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0. The reason I volunteered for the working group on continuous-time filtering problems was
because it seemed to me that in the other areas probably the best you could hope to achieve
was some improvement of existing ‘bread-and-butter’ SMC methods, whereas in continuous
time there was much more scope for novelty. In particular, in continuous time you have all the
tools of stochastic calculus, so it should be possible to use these before discretizing, as a way of
getting further. These notes present one way of carrying out this approach; perhaps all which
follows is well known, but from my brief study of the references we have been looking at, it
looks like it could do with being better known if so! These notes are very preliminary,

and will be expanded as time permits.

1. The informal idea of least-action is that Wiener measure on C([0, T ],Rd) has a ‘density’
with respect to ‘Lebesgue’ measure of the form

f(x) ∝ exp

{

− 1

2

∫ T

0

|ẋs|2 ds
}

. (1) density

While it is impossible to make rigorous sense of this, it is the intuition which drives a great
deal of stochastic analysis, such as large deviations. If we were only to observe the process at
multiples of some small time-step h = T/N , then the density of (xh, x2h, . . . , xT ) as a random
vector in R

Nd would indeed be of the form (??), where for ẋs we substitute the slope of the

piecewise-linear interpolation of the xjh. The expression 1

2

∫ T

0
|ẋs|2 ds is often referred to as

the action integral, and is in effect the negative of the log-likelihood.

2. Suppose that we have some (nice) SDE in R
d

dZt = σ(t, Zt) dWt + µ(t, Zt)dt, (2) dZ

where Z is partitioned1 Z = [X;Y ] where X is n-dimensional, and Y is q-dimensional. We
shall suppose that Y is observed, and the objective is to estimate X from these observations.

1... using Scilab/Matlab notation for vectors and matrices ..
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Formally rearranging (??) gives us

dW

dt
= σ(t, Zt)

−1

(

dZ

dt
− µ(t, Zt)

)

, (3) dWdt

so that the action integral here will be

A = 1

2

∫ T

0

∣

∣

∣

∣

σ(t, Zt)
−1

{(

ẋt

Ẏt

)

− µ(t, Zt)

}
∣

∣

∣

∣

2

dt

≡
∫ T

0

ψ(t, xt, ẋt) dt, (4)

say. Notice that we know Y , so it is only an issue to select the (least-action = maximum-
likelihood) path x. If we suppose that x0 has a prior density proportional to exp(−ϕ(x)),
then the log-likelihood to be minimized is

ϕ(x0) +

∫ T

0

ψ(t, xt, ẋt) dt ≡ ϕ(x0) +

∫ T

0

ψ(t, xt, pt) dt, (5) LL

where we write p ≡ ẋ. This we attack by calculus of variations; if we have found the optimal
x, then any perturbation to x + ξ must to leading order make zero change to the objective.
Integrating by parts gives

0 = ξ0Dϕ(x0) +

∫ T

0

{

ξt ·Dxψ + ξ̇ ·Dpψ
}

dt (6)

= ξ0Dϕ(x0) +
[

ξj
tDpj

ψ
]T

0
+

∫ T

0

ξj
t

{

Dxj
ψ −DtDpj

ψ − ẋkDpj
Dxk

ψ − ṗkDpj
Dpk

ψ
}

dt.

Since ξ is arbitrary, we deduce the conditions for optimality:

0 = Dpj
ψ(0, x0, p0) −Dxj

ϕ(x0) (7)

0 = Dxj
ψ −DtDpj

ψ − ẋkDpj
Dxk

ψ − ṗkDpj
Dpk

ψ (8)

0 = Dpj
ψ(T, xT , pT ) (9)

Thus we derive a (generally non-linear) first-order ODE (??) for (x, p), with initial condition
(??) and terminal condition (??). This will generally have a unique solution, though the
‘shooting’ nature of the ODE is rather clumsy in practice2.

3. There’s quite a rigour deficit here, so let’s take a look at the simplest example to try to see
what happens here. Suppose that the underlying signal X is a one-dimensional OU process

dX = σXdW − βXXdt,

2We shall have more to say on this later.
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and that Y = X + y, where y is an independent OU process

dy = σydW
′ − βyydt

for independent Brownian motions W and W ′. Assume that the prior for X0 is a standard
normal. The SDE satisfied by Z = [X;Y ] is thus

dZ =

(

σX 0
σX σy

)(

dW
dW ′

)

+

(

−βX 0
−βX + βy −βy

)(

X
Y

)

dt

≡ σ

(

dW
dW ′

)

+ A

(

X
Y

)

dt

Therefore we have

ψ(t, x, p) =
1

2

((

p

Ẏ

)

−A

(

x
Y

) )T

M

( (

p

Ẏ

)

− A

(

x
Y

) )

(10)

where M = (σσT )−1. This is a completely explicit action functional, whose derivatives are
quite easy to work with.

For a given x0, we can derive p0 from (??), then numerically solve the ODE for (x, p) ≡ (x, ẋ)
forward to time T , and finally check whether the terminal condition (??) holds. Classically,
the approach to be used is to adjust x0 until the terminal condition is satisfied, but the SMC
approach suggests another way to do this; keep a cloud of starting points, and reweight ac-
cording to the likelihood of the path which solves (??), (??). Figure ?? shows what happened
when this procedure was carried out on this example with 200 time steps.

4. Let’s see this in action on a rather different example, which could arise in modelling of
defaults. Suppose that there is an unobserved CIR process x, satisfying

dxt = σ
√
xt dWt + β(a− xt)dt, (11) CIR

which serves as the stochastic intensity of a counting process N . The times 0 < τ1 < τ2 <
. . . < τNT

< T of events are observed, and we have to filter x from these observations. For
this example, the action functional is simply

ψ(t, x, p) = ψ(x, p) =
(p− β(a− x))2

2σ2x
, (12) LAF2

and the action integral ( = -log-likelihood) to be minimised is just

ϕ(x0) +

∫ T

0

ψ(xs, ẋs) ds+

∫ T

0

xs ds−
n

∑

i=0

log xτi
, (13) LL2
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where we have abbreviated n ≡ NT . Once again, we consider a small perturbation ξ away
from the optimal x, and equate the first-order change to zero, which gives us

0 = ϕ′(x0)ξ0 +

∫ T

0

{ψxξ + ψpξ̇ + ξ} dt−
n

∑

i=1

ξ(τi)

x(τi)

= ϕ′(x0)ξ0 +

n
∑

j=0

∫ τj+1

τj

{ψxξ + ψpξ̇ + ξ} dt−
n

∑

i=0

ξ(τi)

x(τi)

= ϕ′(x0)ξ0 +
n

∑

j=0

[
∫ τj+1

τj

{ψx − ψpxẋ− ψppṗ+ 1}ξ dt+
[

ξtψp(xt, ẋt)
]τj+1

τj

]

−
n

∑

i=0

ξ(τi)

x(τi)
.

In order for this to be zero whatever perturbation ξ is used, we have to have a number of
conditions:

0 = ψx − ψpxẋ− ψppṗ+ 1 in each interval (τj , τj+1) ; (14)

0 = ϕ′(x0) − ψp(x0, p0) ; (15)

0 = −ψp(xτi
, pτi+) + ψp(xτi

, pτi−
) − x(τi)

−1 ; (16)

0 = ψp(xT , pT ). (17)

Thus the least-action path must be constructed piecewise in each of the intervals between
observations. We are assisted in this by the fact that the ODE (??) to be solved can be
solved quite explicitly:

xt =

(

β2a2

A
− AB2

4

)

eβt − Ae−βt

4β2
− AB

2β
(18) xsoln

for some constants A, B.
As in the first example, we have a shooting problem, where we have to pick a starting

point x0, find p0 using (??), then solve the ODE out to τ1 using the solution (??), use (??)
to work out the value of p to the right of τ1, and then continue to the end, finally checking
whether (??) holds at T , adjusting x0 until it does.

5. Some remarks. (1) Methodologically, what we are doing is to solve some ODE, and
wiggle the initial condition around until we get a good fit. Notice that solving an ODE (even
in quite large dimensions) is a well-studied problem in numerical analysis, and there are good
accurate fast numerical schemes. Thus we should expect that this approach will cope better
with high-dimensional problems than pure SMC methods.

(2) Another observation is that the methodology is similar to the Doss-Sussmann approach to
solving an SDE; you calculate the stochastic flow of the associated ODE, and then make the
initial condition diffuse. However, it is clear that the two approaches are actually radically
different; the Doss-Sussmann approach gives us a first-order ODE, the least-action approach
gives us a second-order ODE.
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(3) If T gets large, the numerical feasibility of this least-action approach falls off; we will likely
need unachievable precision in the location of x0 to hit the final condition. This suggests that
we should be thinking in a more recursive way about the approach, and this actually fits quite
well with SMC, as was mentioned earlier. If we keep a cloud of particles, each the current
position of a solution of the ODE (??) from a different starting point, then the SMC method
gives us weights on these. Suppose we have solved out to time t, and have such a population
of particles. Then to move forward to t + 1, say, we could step forward from each of the
existing particles (using the ODE (??)), and see how they do. Of course, likely none of them
will hit the terminal condition (??) at time t + 1, but by some interpolation between values
at time t we may be able to get closer.

(4) Even if we want to keep close in spirit to classical SMC methodology, this least-action
analysis can still be very helpful. Go back to the situation in Section 2, (??). Suppose that
we have been able to compute the least-action path Z∗ over [0, T ]; then (??) would suggest
that

dW

dt
= bt ≡ σ(t, Z∗

t )
−1

(

dZ∗

dt
− µ(t, Z∗

t )

)

. (19) dWdt2

So we could use this to importance-sample in a good way; instead of simulating paths of W
as ordinary Brownian motions, we could simulate them as Brownian motions plus the known
drift btdt, and then use Cameron-Martin-Girsanov to importance-weight them. This would
be quite easy to do, and would put paths where they could do a lot of work - always difficult
in higher dimensions.

(5) In support of the basic notion that least-action corresponds in some sense to the maximum-
likelihood path, suppose we take a simple SDE

dXt = dWt + µ(Xt)dt

and approximate it by the Euler scheme:

dX
(n)
t = dWt + µ(X(n)(t(n))) dt, (20) Euler

where t(n) = 2−n[2nt], with conditionally Gaussian increments. Writing h ≡ 2−n, and xj ≡
X(n)(jh), the log likelihood is to within irrelevant constants

−ϕ(x0) − 1

2

N−1
∑

j=0

(xj+1 − xj − hµ(xj))
2.

Differentiating with respect to xj gives us the conditions (writing µj ≡ µ(xj), µ
′

j ≡ µ′(xj))

0 = (xj − xj−1 − hµj−1) − (1 + hµ′

j)(xj+1 − xj − hµj)

= (2xj − xj−1 − xj+1) + h(µj − µj−1) − hµ′

j(xj+1 − xj − hµj)

= (2xj − xj−1 − xj+1) + hµ′

j(xj − xj−1) − hµ′

j(xj+1 − xj − hµj) + εj

= (2xj − xj−1 − xj+1)(1 + hµ′

j) + h2µjµ
′

j + εj,
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where εj = O(h3) when we assume that xj+1 − xj = O(h). Dividing by h2, we deduce

0 = −xj+1 − 2xj + xj−1

h2
+ µjµ

′

j +O(h); (21) FD1

this is a finite-difference scheme for the ODE (??), more simply expressed as equation (2) in
JV’s notes of November 10th.

6. Let’s now look at some higher-order stuff. What we did was to maximize the log-likelihood
by minimizing the action (??). Assuming that the log-likelihood is C2 near its maximum, we
have (as in classical ML theory) that the likelihood surface is approximately quadratic near
the maximum, and the second derivative of the quadratic tells us the approximate Gaussian
behaviour near to the MLE. So if we go back to the action (??) and consider expanding
around the optimal x∗ by perturbing to x∗ + ξ for small ξ, the second-order contribution we
get is

Q(ξ) ≡ 1

2
Dxi

Dxj
ϕ(x∗0)ξ

i
0ξ

j
0 +

∫ T

0

{

1

2
ξiξjDxi

Dxj
ψ + ξiξ̇jDpj

Dxi
ψ + 1

2
ξ̇iξ̇jDpi

Dpj
ψ

}

dt

≡ 1

2
Dxi

Dxj
ϕ(x∗0)ξ

i
0ξ

j
0 +

∫ T

0

{

1

2
ξi
tA

ij
t ξ

j
t + ξi

tB
ij
t ξ̇

j
t + 1

2
ξ̇i
t q

ij
t ξ̇

j
t

}

dt (22)

where the derivatives appearing in the integral are evaluated along the optimal path (x∗t , ẋ
∗

t ),
and the matrix-valued functions of time A, B and q are defined by the obvious identifications.
This quadratic functional of ξ characterizes the (approximate) Gaussian distribution of the
perturbation.

Now suppose that we have some C1 symmetric-matrix-valued function of time, θ, such
that θT = 0. Then we may write

Q(ξ) = Q(ξ) + 1

2
ξ0 · θ0ξ0 +

[

1

2
ξt · θtξt

]T

0

= 1

2
ξ0 · (D2ϕ(x∗0) + θ0)ξ

+

∫ T

0

{

1

2
ξt · Atξt + ξt ·Btξ̇t + 1

2
ξ̇t · qtξ̇t + 1

2
ξt · θ̇tξt + ξt · θtξ̇t

}

dt. (23)

The quadratic for inside the integral is

1

2
ξ̇t · qtξ̇t + ξt · (Bt + θt)ξ̇t + 1

2
ξt · (At + θ̇t)ξt = 1

2
(ξ̇t +Ktξt) · qt(ξ̇t +Ktξt) (24) CTS

where Kt ≡ q−1
t (BT

t + θt) provided

At + θ̇t = KT
t qtKt = (Bt + θt)q

−1
t (BT

t + θt) (25) eq6

This gives an ODE for θ to be solved with the boundary condition θT = 0, which presents no
real problems. Once we have solved this, we conclude that the perturbation ξ solves

dξt = −Ktξt dt+ q
−1/2
t dWt (26) dxi
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which represents the perturbation as a zero-mean Gaussian process. The covariance of ξ can
be easily obtained from an Itô expansion of ξξT :

dξξT .
= (−Ktξtξ

T
t − ξtξ

T
t K

T
t + q−1

t )dt, (27) dxixi

where
.
= signifies that the two sides differ by a (local) martingale. Hence

V̇t = −KtVt − VtK
T
t + q−1

t (28) dV

and this allows us to calculate the covariance at time t.

7. In any given example, the action functional takes the form

ψ(t, x, p) = 1

2
(v − b(t, x)) · q(t, x)(v − b(t, x)), (29) psi2

where

v ≡
(

p
0

)

, q(t, x) ≡ (σ(t, z)σ(t, z)T )−1, b(t, x) ≡ µ(t, z) −
(

0

Ẏt

)

(30) wq

where we assume that

z =

(

x
Yt

)

when we evaluate σ and µ. This will typically introduce time dependence into b and q even
though there may have been no time dependence in µ and σ.

The primitives of an example will be the functions µ and σ, and it is convenient to
re-express ψ and its relevant derivatives in terms of µ, σ and their derivatives. Writing
w = v − b(t, x) as a convenient abbreviation, we shall then have

Dxj
ψ = 1

2
w · (Dxj

q)w − (Dxj
b) · q w

Dxjxk
ψ = 1

2
w · (Dxjxk

q)w − (Dxj
b) · (Dxk

q)w − (Dxk
b) · (Dxj

q)w +

+(Dxj
b) · q (Dxk

b) − (Dxkxj
b) · q w

Dpk
ψ = (q w)k

Dpjpk
ψ = qjk

Dxjpk
ψ = ( (Dxj

q)w)k − (q (Dxj
b))k

DtDpk
ψ = (Dtq w)k − (qDtb)k

8. Here is another interesting example to study. Suppose we have a hidden process

dXt = σXdWt − β sin(aXt)dt (31) dX4

for positive constants σX , β and a, which we observe with additive OU noise z:

Yt = Xt + zt,
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where
dzt = σzdW

′

t − λztdt (32)

for other positive constants σz and λ. This is an interesting dynamic, because X is mean-
reverting to any point of the form 2nπ/a for integer n, and mean-fleeing from any point of the
form (2n + 1)π/a. Thus it will tend to stick around integer multiples of 2π/a, occasionally
crossing over to a neighbouring point. The SDE for Z is thus

dZt ≡
(

dXt

dYt

)

=

(

σX 0
σX σz

) (

dWt

dW ′

t

)

+

(

−β sin(aXt)
−β sin(aXt) − λ(Yt −Xt)

)

dt. (33)
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Figure 1: Result of least-action filtering. pic1
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