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Abstract. Some years ago now, a different characterisation of the value of a Bermudan
option was discovered, which can be thought of as the viewpoint of the seller of the option,
in contrast to the conventional characterisation which took the viewpoint of the buyer. Since
then, there has been a lot of interest in finding numerical methods which exploit this dual
characterisation. This paper presents a pure dual algorithm for pricing and hedging Bermudan
options.

1 Introduction.

This paper derives an algorithm for valuing and hedging an Bermudan1 option, from a ‘pure
dual’ standpoint. Apart from various changes of names, pricing a Bermudan option is the
same as solving an optimal stopping problem, arguably the simplest possible stochastic op-
timal control problem. For as long as derivatives have been priced within the Black-Scholes
paradigm, the traditional value-function approach, and the associated Bellman equations,
have been widely used in the attempt to price Bermudan options; the whole area has been a
mathematical playground, because of the scarcity of a closed-form solutions, and the conse-
quent need for approximations, estimates and asymptotics to come up with prices.

During the last century, the value-function approach was in effect the only method avail-
able, but in recent years another quite different ‘dual’ approach has been discovered: see
Rogers [3], Haugh & Kogan [2]. The main result is that if the reward process2 is denoted Z,

∗Wilberforce Road, Cambridge CB3 0WB, UK (phone = +44 1223 766806, email =
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1While we shall discuss only discrete-time problems in this paper, the methodology could be applied to
the pricing of American options after discretizing the time.

2Some minor regularity condition needs to be imposed on Z; it is sufficient that sup0≤t≤T |Zt| ∈ Lp for
some p > 1.
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then the value Y ∗0 of the optimal stopping problem can be alternatively expressed as

Y ∗0 = sup
τ∈T

E[Zτ ] = min
M∈M0

E
[

sup
0≤t≤T

(Zt −Mt)
]
, (1.1)

where T is the set of stopping times bounded by T , the time horizon for the problem, andM0

is the set of uniformly-integrable martingales vanishing at zero. The minimum is attained,
by the martingale M∗ of the Doob-Meyer decomposition of the Snell envelope process of Z,
and in that case

sup
0≤t≤T

(Zt −M∗
t ) = Y ∗0 almost surely. (1.2)

The traditional approach via the value function and the Bellman equations takes the
viewpoint of the buyer of the option, who seeks to choose the best stopping time at which to
exercise; the first expression for Y ∗0 in (1.1) embodies this. The dual approach is the solution
of the problem from the viewpoint of the seller of the option, who seeks a hedging martingale
Y ∗0 + Mt, whose value at all times will be at least the value of the reward process; and the
result (1.2) shows that for the perfect choice of M = M∗ this does indeed happen.

Since the dual approach was discovered, there have been various attempts to apply it in
practice, with mixed success; choosing a good martingale is at least as difficult as choosing a
good stopping time! The early paper of Andersen & Broadie [1] uses a numerical approxima-
tion to the value function to suggest a good martingale to use, and in this way obtains quite
tight bounds on both sides for a number of test examples. However, at a conceptual level,
it has been an outstanding issue to derive a ‘pure’ dual method, which solves the optimal
stopping problem without need to calculate a value function, using only the dual character-
ization of (1.1). Let us amplify the distinction: pure primal methods are well understood -
indeed, virtually all solutions of the optimal stopping problem (and all solutions prior to the
discovery of the dual characterization in the early 21st century) are of this type; there are
hybrid methods, such as that of Andersen & Broadie; but where is the pure dual method? It
is the purpose of this short note to demonstrate how the solution may be derived by purely
dual methods akin to the backward recursion of dynamic programming. The key observation,
obvious from (1.1), is that the value of the optimal stopping problem is left unaltered if Z is
replaced by Z −M , where M ∈M0.

2 The algorithm.

In this Section, we specify the algorithm by which the given Bermudan option is to be hedged.
We are given a reward process (Zt)t=0,...,T adapted to the filtration (Ft)t=0,...,T , and the aim
is to find some martingale M ∈ M0 such that (1.1) holds. If (1.1) holds, then by the earlier
result of [3], [2] we also have (1.2). The construction is based on two very simple observations:

1. The value of the stopping problem for Z is the same as the value of the stopping problem
for Z + N , where N is any martingale in M0;
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2. Adding a constant to Z adds a constant to the value.

The proof of the following result shows how to solve the problem recursively, by construct-
ing a sequence of martingales which do an ever better job of hedging. The idea is that the
pathwise maximum must become a constant random variable - see (1.2); while it not obvious
how we shall achieve this in one go, we can easily see how to ensure that the final value of
Z is a constant, by subtracting a martingale which is equal to ZT at time T . The inductive
proof constructs martingales which are constant on some interval [T − k, T ] for ever bigger k.

Proposition 1. There exists a sequence of constants aj and a sequence of martingales N (j) ∈
M0, j = 1, . . . , T + 1 such that

max
T−j<i≤T

Z
(j)
i = aj, (2.1)

where
Z

(j)
t ≡ Zt −N

(j)
t (2.2)

Proof. The proof proceeds by induction on j. To start the induction off, we consider the
martingale

M
(1)
t = Et[ZT ]

and set
N

(1)
t = M

(1)
t − E[M

(1)
T ],

which is clearly in M0, and equally clearly achieves (2.1) for j = 1, with a1 = E[M
(1)
T ] =

E[ZT ].
Now suppose that (2.1) is true for j ≤ k, and consider the non-negative martingale

M
(k+1)
t = Et[ {Z(k)

T−k − ak}+ ]. (2.3)

This martingale is constant in [T − k, T ]; we shall subtract it from Z(k), to form the process

Z̃
(k)
t ≡ Z

(k)
t −M

(k+1)
t . Two cases then need to be considered:

1. if Z
(k)
T−k > ak, then we have Z̃

(k)
T−k = ak, and Z̃

(k)
t ≤ Z

(k)
t for all t > T − k, since M (k+1)

is non-negative. Thus
max

T−k≤t≤T
Z̃

(k)
t = ak;

2. if Z
(k)
T−k ≤ ak, then M (k+1) is zero in [T − k, T ], and by the inductive hypothesis

max
T−k≤t≤T

Z̃
(k)
t = max

T−k<t≤T
Z

(k)
t = ak;
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either way, the conclusion is the same, namely that

max
T−k≤t≤T

Z̃
(k)
t = ak. (2.4)

We now define

N (k+1) = N (k) + M (k+1) − E[M
(k+1)
T ], (2.5)

ak+1 = ak + E[M
(k+1)
T ], (2.6)

so that

Z
(k+1)
t ≡ Zt −N

(k+1)
t

= Z̃
(k)
t + E[M

(k+1)
T ]

satisfies (2.1) taking j = k + 1.
�

Remarks. (i) Applying the Proposition in the case j = T + 1, we learn that

max
0≤i≤T

Z
(T+1)
i ≡ max

0≤i≤T

{
Zi −N

(T+1)
i

}
= aT+1. (2.7)

Hence the value of the optimal stopping problem with reward process Z(T+1) is equal to aT+1,
and by the first observation, this is actually the value of the optimal stopping problem for
the original reward process Z.
(ii) The recursive construction generates an increasing sequence a1 ≤ a2 ≤ . . . ≤ aT+1 in-
creasing to the value of the problem, as well as the hedging martingale.
(iii) Observe that by adding equations (2.5) and (2.6) we learn that

N (k) + ak =
k∑
i=1

M (i). (2.8)

From (2.3) and (2.2) we deduce that

M
(k+1)
t = Et[ {Z(k)

T−k − ak}+ ]

= Et[ {ZT−k −N
(k)
T−k − ak}+ ]

= Et[ {ZT−k −
k∑
i=1

M
(i)
T−k}

+ ],

and taking t = T − k leads to the conclusion

M
(k+1)
T−k = {ZT−k −

k∑
i=1

M
(i)
T−k}

+. (2.9)
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The statement and proof of Proposition 1 is ‘pure dual’; there is no mention of the value
of the stopping problem, we only talked about the hedging martingales M (k). To tie things
together, we shall now show how the constructs from the proof of Proposition 1 relate to the
more familiar value process of the optimal stopping problem,

Y ∗t ≡ sup
τ∈T ,τ≥t

Et[ Zτ ]. (2.10)

As is well known, Y ∗ is the Snell envelope process of the reward process Z, and Y ∗t is inter-
preted as the best that can be done if by time t the process has not been stopped.

Proposition 2. For all k = 0, 1, . . . , T we have

k+1∑
i=1

M
(i)
T−k = Y ∗T−k (2.11)

Proof. The proof is by induction on k. Clearly the statement is true if k = 0, for both sides
of (2.11) are equal to ZT . Suppose now that the statement is true for all k < n, and consider

n+1∑
i=1

M
(i)
T−n = M

(n+1)
T−n +

n∑
i=1

M
(i)
T−n

= M
(n+1)
T−n + ET−n[Y ∗T−n+1] by inductive hypothesis

= {ZT−n −
n∑
i=1

M
(i)
T−n}

+ + ET−n[Y ∗T−n+1] using (2.9)

= {ZT−n − ET−n[Y ∗T−n+1]}+ + ET−n[Y ∗T−n+1] by inductive hypothesis

= max
{

ZT−n, ET−n[Y ∗T−n+1]
}

= Y ∗T−n,

as required. �

Remarks. (i) From (2.6) and Proposition (2) we see that ak = E[Y ∗T−k+1], which explains
why the sequence ak is increasing, and why aT+1 is the value of the problem.
(ii) If we restrict attention to problems where there is some underlying Markovian struc-
ture, it is not hard to see that the martingales M (k) constructed are characterized3 as
M

(k+1)
T−k = ϕk(XT−k) for all k = 0, 1, . . . , T . In trying to use (2.9) to determine the func-

tions ϕk recursively, we are faced with the two steps, conditional expectation and pointwise
maximization, which are central to the standard dynamic programming approach. Thus it
seems unlikely that this pure dual approach will lead to any numerical methodology based on
Markovian structure which would differ significantly from existing approaches.

3We know that M (1) has this form, and from (2.9) and the Markovian structure it is obvious by induction
that this form persists.
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