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1 Introduction

We are interested in a general equilibrium economy under leverage constraints. In the classical
representative-agent Lucas economy, there is a unique stock price derived from the unique
state-price density. In our economy, agents have diverse beliefs about future performance so
(following Brown and Rogers [2]) they may hold different portfolios due to differing leverage
constraints. Since the state price density gives the optimal portfolio, the presence of portfolio
constraints prohibits a universal state-price density. As a consequence, the market cannot be
complete. Another result of our general-equilibrium model is that the imposition of leverage
constraints increases stock values.

We are particularly interested in the no-leverage constraint case. This can be interpreted as
a cash-in-advance requirement where assets must be purchased with ready cash. Indeed, it is
this need to have cash on hand that gives value to otherwise worthless money – more tender al-
lows the agent greater investment opportunities and he may be prepared to exchange real assets
for cash in order to relax the cash constraint and gain utility from consumption. Cash-in ad-
vance has a long history in economics. One branch of the literature takes an inventory-theoretic
approach. Baumol [1] and Tobin [10] introduce models where agents trade-off exogenously im-
posed interest earnings and banking costs to determine equilibrium cash holdings. Romer [7]
presents a discrete-time general-equilibrium version of this. Closer in line with our model are
settings where cash is modeled as a transactions medium in an equilibrium economy without
imposing arbitrary exogenous costs. Svensson [9] has a discrete-time cash-in-advance story
where agents must decide on cash holdings before their consumption is known. Hence, they
hold extra precautionary cash despite a positive interest rate. We will show our results in an
simple and elegant continuous-time, infinite-horizon framework. For mathematical simplicity,
we will first derive our model in an economy where bonds are tender. This case will then
be shown to have an interpretation as a cash-market with an endogenously determined (real)
inflation rate.

There has been some work in the literature on the effects of market imperfections on market
equilibrium. Ross [8] examines how short-sale constraints can lead to violations of CAPM.
Milne and Neave [5] investigate a similar problem in an intricate discrete-time, finite-horizon
equilibrium model. They show how transactions costs and trading constraints lead to market
incompleteness. Similar results were obtained by Jouini and Kallal [4] using no-arbitrage
arguments

The solution we obtain is mathematically similar to Cvitanic and Karatzas’s solution [3]
for the Merton problem under portfolio constraints. They show that the support function of
the feasible portfolio set plays a critical role in affecting the state-price density. When an
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agent hits his constraint, this support function simultaneously distorts the change-of-measure
and discount factor in his state price density, leading the agent to keep his portfolio within
the feasible region when his unconstrained optimum would otherwise be outside. However, in
Cvitanic and Karatzas’s model, the stock dynamics are fixed. In our model, it is the dividend
process that is specified while the equity price is derived. Hence, it is not clear from the
outset how the stock price can remain a discounted martingale under different agent measures.
Also, by not working in an equilibrium setting, Cvitanic and Karatzas are unable to draw any
conclusions about market incompleteness.

The structure of the article is as follows. We work out the problem for general leverage
constraint and obtain expressions for the stock and wealth processes in terms of discounted
dividend and consumption processes under different measures. Next, we solve the special case of
log agents, obtaining a near closed-form solution and give a monetary interpretation. Finally,
we show the results of a simulation for GBM dividend dynamics and a Bayesian Kalman-
filtering model and comment about conclude with some observations and further directions for
exploration.

2 General Setup

Consider a Lucas Tree Model with multiple agents and multiple ‘trees’ but a single production
good. The agents are optimizing their own utility from consumption under diverse beliefs.
Agent i thinks future dynamics obey a law given by the measure Pi where

dPi

dP

∣∣∣∣
t

= Λi
t

and Λi
t is a Radon-Nikodym derivative with respect to a reference measure P. The diverse

beliefs framework is a tractable means of obtaining trading volume in a Lucas model and are
“orthogonal” to the constraint problem at hand. Hence, we will not discuss them further. For
a more in-depth development of the theory, see Brown and Rogers [2]. Agent i’s objective is
therefore given by an additive utility function of his consumption ci

t,

E
[∫ ∞

0
U i(t, ci

t)Λ
i
t dt

]
.

Let St be the stock price, rt be the interest rate, and δt the dividend. The agent’s wealth
equation is given by

wi
t = πi

t · St + φi
t dwi

t = πi
t · dSt + πi

t · δt dt + φi
trt dt− ci

t dt (1)

where πi
t is a vector representing the portfolio and φi

t is a scalar representing cash holdings
invested in a risk-free bond paying at interest rate rt. We now impose a general constraint,

Liwi
t ≥ πi

t · St ⇐⇒ πi
t · St ≥ − Li

Li − 1
φi

t =: − 1
Ki

φi
t Li ∈ [1,∞] Ki ∈ [0, 1]

where Li is a (possibly agent-dependent) leverage constraint. The special case Li = 1, Ki = 0
corresponds to the no-borrowing constraint

wi
t ≥ πi

t · St ⇐⇒ φi
t ≥ 0 .
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We restrict the total initial supply of bonds to be
∑

i φ
i
0 = A. We can interpret this as the total

outstanding government debt. A special case is A = 0 (i.e. the bond market clearing) although
this is trivial for the no-borrowing case. The leverage constraints Li, dividend dynamics δt,
discount factor ρ, diverse beliefs Λi

t, initial wealths wi
t and initial bond level A0 are given. The

problem is to solve for the other variables in an equilibrium economy.
We will employ the Lagrange-Pontryagin method to solve the model. Adding in constraint

terms yields our new objective

sup
πi,φi

E
[ ∫ ∞

0
Ũ i(t, ζi

t/Λi
t)Λ

i
t dt +

(
ζi
tdwi

t + wi
tdζi

t + d[wi, ζi]t
)

+ ζi
t(K

iπi
t · S + φi

t)dηi
t

]
+ wi

0ζ
i
0

= sup
πi,φi

E
[ ∫ ∞

0
Ũ i(t, ζi

t/Λi
t)Λ

i
t dt + πi

t · (ζi
tdSt + ζi

tδt dt + Stdζi
t + d[S, ζi]t + Kiζi

tSt dηi
t)

+ φi
t(ζ

i
trt dt + dζi

t + ζi
tdηi

t)
]

+ wi
0ζ

i
0

where ζi
t is the Lagrange multiplier for the wealth dynamics and ηi

t is a non-decreasing dual
process for the trading constraint. Hence, dη is finite-variation, which gives us that

eKiηi
tζi

tSt +
∫ t

0
eKiηi

uζi
uδu du (2)

is a local martingale. Conflating local and UI martingales and assuming eKiηi
tζi

tSt vanishes as
t approaches ∞, we have the familiar expression for a stock price,

eKiηi
tζi

tSt = Et

[∫ ∞

t
eKiηi

uζi
uδu du

]
. (3)

We also have that
e
R t
0 ru du+ηi

tζi
t (4)

is a local martingale, which gives the relation to the bond-price. We can also work out

d(ζi
tw

i
t) = wi

tdζi
t + ζi

tdwi
t + d[ζi, wi]t

= (πi
t · St + φi

t)dζi
t + ζi

t(π
i
t · (dSt + δt dt) + φi

trt dt− ci
t dt) + πi

t · d
[
ζi, S

]
t

= − ζi
t [(K

iπi
t · St + φi

t)dηi
t − ci

t dt)]

and since the coefficient of dηi
t is zero when ηi

t is increasing, we have (conflating local and UI
martingales and assuming vanishing limits at ∞ again),

ζi
tw

i
t = Et

[∫ ∞

t
ζi
uci

u du

]
.

3 Single-Asset, Log Utility

To solve the problem, we will make a few simplifying assumptions. We assume that there is
one risky asset and that the utility functions are of the form U i(t, c) = e−ρit ln(c). Finally, we
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postulate dynamics

dδt = δt(µt dt + σt dWt)
dSt = St(mt dt + vt dWt)

dζi
t = −ζi

t(α
i
t dt + βi

t dWt)

dΛi
t = Λi

tλ
i
t dWt

for some Brownian Motion Wt. Then at the optimum, we have

ci
t =

e−ρitΛi
t

ζi
t

and therefore

ζi
tw

i
t = Et

[∫ ∞

t
ζi
ucu du

]
=

e−ρitΛi
t

ρi
= ζi

t

ci
t

ρi
.

The tractability of the wealth integral above justifies the otherwise arbitrary restriction to
log-utility. We can now compute

dwi
t = −ρiw

i
t dt + wi

tλ
i
t dWt + wi

t

(
αi

t dt + βi
t dWt

)
+ wi

tβ
i
tλ

i
t dt + wi

t(β
i
t)

2 dt .

Define m̃t = mt + δt/St. From (1), we then have

πi
t =

wi
t

St

(
λi

t + βi
t

vt

)

φi
t = wi

t

(
1− λi

t + βi
t

vt

)
=

wi
t

rt

(
(βi

t)
2 + αi

t + βi
tλ

i
t −

λi
t + βi

t

vt
(m̃t)

)

and so

(βi
t)

2 + αi
t + βi

tλ
i
t −

λi
t + βi

t

vt
m̃t =

(
1− λi

t + βi
t

vt

)
rt . (5)

If the constraint is binding then πi
tSt = Liwi

t so λi
t + βi

t = Livt; otherwise, ηi
t is not increasing

and so (4) implies α = rt. Either way, the above equation reduces to

0 = m̃t − βi
tvt − αi

t + Ki(αi
t − rt) (6)

which also follows from (3). From (4), we have η̇i
t = αi

t−rt so that the previous equation agrees
with (2). Then when the constraint is binding, we have (because K − 1 ≤ 0)

vt(Livt − λi
t) = vtβ

i
t = m̃t − αt + Ki(αi

t − rt) ≤ mt +
δt

St
− rt

from (6). Otherwise, the same equation implies

m̃t − rt = vtβ
i
t ≤ vt(Livt − λi

t) .

Therefore, we have

βi
t = min

{
Livt − λi

t ,
1
vt

(m̃t − rt)
}
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and from (6),
αi

t = max
{
Li

(
m̃t − (Livt − λi

t)vt

)
+ (1− Li)rt, rt

}
.

We see that agents follow the unconstrained optimum, remain at their constraints if it is
succeeded by the unconstrained optimal. This result is analogous to that of Cvitanic and
Karatzas [3] for the constrained Merton problem. Note that each agent’s αi

t, β
i
t satisfy (3) and

so all unconstrained agents feel the stock is fairly valued. Only the constrained agents disagree
but they are unable to affect the stock price by bidding it up. Hence, the agents maintain
diverse state-price densities, despite agreeing on the value of the stock. From the equation for
πi

t, we see that it is the agents with bullish beliefs (high λi
t) that choose to hold more stock

and possibly be constrained by Li.
Market clearing for consumption goods implies δt =

∑
i c

i
t =

∑
i ρiw

i
t from which we derive

δtσt =
∑

i

ρiπ
i
tStvt =

∑

i

ρiw
i
t(λ

i
t + βi

t) (7)

and

δtµt =
∑

i

ρiw
i
t

(
(βi

t)
2 + αi

t + βi
tλ

i
t − ρi

)

=
∑

i

ρiw
i
t

(
λi

t + βi
t

vt
m̃t +

(
1− λi

t + βi
t

vt

)
rt − ρi

)

=
δtσt

vt
m̃t + δtrt −

∑

i

ρ2
i w

i
t .

Market clearing for stock implies
∑

i π
i
t = 1. Taking ρi = ρ to be constant means that

δtσt = ρStvt δt(µt − rt) = ρSt(mt − rt) (8)

i.e. that,

d

[
δt

ρ
exp

(
−

∫ t

0
ru du

)]
= d

[
St exp

(
−

∫ t

0
ru du

)]

or that ∑

i

wi
t =

δt

ρ
= St + A0 exp

(∫ t

0
ru du

)
. (9)

Since the sum of equity and debt is the total value of the economy (which is fixed by the
dividend), higher stock returns translate to lower-bond returns and vice-versa. Hence, the
above equation explicitly gives a trade-off between bond and stock performance, a traditional
claim of investing folklore. We can also give an interpretation to At as the aggregate bond
supply at time t, where

At := A0 exp
(∫ t

0
ru du

)
=

∑

i

φi
t . (10)

Hence, from δt, we can derive the dynamics of St once we are given the interest rate rt, which
we will compute next.
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Finally, from
∑

i π
i
t = 1 we have

St =
∑

i

wi
t min

[
Li,

1
vtσt

(µt − rt + ρ) +
λi

t

vt

]
(11)

=
∑

i

wi
t min

[
Li,

ρSt

δtσ2
t

(µt − rt + ρ) + λi
t

ρSt

δtσt

]

and can numerically solve for rt. Note that the right-hand side is monotonic in rt so the solution
is unique.

Now we can give an interpretation of our results in terms of a cash-market. Up until now,
all goods have been valued in terms of the consumption good. Alternatively, we could assume
the amount of legal tender is exogenously fixed at A′t by the government and that consumption
goods are valued according to a price process pt, (i.e. 1 consumption good costs pt units of
currency at time t). Then rt is the real interest rate, r′t the nominal interest rate, and rp

t the
inflation rate where

A′t = A′0 exp
(∫ t

0
r′u du

)
pt = p0 exp

(∫ t

0
rp
u du

)
.

The equation Atpt = A′t gives us the basic relationship

rt + rp
t = r′t .

By predicting the real interest rate, our model fixes the relationship between inflation and the
nominal interest rate. For example, we might take the money supply to be fixed r′t = 0, e.g.,
gold coins in a world with no mining. In this case, we can interpret −rt = rp

t as the inflation
rate. For instance, in our GBM-dividend-dynamics model (see below), we obtain rt > 0 and
hence deflation in the economy. This is a reasonable conclusion given an increasing goods
supply which can only be purchased using a fixed money supply.

Secondly, observe that we can rewrite (11) as

`t(rt, L) :=
∑

i

wi
t min

[
Li

St
,

ρ

δtσ2
t

(µt − rt + ρ) + λi
t

ρ

δtσt

]
− 1 = 0 . (12)

First note that a solution must exist since
∑

i w
i
t ≥ St and Li ≥ 1. Since the second case

of each minimum function has a strictly negative slope, the solution can only be non-unique
if the first case held for each minimum. But this corresponds to all agents being at their
constrained, which can only happen in the trivial case Li = 1, A0 = 0 so outside this corner
case, the solution is unique. Let r

(L)
t be the unique zero of the non-increasing function `t(rt, L).

Note that the unconstrained case corresponds to L = ∞. Since `t(·, L) is a strictly decreasing
function near its zero and `t(·, L) ≤ `t(·,∞) for all L, we have r

(L)
t ≤ r

(∞)
t . (Observe that

the second argument of each minimum in (12) is expressed completely in terms of quantities
specified by the model and rt.) Hence At is lower and (9) implies St is higher after imposing a
portfolio constraint.

4 Simulation

We give a brief outline of our simulation algorithm. After initializing the time zero values, we
iteratively update the values by
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1. Compute dδt (computing µt as necessary)

2. Compute vt using (8)

3. Compute rt using the following trick. Define

`I(r) :=
∑

i∈I

wi
t

Li

St
+

∑

i∈Ic

wi
t

[
ρ

δtσ2
t

(µt − rt + ρ) + λi
t

ρ

δtσt

]
− 1 = 0

where I ranges over all 2N possible subsets of N agents and Ic is the complement I.
We solve for the zeros rI of `I quite easily since each `I is linear. Since each `I is
non-increasing and `t(r, L) = minI `I(r) from (12), rt = minI rI .

4. Compute mt using (8)

5. Compute dSt

6. Compute dwt

7. Update δt, St, wt for the next time step.

Notice that we do not explicitly use (9) or (10). However, these equations held to within a
factor of 10−6 in our simulation below.

5 GBM Dividend Dynamics Model

We give simulation results for the cash constrained case (Li = 1) when the dividend process
follows a Geometric Brownian Motion (i.e. constant µt and σt). Observable parameters for our
simulation were chosen to be roughly in accordance with real-world economic parameters:

ρ = 0.05 δ0 = 1.0 λt = [−.08,−.06, 0.07, .09]
µt = 0.02 S0 = 10.0 w0 ∝ [3.0, 3.5, 2.5, 2.0] such that

σt = 0.12
∑

i

wi
0 = δ0/ρ

The four agents are colored [blue, green, red, turquoise]. The simulation was performed with
∆t = 1

4000 up to time T = 4 and output is displayed in Figs. 1 and 2.

6 Bayesian Model

As another example, we show how our diverse beliefs framework can accommodate a Bayesian
setup. We assume a hidden parameter model where the growth rate µt is an unobserved process,

dδt = δt(µt dt + σ dWt) dµt = −aµt dt + σ′ dBt

where a, σ, σ′ are positive parameters and Bt is a Brownian Motion independent of Wt. We are
interested in the case when the agents have been observing dividend history for a long time.
From [6], stationary equilibrium for a Kalman filter implies

dδt = δt(µ̂t dt + σ dŴt) dµ̂t = −aµ̂t dt + κ dŴt (13)
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1.8

2.0

(a) δt: exceptionally strong dividend perfor-
mance.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
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15
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25
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(b) St: as the dividend process increases, so does
the stock value, but the latter’s gains are dispro-
portionately large.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.0540

0.0545

0.0550

0.0555

0.0560

0.0565

0.0570

(c) rt: reduced demand for bonds by bullish
agents reduces interest rates. Notice that the in-
terest rate (an output of the model) is reasonable.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
9.5

10.0

10.5

11.0

11.5

12.0

12.5

13.0

(d)
P

i φi
t: aggregate bonds increase smoothly.

Figure 1: Market performance in a simulation with GBM Dividend Dynamics Model.
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0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.0

0.1

0.2

0.3

0.4

0.5

(a) πt: from δtσt = ρStvt, we have that higher
St/δt (see Fig. 1(b)) implies a lower vt, which
makes agents want more equity.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0

1

2

3

4

5
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7

(b) φt: reduced demand for bonds by bullish
agents (red and turquoise) is picked up by bearish
ones (blue and green).

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
2

4

6

8

10

12

14

(c) wi
t: the aggressive bullish agents have done

extremely well in the bull market.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.2

0.4

0.6

0.8

1.0

(d)
πi

tSt

wi
t

=
λi

t+βi
t

vt
≤ Li. Notice that the bearish

agents are able to maintain relatively flat leverage
ratios by selling excess equity holdings to bullish
agents. When the latter hit their trading con-
straints, the bearish agents must hold their own
unwanted stock.

Figure 2: Agent performance in a simulation with GBM Dividend Dynamics Model.
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where

κ =

√
a2σ2 + σ′2 − aσ

σ′2
σ > 0

and Ŵt is a P Brownian motion adapted to the filtration generated by δt. The diverse beliefs
come in the form of differing beliefs about µt. Agent i believes that

dδt = δt(µ̃i
t dt + σ dW̃ i

t ) dµ̃i
t = a(bi − µ̃i

t) dt + κ dW̃ i
t (14)

where W̃ i
t is a Pi Brownian Motion. We see that the two dynamics coincide if

µ̃i
t = µ̂t − σλi

t dW̃ i
t = dŴt + λi

t dt

where λi
t is actually constant in time and defined by

abi + λi
t (aσ + κ) = 0 .

Below, we have the results of sample simulations of the Bayesian Model for the cash con-
strained case (Li = 1) with parameters

ρ = 0.05 δ0 = 1.0 λt = [−0.20,−0.15, 0.15, 0.20]
µ0 = 0.05 S0 = 10.0 w0 ∝ [3.0, 3.5, 2.5, 2.0] such that

σt = 0.3 κ = 0.05
∑

i

wi
0 = δ0/ρ

The four agents are colored [blue, green, red, turquoise]. The simulation was performed with
∆t = 1

4000 up to time T = 4 and output is displayed in Figs. 3 and 4. A similar simulation can
be done with the Bayesian inference performed from the stock price, but this did not change
the results significantly and is not reported here.

7 Conclusions and Future Work

1. The imposition of trading constraints makes markets incomplete by endowing agents with
individual price densities.

2. The imposition of trading constraints lowers interest rates and hence aggregate bond
levels. Since the wealth level is dictated by dividends (which are determined exogenously)
we have from (9) that stock values are inflated.

3. The no-borrowing case naturally lends itself to an interpretation as a cash-in advance
model where the real-interest rate is determined endogenously.

4. We can generalize the feasible portfolio to an arbitrary convex set K, as in [3]. Then we
might obtain the short-sale constraints results of Ross [8] in continuous time as a special
case.

5. Verification of optimum.
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(a) δt: a Wt path was generated using an
OU-process added to a sign curve.
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(b) St: the stock price responds similarly.
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0.05

0.10

0.15

(c) µ̂t: there is a delay in detecting the
change in the growth rate. Observe that
µ̂ crosses 0 after t = 3.0 but δ peaks near
2.5.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
�0.15�0.10
�0.050.00

0.05

(d) rt: similar to a scaled version of µ̂t.
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(e)
P

i φi
t: There is a delayed response to

the quantity of bonds.

Figure 3: Market performance in a simulation of the Bayesian Model.
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(a) πt: portfolios become disproportionately ag-
gressive for optimistic agents (red and teal).
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(b) φt: bearish agents (green and blue) prefer to
hold cash.
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(c) wi
t: the aggressive optimistic agents’ fortunes

wax and wane with with the market.
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(d)
πi

tSt

wi
t

=
λi

t+βi
t

vt
≤ Li = 1: aggressive investors

are held back by leverage constraint.

Figure 4: Agent performance in a simulation of the Bayesian Model.
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