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Abstract. This note explores the analogy between the dynamics of the interest rate term structure and

the implied volatility surface of a stock. In particular, we prove an impossibility theorem conjectured by

Steve Ross.

1. Introduction

Today the famous Black–Scholes formula [2] is rarely used to price vanilla call and put options, since for
a wide range of strikes and expiries these options are so liquid that the market price cannot be disputed.
Instead, the volatility implied by the Black–Scholes formula is used as common language for expressing the
market prices of these liquid options.

In recent years there has been a growing interest in the modelling the stochastic dynamics of the Black–
Scholes implied volatility surface of a stock. This approach is at some level erroneous, proposing to model a
derived quantity rather than the fundamental from which it is derived; however, provided care is taken over
the necessary consistency conditions, something may be done. The analogy is with the Heath-Jarrow-Morton
approach to modelling of interest rates, though in the context of implied volatility surfaces the consistency
conditions are more onerous; see the thesis [4] of Durrleman and the article [13] of Schönbucher for details.

In this note, we shall derive certain model-independent properties of the implied volatility surface, and
use these properties to establish (under mild conditions) a conjecture of Steve Ross [12]. This conjecture says
(informally) that the implied volatility surface cannot move by parallel shifts - the shape must also change.
This is interesting and important because it shows that blindly imposing dynamics on the implied volatility
surface (for example, postulating that it moves up and down by parallel shifts) may lead to inconsistency.

The article is structured as follows. Section 2 presents notation and Ross’s conjecture. In Section 3 we
prove that the implied volatility surface cannot make a uniform downward move, and in Section 4 we prove
(under a mild regularity condition) that the implied volatility surface cannot make a uniform upward move,
confirming Ross’s conjecture. Finally, Section 5 presents some refined results on the flattening of the implied
volatility surface which are of independent interest.

2. The implied volatility notation and assumptions

We consider a market with one stock, and European call options of all strikes and expiries. With no loss
of generality1 we assume that the interest rate is zero and that the stock pays no dividend. The probability
P of our filtered probability space (Ω,F , (Ft)t≥0, P ) is taken to be the pricing probability, so the stock price
process (St)t≥0 is a non-negative P -martingale, which we suppose to start at S0 = 1.

Define the Black–Scholes call price function f : R × [0,∞) → [0, 1) in terms of the tail of the standard
Gaussian distribution2 Φ̄ by

(1) f(k, v) =

{
Φ̄

(
k√
v
−

√
v

2

)
− ekΦ̄

(
k√
v

+
√

v
2

)
if v > 0

(1− ek)+ if v = 0

The implied variance is the process (Vt(k, τ))t≥0,k∈R,τ≥0 defined implicitly by the formula

(2) E
[(St+τ

St
− ek

)+∣∣Ft

]
= f(k, Vt(k, τ)),

Key words or phrases. Implied volatility, smile asymptotics, long rates .
1... but considerable gain in transparency ...
2Explicitly, Φ̄(x) =

R∞
x exp(−y2/2) dy/

√
2π.
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and in terms of this we define the implied volatility Σt(k, τ) as

(3) Σt(k, τ) =

√
Vt(k, τ)

τ

for τ > 0. We have introduced notation for both the implied variance and the implied volatility since some
of our results are more naturally stated in terms of one or the other. Throughout, we abbreviate V0(k, τ) to
V (k, τ), Σ0(k, τ) to Σ(k, τ).

Our study is concerned with the following conjecture of Steve Ross:

Suppose there exists a process (ξt)t≥0 such that for all t ≥ 0, τ > 0 and k ∈ R
(4) Σt(k, τ) = Σ0(k, τ) + ξt;

then ξt = 0 almost surely for all t ≥ 0.

We will denote by φ(x) = (2π)−1/2e−x2/2 the standard normal density, and freely make use of the well-
known bounds on the Mills’s ratio

(5) 0 ≤ 1− xΦ̄(x)
φ(x)

≡ ε(x) ≤ 1
1 + x2

for x ≥ 0. The first partial derivatives of f will be used in what follows:

fk(k, v) = −ekΦ̄
(

k√
v

+
√

v

2

)
(6)

fv(k, v) = φ

(
k√
v
−
√

v

2

)
/2
√

v(7)

3. Long implied volatilities cannot fall

In this section we now study the dynamics of the implied volatility surface at long maturities. Notice that
in order to define Vt(k, τ) via equation (2) we need St > 0 almost surely; we therefore make the

Assumption A1: St > 0 for all t almost surely.

The main result proved in this section is the following.

Theorem 3.1. Under Assumption A1, for any k1, k2 ∈ R, for 0 ≤ s ≤ t, we have

lim sup
τ↑∞

{
Σt(k1, τ)− Σs(k2, τ)

}
≥ 0

almost surely.

Given Theorem 3.1, it is immediate that if the representation (4) of the implied volatility surface holds, then
ξ is non-decreasing.

The proof begins with several lemmas, the first being the result of Hubalek, Klein & Teichmann [7] which
they use to prove the Dybvig-Ingersoll-Ross [5] result. We present the (short) proof for completeness.

Lemma 3.2. Let (Xp)p≥0 be a sequence of non-negative random variables with with finite mean for each
p ≥ 0. Then

lim inf
p↑∞

X1/p
p ≤ lim inf

p↑∞
E(Xp)1/p

almost surely.

Proof. Let
X = lim inf

p↑∞
X1/p

p and x = lim inf
p↑∞

E(Xp)1/p.
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By Fatou’s lemma and Hölder’s inequality, we have

E[X1{X>x}] = E[lim inf
p↑∞

X1/p
p 1{X>x}]

≤ lim inf
p↑∞

E[X1/p
p 1{X>x}]

≤ lim inf
p↑∞

E[Xp]1/pE[1{X>x}]1−1/p.

The above computation implies E[(X − x)1{X>x}] ≤ 0 and hence X ≤ x almost surely. �

The next lemma explains the condition (15), which will be satisfied for most models of interest.

Lemma 3.3. The following are equivalent:
(i) St → 0 as t ↑ ∞ in distribution.
(ii) St → 0 as t ↑ ∞ almost surely.
(iii) For some K > 0, E(Sτ −K)+ ↑ 1 as τ ↑ ∞.
(iv) For all K > 0, E(Sτ −K)+ ↑ 1 as τ ↑ ∞.
(v) For some k > 0, V (k, τ) ↑ ∞ as τ ↑ ∞.
(vi) For all k > 0, V (k, τ) ↑ ∞ as τ ↑ ∞.

Proof. The martingale convergence theorem establishes that Sτ → S∞ almost surely for some integrable
limit S∞; the equivalence of (i) and (ii) is immediate. In view of the identity

1− E(Sτ −K)+ = E
[

Sτ ∧K
]
,

(iii) implies (ii), and (ii) implies (iv). The equivalence of (iii) and (v), and of (iv) and (vi), are immediate. �

An important consequence of this result is the following.

Corollary 3.4. If P (S∞ > 0) > 0, then for all k

lim
τ↑∞

Σ(k, τ) = 0.

Proof. According to Lemma 3.3, for each k the increasing limit limτ↑∞ V (k, τ) is finite, and so

Σ(k, τ) =
√

V (k, τ)/τ → 0.

�

Lemma 3.5. If St → 0 in distribution then for all M > 0 we have

inf
k∈[−M,M ]

V (k, τ) ↑ ∞.

Proof. By Lemma 3.3, V (k, τ) ↑ ∞ as τ ↑ ∞ for each k ∈ R. Let T ∗ > 0 be so large that k(T ∗) > M and
k(T ∗) < −M . Then for τ ≥ T ∗ the functions k 7→ 1/V (k, τ) are positive and continuous on [−M,M ] and
converge monotonically to 0 pointwise. The conclusion follows from Dini’s theorem. �

The heart of the proof is in the following result, which expresses the limiting behaviour of the implied
volatility surface as τ ↑ ∞.

Lemma 3.6. For each t ≥ 0, for each M > 0, we have

(8) lim
τ↑∞

sup
k∈[−M,M ]

∣∣∣∣∣Σt(k, τ)−
(
−8

τ
log E[St+τ ∧ 1|Ft]

)1/2
∣∣∣∣∣ = 0.
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Proof. On the event {P (St → 0|Ft) < 1} the claim is true, since we have both limτ↑∞ Σt(0, τ) = 0 (by
Corollary 3.4), and limτ↑∞ E[St+τ ∧ 1|Ft] > 0.

So assume St → 0 almost surely. Using (5), and writing x1 ≡ (v/2− k)/
√

v, x2 ≡ (v/2 + k)/
√

v, we have
whenever v > 2k that

1− f(k, v) = Φ̄
(

v/2− k√
v

)
+ ekΦ̄

(
v/2 + k√

v

)
≡ Φ̄(x1) + ekΦ̄(x2)

= φ(x1)
{

1
x1

(1− ε(x1)) +
1
x2

(1− ε(x2))
}

= φ(x1)
{ √

v

v/2− k
+

√
v

v/2 + k
− ε(x1)

x1
− ε(x2)

x2

}
= φ(x1)

{
v3/2

v2/4− k2
− ε(x1)

x1
− ε(x2)

x2

}
We apply this when |k| ≤ M and v = Vt(k, τ), for then

E[
(

St+τ

St

)
∧ ek | Ft] = 1− f(k, v)

= φ(x1)
{

v3/2

v2/4− k2
− ε(x1)

x1
− ε(x2)

x2

}
and if τ is large enough we have from Lemma 3.5 that v is much larger than M , so ε(x1)/x1 ≤ 2x−3

1 ≤ 50v−3/2,
and ε(x2)/x2 ≤ 50v−3/2. Thus

−8 log(1− f(k, v)) =
(v − 2k)2

v
+ 4 log(v) + δ(v),

= v + η(v)

where |δ(v)| → 0 as τ →∞, and there exist constants A and B such that |η(v)| ≤ A + B log(v) for all large
enough τ . We therefore have

lim
τ↑∞

sup
|k|≤M

∣∣∣∣∣√Vt(k, τ)−
{
−8 log E[

(
St+τ

St

)
∧ ek | Ft]

}1/2
∣∣∣∣∣ = 0.

Dividing by
√

τ , we deduce that

lim
τ↑∞

sup
|k|≤M

∣∣∣∣∣Σt(k, τ)−
{
−8

τ
log E[

(
St+τ

St

)
∧ ek | Ft]

}1/2
∣∣∣∣∣ = 0,

and the elementary inequality for positive a, b, x

1 ∧
(a

b

)
≤ x ∧ a

x ∧ b
≤ 1 ∨

(a

b

)
leads to the result (8). �

Notice the following Corollary of Lemma 3.6, which expresses in a quite precise sense the flattening of the
implied volatility surface.

Corollary 3.7.

(9) lim
τ↑∞

sup
k1,k2∈[−M,M ]

|Σ(k2, τ)− Σ(k1, τ)| = 0

Now we come to the proof of the main theorem of this section.
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Proof of Theorem 3.1. We present here the case s = 0 as the general case 0 ≤ s ≤ t is essentially the same.
Let Mt(τ) = E[Sτ ∧ 1|Ft] so that (Mt(τ)/M0(τ))t∈[0,τ ] is a martingale for each τ > 0. By Lemma 3.2 we
have that

lim sup
τ↑∞

{
−8

τ
log(Mt(τ)) +

8
τ

log(M0(τ))
}
≥ 0.

It is easy to see that if lim supτ↑∞ a(τ)2 − b(τ)2 ≥ 0 for positive functions a and b, then lim supτ↑∞ a(τ) −
b(τ) ≥ 0. Now taking a(τ)2 = − 8

τ log(Mt(τ)) and b(τ)2 = − 8
τ log(M0(τ)), an application of Lemma 3.6

yields
lim sup

τ↑∞
Σt(k1, τ − t)− Σ0(k2, τ) ≥ 0.

The proof is completed by noting that τ 7→ Vt(k1, τ) is increasing so that Σt(k1, τ) ≥
√

(τ − t)/τΣt(k1, τ− t)
for τ ≥ t. �

Remark 1. We now exhibit a model such that the long volatitity strictly increases. Flip a coin at time 0 and
let

St =
{

1 with probability 1/2
e−t/2+Wt with probability 1/2.

Since P (St → 0) = 1/2 < 1 we have limτ↑∞ Σ0(k, τ) = 0 for all k ∈ R. But when t > 0 we have
Σt(k, τ) = 1 > 0 with probability 1/2.

4. The implied volatility surface cannot move in parallel shifts

In this section we prove a version of a conjecture of Ross: If the implied volatility surface moves in parallel
shifts, the surface must be constant. Again, Assumption A1 is in force for this section.

Theorem 4.1. Suppose for all t ≥ 0, τ > 0 and k ∈ R that

Σt(k, τ) = Σ0(k, τ) + ξt

for some process (ξt)t≥0. Define the function gp by

gp(t) =


1

p(p−1) log E(Sp
t ) if p 6= 0, p 6= 1

E(St log St) if p = 1
−E(log St) if p = 0.

If for all t ≥ 0 there exists a p ∈ R and τ > 0 such that

(10) gp(t + τ) ≤ gp(t) + gp(τ) < ∞,

then ξt = 0 almost surely for all t ≥ 0.

Remark 2. By Jensen’s inequality, the function gp is positive and increasing for all p ∈ R, and is finite at
least for 0 < p < 1. Note that if St = e−σ2t/2+σWt then gp(t) = σ2t/2 for all p ∈ R.

Proof. Note that by hypothesis
ξt = Σt(0, τ)− Σt(0, τ).

By considering the limit superior of the right-hand side as τ ↑ ∞ we see from Theorem 3.1 that ξt ≥ 0 almost
surely.

By the fact that v 7→ f(k, v) increases for all k ∈ R, we have

E
[(St+τ

St
−K

)+|Ft

]
= f(log K, τΣt(log K, τ)2)

≥ f(log K, τΣ0(log K, τ)2)(11)
= E[(Sτ −K)+]

and

E
[(

K − St+τ

St

)+|Ft

]
= Kf(− log K, τΣt(log K, τ)2)

≥ E[(K − Sτ )+]
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for all K > 0. For twice-differentiable, convex G : (0,∞) → R we have the identity

G(s) = G(1) + (s− 1)G′(1) +
∫ ∞

1

(s−K)+G′′(K)dK +
∫ 1

0

(K − s)+G′′(K)dK

so that we can conclude that the following inequality holds almost surely for convex G for which G(1) =
G′(1) = 0:

(12) E
[
G

(St+τ

St

)
|Ft

]
≥ E[G(Sτ )].

Letting G be the convex function Gp(S) = 1
p(p−1) (S

p − pS − (1 − p)) for p 6= 0, p 6= 1, we have from
inequality (12), after multiplying both sides by Sp

t and taking expectations and logarithms, that

gp(t + τ) ≥ gp(t) + gp(τ).

A similar argument shows that the above inequality holds also for p = 0 and p = 1.
But by assumption, there exists a p ∈ R and a τ > 0 such that gp(t + τ) ≤ gp(t) + gp(τ) < ∞, and

hence the inequality is, in fact, an equality. Inequality (12) implies that there exists an event Ω0 ∈ Ft with
P (Ω0) = 1 such that

E
[
Gp

(St+τ

St

)∣∣Ft

]
= E[Gp(Sp

τ )]

for all ω ∈ Ω0. Fixing an ω ∈ Ω0 inequality (11) yields

E
[(St+τ

St
−K

)+|Ft

]
= E[(Sτ −K)+].

for almost all K > 0. Hence ξt = 0 on Ω0 as claimed. �

Remark 3. Here is a cautionary example which shows that the conjecture is false for implied average variance
Vt(k, τ)/τ = Σt(k, τ)2.

Take St = e−t4/2+Wt2 . Then Vt(k, τ) = (t + τ)2 − t2 so that Σt(k, τ)2 = τ + 2t. Hence this example has
ξt = 2t and

Σt(k, τ)2 = Σ0(k, τ)2 + ξt

almost surely for all k ∈ R, τ > 0, and t ≥ 0. Note that this example, although not a counterexample to
Ross’s conjecture, is not included in Theorem 4.1 as log E(Sp

t ) grows quadratically here

The final result shows that if the implied volatility surface is constant then the stock price is the exponential
of a Levy process.

Theorem 4.2. Suppose for all t ≥ 0, τ > 0 and k ∈ R that

Σt(k, τ) = Σ0(k, τ).

If St → 1 in distribution as t ↓ 0 (or equivalently, if V0(k, τ) ↓ 0 for each k ∈ R), then (St)t≥0 is an
exponential Levy process.

Proof. By assumption we have

E
[(St+τ

St
−K

)+|Ft

]
= E(Sτ −K)+

for all K ≥ 0. This shows that log(St) has independent and identically distributed increments. �

5. The implied volatility surface flattens at long maturities

The main result of this section proves that the implied volatility smile/skew Σ(·, τ) becomes very flat at
long maturities. This is a consequence of the following result, which estimates the derivative of the implied
variance with respect to log strike.
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Theorem 5.1. Let [k(t), k(t)] be the smallest interval containing the support of St. Then:

(i) The right derivative D+V (k, τ) of V with respect to k exists for k 6= k(τ), and for all k ≥ 0

(13) D+V (k, τ) < 4;

(ii) The left derivative D−V (k, τ) of V with respect to k exists for k 6= k(τ), and for all k ≤ 0

(14) D−V (k, τ) > −4;

(iii) Whenever both one-sided derivatives exist, D−V (k, τ) ≤ D+V (k, τ).

(iv) Provided

(15) St → 0 in distribution as t ↑ ∞
then for all M > 0 the following inequalities hold:

(16) lim sup
τ↑∞

sup
k∈[−M,M ]

max{|D−V (k, τ)|, |D+V (k, τ)|} ≤ 4.

(v) The bound (16) is sharp in the sense that there exists a martingale (St)t≥0 such that DV (k, τ) → −4 as
τ ↑ ∞ uniformly for k ∈ [−M,M ].

Remark 4. The flattening of implied volatility as τ ↑ ∞ has been noticed before in the context of specific
models, and the phenomenon has been incorrectly attributed to the central limit theorem; for instance,
see Section 7.3 of Rebonato’s book [11]. A proof of the flattening of the surface under some additional
smoothness and finiteness assumptions has been given by Carr and Wu [3]. The sharp constant appears to
be new.

The next lemma asserts that the map k 7→ V (k, τ) is rather smooth for each τ ≥ 0.

Lemma 5.2. For each τ ≥ 0, the function k 7→ V (k, τ) is continuous on R. The left derivative D−V (k, τ)
exists for all k 6= k(τ) and right derivative D+V (k, τ) exists for all k 6= k(τ).

Proof. Define the function I : {(k, c) ∈ R× [0,∞) : (1− ek)+ ≤ c < 1} → [0,∞) implicitly by the formula

(17) f(k, I(k, c)) = c.

The function I is continuous on {(1− ek)+ ≤ c < 1} and differentiable (in fact, infinitely-differentiable) on
{(1 − ek)+ < c < 1}. Calculus gives Ic = 1/fv, and Ik = −fk/fv. Since V (k, τ) = I(k, E[(Sτ − ek)+]), we
have the explicit calculation (omitting appearance of the arguments (k, τ))

D+V = Ik + Ic D+E[(Sτ − ek)+]

= −fk

fv
− P (Sτ > ek)

fv
(18)

= 2
√

V
Φ̄

(
k/
√

V +
√

V /2
)
− P (Sτ > ek)

φ
(
k/
√

V +
√

V /2
) ,(19)

and

(20) D−V = 2
√

V
Φ̄

(
k/
√

V +
√

V /2
)
− P (Sτ ≥ ek)

φ
(
k/
√

V +
√

V /2
)

for k(τ) < k < k(τ). The conclusion now follows since V (k, τ) = 0 for all k ≤ k(τ) and for all k ≥ k(τ). �

We now turn to the proof of the main result of this section.

Proof of Theorem 5.1. For k(τ) < k < k(τ) it is clear that D−V (k, τ) ≤ D+V (k, τ) by equations (19) and
(20), establishing claim (iii). To establish claim (i), note that for 0 ≤ k < k(τ) we have the following

(21) D+V (k, τ) < −fk

fv
= 2

√
V

Φ̄
(
k/
√

V +
√

V /2
)

φ
(
k/
√

V +
√

V /2
) ≤ 4

k/V + 1
< 4;

by inequality (5). Furthermore, for k ≥ k(τ) we have D+V (k, τ) = 0, and claim (i) is established.
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As a first step to proving claim (iv), note that if St → 0 in distribution there exists a T ∗ > 0 such that
k/V (k, τ) > −1/4 for all k ≥ −M and all τ ≥ T ∗ by Lemma 3.5. Hence (21) holds for all τ ≥ T ∗ and
k ≥ −M .

Now the identities
1− e−k + e−kf(k, v) = f(−k, v)

and
1− e−k + e−kE[(S − ek)+] = E[(1− Se−k)+]

imply the alternative representation of V (k, τ) as

V (k, τ) = I(−k, E[(1− Sτe−k)+]).

Differentiating yields the explicit formula and the bound

D−V (k, τ) = 2
√

V
−Φ̄

(√
V /2− k/

√
V

)
+ E[St ; St < ek]

φ
(
− k/

√
V +

√
V /2

)(22)

≥ −2
√

V
Φ̄

(√
V /2− k/

√
V

)
φ
(
− k/

√
V +

√
V /2

)
→ −4

uniformly on (−∞,M ] as before. Claims (ii) and (iv) follow.
Finally to claim (v); the proof needs to use the following limit:

(23)
√

v
1− f(k, v)

φ(−k/
√

v +
√

v/2)
→ 4

uniformly for k ∈ [−M,M ] as v ↑ ∞.
We construct a martingale S from two independent random variables, an exponentially-distributed random

variable ξ of mean 1, and a random time with distribution

P (T ≥ t) = min{1, t−1}.
The martingale is defined by

St =

 1 if 0 ≤ t < 1
tξ if 1 ≤ t < T
0 if T ≤ t

It follows that
E[(St −K)+] = e−K/t

for t ≥ 1. We claim that for all M > 0
DV (k, t) → −4

uniformly for k ∈ [−M,M ] as t ↑ ∞.
In light of (22), it is sufficient to show that√

V (k, t)
E[St ; St < ek]

φ
(
k/

√
V (k, t)−

√
V (k, t)/2

) → 0

uniformly. However, from (23), we need only show that (with K = ek)

E[St ; St < K]
1− E[(St −K)+]

→ 0

uniformly. However, simple calculations give

E[St ; St < K]
1− E[(St −K)+]

=
1
t

and this is enough. Note that this example does not satisfy Assumption A1. �

Remark 5. It is interesting to compare Theorem 5.1 with the following result, which is a slightly stronger
formulation of Lemma 3.1 of Lee [8]. We include a proof for completeness.
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Theorem 5.3. For each τ > 0

(24) lim
k↑∞

√
2k −

√
V (k, τ) = ∞

and there exists a k∗ > 0 such that

(25) D+V (k, τ) < 2

for all k ≥ k∗.

Proof. As k ↑ ∞, we have f(k, v) ↓ 0. Also, the AM-GM inequality gives

(26) k/
√

v +
√

v/2 ≥
√

2k

for all k, v > 0 whence

ekΦ̄(k/
√

V (k, τ) +
√

V (k, τ)/2) ≤ ekΦ̄(
√

2k) <
1

2
√

πk
↓ 0.

Hence Φ̄(k/
√

V (k, τ)−
√

V (k, τ)/2) → 0 as k ↑ ∞, and the first statement follows quickly.
Using (21), the bound (26) and the bound (5) on the Mills’ ratio, it follows also that

D+V (k, τ) <

√
2V (k, τ)

k

for all τ ≥ 0 and k > 0. But by (24) there exists a k∗ > 0 such that V (k, τ) < 2k for all k ≥ k∗, proving the
result. �

The above inequalities are sharp. See Benaim and Friz [1] to find exact asymptotics of the implied
volatility surface for large absolute log-moneyness.
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