= E[e−R(τ∗)(K − eX(τ∗)+δ)+| ξ0 = j,X0 = x]

= E[e−R(τ∗)(K − eX(τ∗) − (eδ − 1)eX(τ∗))+| ξ0 = j,X0 = x]

≥ E[e−R(τ∗)
{

(K − eX(τ∗))+ − (eδ − 1)eX(τ∗)
}

| ξ0 = j,X0 = x]

= v(j, x)− (eδ − 1)E[e−R(τ∗)eX(τ∗)| ξ0 = j,X0 = x]

≥ v(j, x)− (eδ − 1)ex

= v(j, x)− ϕ(x) + ϕ(x+ δ),

using the fact that e−R(t)+X(t) is a martingale, and therefore a supermartingale.

Immediately from Proposition 1, the optimal stopping time is of the form

τ = inf{t : Xt < b(ξt)}, (15)

where the constants (bi)i∈I must be found.
This problem was solved by Guo and Zhang [12] in the simple case of two states, where

a closed-form expression can be derived for the price. Note that -1 is always an eigenvalue
of A, which is a key observation which makes the two-state problem tractable. However, the
current methodology will work for any number of states.
The time-0 value of the stopping rule (15) defined by the levels (bi)i∈I is

v(j, x) = E

[

exp

(

−

∫ τ

0
r(ξt)dt

)

(K − exp(b(ξτ )))
+|S0 = exp(x); ξ0 = j

]

(16)

There are thus two problems:
1) given some thresholds bi, derive the value function;
2) find the optimal bi.

Problem 1: Let us suppose given (bi)i∈I , where without loss of generality
6 b1 > b2 > · · · > bd;

our goal is to compute the value function associated to this set of threshold levels.
Let us start with x in the interval [b1,∞). Here, the value function is larger than the

payoff function whatever the initial state. Recall that we are looking for a martingale M f
t of

the form of (5), for some function f which satisfies (7) and which will be represented as a
weighted sum

f(ξ, x) = Σd
i=1wigi(ξ) exp(−λix) (17)

5We use the abbreviation R(t) ≡
∫

t

0
r(ξs)ds.

6This assumption amounts to an inessential relabelling of the states.
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where for each i, (λi, gi) satisfies (8), with λi > 0. We restrict to the d eigenvalues with
positive real part, because this means that the martingale

Mt ≡ exp

(

−

∫ t

0
r(ξu)du

)

∑

i

wigi(ξt) exp(−λiXt)

is bounded on [0, τ1], where τ1 ≡ inf{t : Xt < b1}. Therefore we may apply the Optional
Sampling Theorem to obtain

E

[

exp

(

−

∫ τ1

0
r(ξu)du

)

∑

i

wigi(ξτ1) exp(−λiXτ1)

∣

∣

∣

∣

X0 = x, ξ0 = j

]

=
∑

i

wigi(j) exp(−λix)

(18)
This is the expression for the value function over the interval [b1,∞). In particular, for j = 1,
this completes the determination of the time-0 price when the underlying chain is initially in
state 1, provided we impose:

(K − exp(b1))
+ =

∑

i

wigi(1) exp(−λib1) (19)

This gives us a first equation satisfied by the d unknown weights w, and

v(1, x) =

{

K − exp(x) if x ≤ b1
∑

i wigi(1) exp(−λix) if x ≥ b1
(20)

where w still needs to be determined. Continuity at b1 (19) restricts w to a (d−1)-dimensional
subspace; to go further, we must look at the next interval I2 = [b2, b1] and match values and
slopes of V across b1.

When x ∈ I2, ξ can jump to state 1, causing exercise to happen. So we now need to modify
slightly the Wiener-Hopf argument and the equation for f . Let Σ̃, R̃, Ṽ be the diagonal
matrices defined in the following way: for every i = 2 . . . d, Σ̃(i, i) = σ(i)2, R̃(i, i) = r(i) and
Ṽ = R̃− 1

2 Σ̃. Let Q̃ be the submatrix derived from Q by removing its first row and first column.

We still seek a martingale M f
t of the form of (5) for some function f , which now satisfies

the following modified equation:

(Q̃− R̃)f +
1

2
Σ̃fXX + Ṽ fX + K̃ = 0 (21)

where K̃ is defined so that it accounts for jumps to the payoff function in state 1: K̃ =
q̃(K − exp(x)), where q̃ denotes a (d − 1)-dimensional vector, such that q̃(i) = qi1 for every
i = 2 . . . d. The value function over the interval [b2, b1] is characterized by (21).

A particular solution to (21) is easily obtained and is of the form B + C exp(x). The ho-
mogeneous equation

(Q̃− R̃)f +
1

2
Σ̃fXX + Ṽ fX = 0 (22)
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is structurally similar to (7) and is solved similarly. Let λ̃i and g̃i denote the 2(d − 1) corre-
sponding eigenvalues and eigenvectors for this new problem. For any scalars w̃i,

exp

(

−

∫ t

0
r(ξu)du

)

(

Σ
2(d−1)
i=1 w̃i exp(−λ̃iXt)g̃i(ξt) +B + C exp(Xt)

)

(23)

is a martingale, at least if we stop at first exit from I2, and is bounded up to that time.
Provided that we ensure that v(j, ·) joins in a C1 fashion across b1, for j = 2, . . . , d, we
therefore have for any x ∈ I2, any j = 2 . . . d,

Ex,j

[

exp

(

−

∫ τ2

0
r(ξu)du

)

(

∑

i

w̃ig̃i(ξτ2) exp(−λ̃iXτ2) +Bj + Cj exp(Xτ2)

)]

= (24)

∑

i

w̃ig̃i(j) exp(−λ̃ix) +Bj + Cj exp(x)

where τ2 = min{t : Xt ≤ b2}, and Ex,j denotes the usual expectation conditional uponX0 = x,
ξ0 = j . This is the expression for the value function in the interval I2; in particular, for j = 2,
this completes the determination of the time-0 price when the underlying chain is initially in
state 2, provided we impose continuity at b2.

Notice that at the end of the first step, we were left with d − 1 degrees of freedom. Once
we have solved the problem over the interval [b2, b1], matching the values and the slopes of
v(j, ·), j = 2, . . . , d across b1, we have 2 × (d − 1) new linear equations, for the 2(d − 1) new
unknowns w̃i. Continuity across b2 of v(2, ·) provides us with another equation, so that at the
end of our second step, we are left with d− 2 degrees of freedom.

From the above, it is now clear that we can proceed recursively, from b1 to bd, by solving
d successive problems of this type and considering the standard eigenvalue problem associ-
ated with our modified setup and our updated generator for the underlying Markov chain.
At the end of the dth problem over the interval [bd, bd−1], we no longer have any degree of
freedom, once we have imposed the continuity of v(d, x) across bd. Finally, over [0, bd], we
have: v(1, x) = · · · = v(d, x) = K − exp(x).

This deals with the first problem, namely, given thresholds to compute the value function7.

Problem 2. The method just presented shows how for any given sequence of threshold
values we may compute the value. For optimality, we need to make v(j, ·) to be C1 at bj ,
for j = 1, . . . , d. This gives us d non-linear equations to be solved in d unknowns, which
can be solved by standard numerical techniques; we used Sequential Quadratic Programming

7The above procedure leaves us in fact with a linear system to solve in order to determine the unknown weights
on every subinterval: d weights on [b1,∞), 2× (d−1) weights on [b2, b1], 2× (d−2) weights on [b3, b2], . . . and finally
2 weights on [bd, bd−1]. This gives rise to a linear system with d2 unknowns and d2 equations.
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(CFSQP). The latter optimization routine is converging efficiently towards a set of b values
which make v to be C1; we finally check numerically that

(Q−R)v +
1

2
ΣvXX + V vX ≤ 0

everywhere. The inequality is satisfied by construction in the continuation region, and we
just need to check this for (j, x) such that x < b(j). Once this is confirmed, the fact that the
constructed v is C1 allows us to verify easily that the solution we have found is optimal.
As a check, take the case d = 1, which is the standard perpetual American put problem

mentioned earlier; we have R = r, Σ = σ2, V = r − 1
2σ

2, Q = 0 and set γ = 2r/σ2. Now the
matrix A defined at (11) is simply

A =

(

0 1
γ γ − 1

)

.

with eigenvalues γ and -1, so the solution is of the form

v(x) =

{

K − exp(x) if x ≤ b,
w exp(−γx) if x > b,

(25)

where the critical level b and the weight w are to be determined. The C1 condition for v at b
becomes

{

K − exp(b) = w exp(−γb)
exp(b) = γw exp(−γb)

from which we easily deduce the form given at (14).

3.1 Numerical results.

3.1.1 Two states.

First, we check that we recover Guo and Zhang [12]’s results for the simple case of two states.
The strike K is taken to be equal to 5,

R =

(

0.03 0
0 0.03

)

,

Q =

(

−1 1
1 −1

)

,

Σ =

(

0.25 0
0 0.81

)

.

This gives optimal thresholds: exp(b) = (0.612, 0.441), which is close to Guo and Zhang’s
solution (0.614, 0.441). Figure 1 plots the price of the Markov-modulated perpetual American
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put in every state of the chain and enables us to visualize the corresponding smooth pasting
conditions. Above the optimal thresholds, where smooth pasting occurs, the upper curve is the
value function for the perpetual American put and and the lower curve is the reward function.
Below the optimal thresholds, the value function is equal to the reward function represented
by the lower curve. We keep drawing the upper curve below the optimal thresholds for the
sole purpose of assessing the quality of smooth pasting. All the plots below are drawn using
a logarithmic scale for the stock price.
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Figure 1: Perpetual American put with two states (value function against log price).

Decreasing the volatility in the second state,

Σ =

(

0.25 0
0 0.49

)

,

leads to higher optimal thresholds exp(b) = (0.801, 0.646). On the other hand, increasing the
jump intensity from state 2 to state 1, where σ2

2 = 0.81 and σ2
1 = 0.25, decreases the average

volatility and we expect therefore our optimal thresholds to be bigger, which turns out to be
the case: exp(b) = (0.633, 0.455).

3.1.2 Three states.

Consider now the case of an underlying Markov chain with three states (high, low, intermediate
level for the volatility):

R =





0.03 0 0
0 0.03 0
0 0 0.03



 ,
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Q =





−2 1 1
1 −2 1
1 1 −2



 ,

Σ =





0.25 0 0
0 0.50 0
0 0 0.81



 .

This gives the following thresholds: exp(b) = (0.600, 0.544, 0.455). Figure 2 plots the results.
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Figure 2: Perpetual American put with three states (value function against log price).

3.1.3 More states.

The methodology specified above enables us to deal with a moderately large number of states;
in this example, there are eight. In each of the states, r is taken to be equal to 0.03. The
jump intensities from one state to another are taken to be equal to 1, the volatility matrix is
given by a diagonal matrix with diagonal entries: (0.35, 0.4, 0.6, 0.7, 0.75, 0.8, 0.85, 0.9), and in
Figure 3, we plot the value functions for the eight states of the chain, with the corresponding
optimal thresholds:

exp(b) = (0.290, 0.239, 0.238, 0.227, 0.220, 0.169, 0.155, 0.140).

As one would expect, the less volatile a state is, the bigger is the corresponding threshold.
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Figure 3: Perpetual American put with eight states (value function against log price).

4 Binomial pricing with Markov regimes.

The standard binomial pricing method approximates the log-price process by a random walk,
which jumps at the times ∆t, 2∆t . . . and at each jump, moves either up or down. The prob-
ability of an up step and the size of the jump are chosen to match the drift and variance to
the Black-Scholes asset. In this section, we will extend the alternative random walk approxi-
mation introduced by Rogers and Stapleton [22] to the case of Markov regimes.

With X still denoting the Markov-modulated log price (2), the idea of [22] was to fix some
∆x > 0 and view X only at the discrete set of times at which it has moved by ∆x from where
we last observed it. Formally, if

{

τ0 = 0
τn+1 ≡ inf{t > τn : |X(t)−X(τn)| > ∆x} if n ≥ 0

(26)

then we take (X(τn)) as the discrete approximation to X, observed for ν steps, where ν ≡
sup{n : τn < T} (T is the expiry of the option). We need to compute the distribution of
(X(τ1), ξ(τ1)). Take X0 = 0, τ ≡ τ1 for notational simplicity.

Let λi and gi denote the eigenvalues and the eigenvectors of the eigenvalue problem (11):
(

0 I
−2Σ−1(Q−R) 2Σ−1R− I

) (

g
h

)

= λ

(

g
h

)

There are d negative and d positive eigenvalues. For any scalars wi,

exp

(

−

∫ t

0
r(ξu)du

)

Σ2d
i=1wigi(ξt) exp(−λiXt)
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is a martingale, so by the Optional Sampling Theorem

E

[

exp

(

−

∫ τ

0
r(ξu)du

)

∑

i

wigi(ξτ ) exp(−λiXτ )|X0 = 0, ξ0 = j

]

=
∑

i

wigi(j) (27)

The discounted probability of an upwards step from state j to state k is given by:

P+
j,k = E

[

exp

(

−

∫ τ

0
r(ξu)du

)

I{Xτ = ∆x, ξτ = k}|ξ0 = j

]

(28)

where I denotes the indicator function. Therefore, in order to find P+
j,k we need to solve the

following system:






∑

i
wigi(ξ) exp(−λi∆x) = I{ξ = k} ∀ξ = 1 . . . d

∑

i
wigi(ξ) exp(+λi∆x) = 0 ∀ξ = 1 . . . d

(29)

This leaves us with 2d equations for the 2d unknown weights, from which we calculate the
discounted probability of an upwards step. Similarly, we can compute the probability of a
downwards step from state j to state k by replacing in the above sytem ∆x with −∆x. When
the initial logarithmic price is equal to x, the price of a standard European call option in this
Markov-modulated framework is now computed using the following dynamic programming
equation, written using vector notations:

{

V0(x) = (exp(x)−K)+

Vn+1(x) = P+Vn(x+∆x) + P−Vn(x−∆x)
(30)

where n is the number of time steps to go before expiry T and P+ and P− are defined above
and denote respectively the up and down transition matrices for the underlying Markov chain.

Observe that (as in Rogers and Stapleton [22]) this approximation is well suited to pric-
ing barrier options; we merely change appropriately the matrices P± at the vertices adjacent
to the barrier(s).

Once we have computed the discounted probabilities of an upwards and a downwards step, it
remains to deal with the fact that the number ν of time steps is random. One solution to this
problem is to match bond prices so that

E

[

exp

(

−

∫ T

0
r(ξu)du

)

1

]

' E

[

exp

(

−

∫ τν

0
r(ξu)du

)

1

]

(31)

Let P = P+ + P−. From the above, it is enough to find ν so that:

πP
ν
1 = π exp [T (Q−R)1] (32)

where π denotes the invariant distribution of the underlying Markov chain. This simple ap-
proximation turns out to give very satisfactory results for the Markov-modulated setup.
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Notice finally that for the case of the American put, the dynamic programming equation
for the value function now becomes:

{

V0(x) = (exp(x)−K)+

Vn+1(x) = max{(K − exp(x))+, P+Vn(x+∆x) + P−Vn(x−∆x)}
(33)

The case of the finite expiry Markov-modulated American Put was tackled by Buffington and
Elliott [4] but only in the case of a two-state Markov chain and by extending the Barone-Adesi
and Whaley analytic approximation.

4.1 Numerical results.

4.1.1 Markov-modulated European call.

One way of checking our results is to consider the case when the chain switches between two
identical states for the volatility. The price in each state should then be equal approximately
to the Black-Scholes price for this given volatility. The expiry time is taken to be equal to one
year; the initial stock price is S0 = 95. The strike is K = 100. Finally, the size of the space
grid is taken to be ∆x = 0.022.

R =

(

0.03 0
0 0.03

)

,

Q =

(

−0.01 0.01
0.01 −0.01

)

,

Σ =

(

0.25 0
0 0.25

)

.

The price is each state of the chain is found to be equal to 17.9667, compared to the Black-
Scholes value of 17.9506 (relative error: 0.0009).

4.1.2 Markov-modulated American put.

Here we compare with the prices tabulated in [21].

(i) Let us first consider the case of two identical states, with: T = 0.5, ∆x = 0.022,
X0 = log(85), K = 100.

R =

(

0.06 0
0 0.06

)

,

Q =

(

−0.01 0.01
0.01 −0.01

)

,

Σ =

(

0.16 0
0 0.16

)

.
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The price in each of the two states is found to be equal to 18.0285, which needs to be compared
with the value found by Rogers [21]: 18.0374 (relative error: 0.0005).

(ii) Let us now decrease the volatility in the second state.

Σ =

(

0.16 0
0 0.10

)

.

The prices in each of the two states are now found to be: (17.3070, 16.7677). Decreasing
the volatility decreases the price in the two states, as is to be expected. Correspondingly,
increasing the volatility in one of the states increases the price in the two states, as shown by
the following example

Σ =

(

0.40 0
0 0.16

)

.

where the price is now given by: (20.3454, 19.1986).

(iii) Taking the example (i) above and changing just the start value X0 to log(100) allows
us to compare with other values in [22]. We find the price is (9.9279, 9.9279), to be compared
with 9.9458 (relative error: 0.00192). Taking X0 = log(115), the price is (5.1109, 5.1109), to
be compared with 5.1265 (relative error: 0.00304).
It therefore turns out that the random walk approximation provides an accurate and very

quick method for Markov-modulated asset dynamics.

The solution for the finite expiry American put should provide us with a way of checking
the results of the preceding section for the perpetual American put, by letting T tend to ∞.
For Guo and Zhang [12]’s example, where exp(b) = (0.616, 0.441), the time-0 price of the
Markov-modulated perpetual American put: (4.2239, 4.2758) compares well with our results
for the finite expiry American put when T = 40: (4.2180, 4.2692) (relative errors: 0.00139,
0.00155).

A similar check can be made for the perpetual American put example with three states, where
the price is found to be (4.2278, 4.2486, 4.2706), to be compared with (4.2244, 4.2439, 4.2631)
for the finite expiry case, where T = 40 (relative errors: 0.0008, 0.0011, 0.0017).

4.1.3 Markov-modulated barrier options.

In this section, we price a number of double knockout barrier options in a Markov-modulated
setup.
(i) Let us first consider the case of constant barriers, where we compare with the results of
Geman and Yor [7]. With two identical states, taking T = 1, X0 = log(100), K = 100,
∆x = 0.022, b∗ = log(150) and b∗ = log(75), and

R =

(

0.05 0
0 0.05

)

,
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Q =

(

−0.01 0.01
0.01 −0.01

)

,

Σ =

(

0.25 0
0 0.25

)

.

the price of the double knockout is then found to be (0.8994, 0.8994), to be compared with
the value 0.89 computed by Geman and Yor [7] (relative error: 0.01061).

(ii) Changing K to 87.5 and b∗ to log(50), the price becomes: (3.8274, 3.8274), to be compared
with 3.8075 from Geman and Yor (relative error: 0.00519).

(iii) The next example is the same as the previous one, but now we have two different volatility
levels:

Σ =

(

0.50 0
0 0.25

)

.

The price of the double-knockout is now equal to: (2.6055, 2.5882).

(iv) We finally consider the case of a double-knockout with moving barriers, which are linear
for the log-price: b∗ = log(U) + ∆x1t and b∗ = log(L) + ∆x2t. We compare our results with
Kunitomo and Ikeda [18]. Let us take: T = 0.5, X0 = log(1000), K = 1000, ∆x1 = 0.1,
∆x2 = −0.1, L = 500 and U = 1500.

R =

(

0.05 0
0 0.05

)

,

Q =

(

−0.01 0.01
0.01 −0.01

)

,

Σ =

(

0.04 0
0 0.04

)

.

The price of the double knockout in this Markov-modulated setup is found to be (67.2596, 67.2596),
to be compared with 67.78 from Kunitomo and Ikeda [18] and 67.7834 from Rogers and Zane
[23] (relative error: 0.00773).

5 Conclusions.

We have shown how to use classical results from the Wiener-Hopf factorisation of Markov
processes to price options on a Markov-modulated asset. Such a model can accomodate
“bull” and “bear” markets, as well as changes in the interest rate and the volatility. This
method has been applied to the optimal stopping problem of the Markov-modulated perpetual
American put. It yields a very efficient and accurate numerical method, which amounts to
computing the eigenvalues and eigenvectors of some particular matrices. There is no dynamic
programming, nor discretization of any PDE. Finally, with finite time horizon, the approach
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can be used to construct a modified binomial lattice methodology, which has been applied
to the European call, the American put and double-barrier options in a Markov-modulated
setup. This modified binomial method turns out to provide an efficient numerical scheme for
Markov-modulated option pricing.
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