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Abstract

We introduce a simple model for the pricing of European style options
when the underlying dividend process is given by a geometric Brownian
motion with Markov-modulated coefficients. It turns out that the corre-
sponding stock process is characterized by both stochastic coefficients and
jumps. Transform methods are used to recover option prices. The model
is calibrated to market data and the results compared to some well known
stochastic volatility models.

1 Introduction

The Black-Scholes model for a stock is so commonly used as a starting point for
analyses of derivative pricing, or optimal investment, that it is easy to miss the
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point that the price of an equity is a derived object, not a fundamental. Indeed,
arbitrage-pricing theory tells us that the price of a stock is the net present value
(NPV) of all future dividends, so once the dividend process has been specified (in
the appropriate pricing measure) the price of the stock then follows. Though the
Black-Scholes model is not normally presented in terms of a dividend process, it
certainly can be (as we shall explain later), and this way of looking at the model
can be extremely effective. As an example, we would cite the recent work of
Korn & Rogers [KR] on options on stocks paying discrete dividends. By directly
modelling the (discrete) dividend process of the stock, this paper is able to come
up with a simple way of treating discrete dividends, free from inconsistencies,
where various ‘industry’ modifications of the basic Black-Scholes equation have
failed.

As we shall see, the Black-Scholes model with a constant dividend rate arises if
we model the dividend process as a geometric Brownian motion in the pricing
measure; so if we take this model for the dividend process, we will come up with
nothing new. What we shall do instead is to take for the dividend process a
Markov-modulated geometric Brownian motion, and derive the resulting dynam-
ics of the stock price from an equilibrium analysis for a CRRA representative
agent. Of course, the Black-Scholes model is a special case.

Markov-modulated dynamics have become increasingly popular in financial mod-
elling over the past few years. Driffill, Kenc and Sola [DKS] take a similar
approach to ours by modeling the the dividend process as a regime switching
geometric Brownian motion. They then evaluate the stock as the net present
value of future dividends, but in contrast to what we do here, they compute the
expectation in the original measure, and not in the risk-neutral measure aris-
ing from equilibrium. They use PDE techniques to derive the price of shares
and perpetual American calls. The present work generalizes the contribution of
[DKS] by allowing the Markov chain driving the dividend dynamics to take N
possible states, and by performing an equilibrium pricing. We also show how to
price standard calls and puts (non-perpetual) by integral transform techniques.
A similar model is studied by Veronesi [Ver], who again takes a two-state chain,
but supposes that the state of the chain is not observable and has to be filtered
from the observations. For this to make sense, Veronesi assumes that only the
drift of the dividend process changes when the Markov state changes; our analysis
assumes that the volatility as well as the drift will change when the Markov state
changes, and this allows us to determine from the price exactly which state the
chain is in at any time.

Jobert-Rogers [JR]) derive the price of American options when stock prices (not
dividends) follow a N -state Markov modulated diffusion. Konikov and Madan
[KM] model the stock as a two state regime switching VG process. The char-
acteristic function of the stock price is derived explicitly. Call and Put prices
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are derived using Fourier transforms. Elliot and Osakwe [EO] extend the work
of [KM] to a N-state Markov switching model where the underlying stock is a
pure jump Levy process. Chourdakis [C2] assumes stock prices follow a Markov
modulated Levy process (with continuous component) and explicitly derives the
characteristic function of the share price. Vanilla option prices are also derived
using FFT techniques. Our approach is different from the one taken in the above
papers in that it considers the stock price as a derived quantity (via an equi-
librium approach). In principle, one could assume some Levy dynamics for the
underlying dividend and obtain a stock price processes similar to the one derived
by [EO] and [C2]. However, our calibration shows that a simple Markov mod-
ulated GBM is already sufficient to explain the shape of the volatility surface.
Finally Di Graziano and Rogers [DGR] extend the work presented in this paper
to the pricing of various barrier style options.

In Section 2 we present the basic equilibrium model, and use it to derive the state-
price density process, and hence the price of the stock. We shall suppose that
the dividend process is modulated by a finite-state irreducible Markov chain; an
interesting feature is that the price of the share jumps every time the underlying
Markov chain jumps, in a way that is endogenously determined, rather than
exogenously imposed. We also show how the Black-Scholes model results in the
special case where the Markov chain takes only one value. It is worth commenting
that even though the dividend process is continuous, the change of underlying
Markov state results in jumps in the asset price, in contrast to models such as
those of [JR] where it is the asset price itself that is modelled as a Markov-
modulated process.

Next we go on in Section 3 to compute the prices of European put options; in con-
trast to the benchmark Black-Scholes model, there is no closed-form expression,
and we have to resort to numerical methods (transform inversion) to evaluate
option prices. This uses the method of Hosono [Ho], and Abate & Whitt [AW]
to invert Laplace transforms.

The next stage is to calibrate the model (assuming a 2-state chain) to put option
prices on the S&P 500 index. Fitting to three expiries and a range of moneyness,
we find a calibrated model that fits data substantially better than various other
non-Black-Scholes models in the literature1, and shows remarkable intertemporal
stability.

1There is no standard calibration dataset available, so the other models have been calibrated
to different datasets from ours.
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2 The equilibrium model

We consider a very simple economy with a single productive asset, a stock, whose
output (dividend) process δ obeys

dδt
δt

= µ(ξt)dt+ σ(ξt)dWt. (1)

Here, µ and σ are deterministic functions of the irreducible finite-state Markov
chain ξ, with Q-matrix Q, and W is a one dimensional standard Brownian motion
independent of the Markov chain ξ.

In this economy, there is a single (representative) agent, who derives utility from
consumption, and who owns the stock at time 0. This agent wishes to maximise
his objective

E

[∫ ∞

0

e−ρtU(ct)dt

]
,

where the consumption process c must be chosen to satisfy the budget constraint

ζ−1
0 E

[∫ ∞

0

ζtctdt

]
= ζ−1

0 E

[∫ ∞

0

ζtδtdt

]
, (2)

where ζ is the state-price density process. The left-hand side of (2) is the time-
0 value of the agent’s consumption process, whereas the right-hand side is the
time-0 value of all the future dividends of the stock, that is to say, the price S0

at time 0 of the stock. More generally, we have the price at time t of the stock is
expressed as

St = ζ−1
t Et

[∫ ∞

t

ζuδudu

]
. (3)

It is well known (see, for example, Breeden [B], or Karatzas & Shreve [KS]) that
the optimal consumption c∗ is related to the state-price density process by

e−ρtU ′(c∗t ) = λζt (4)

for some positive constant λ. Thus if markets are to clear, that is, c∗ = δ, we
may use (4) to deduce what the state-price density process must be, up to an
irrelevant positive constant.

For simplicity and tractability, we shall suppose that the agent has a CRRA
utility

U(x) =
x1−R

1 − R
,

for some positive R different from 1. In this case, we can express ζ explicitly in
terms of δ, using (4) and the market-clearing condition:

ζt = λ−1e−ρtδ−R
t . (5)
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We may (and shall) without loss of generality suppose that λ = 1 in all that
follows.

Within this very concrete model, it is possible to make the expression (3) for
the stock price much more explicit. Indeed, taking t = 0 (with no real loss of
generality) and using the notation µ̃(x) ≡ µ(x) − 1

2
σ(x)2, we have

S0 = ζ−1
0 E0

[∫ ∞

0

ζtδtdt

]

= δR
0 E0

[∫ ∞

0

e−ρtδ1−R
t dt

]

= δ0E0

[∫ ∞

0

exp
{
−ρt+ (1 − R)

∫ t

0

σ(ξs)dWs + (1 − R)

∫ t

0

µ̃(ξs)ds
}
dt

]

= δ0E0

[∫ ∞

0

exp
{
−ρt+

∫ t

0

f(ξs)ds
}
dt

]

≡ δ0v(ξ0),

say, where

f(x) ≡ (1 − R)µ̃(x) +
1

2
(1 −R)2σ2(x). (6)

Thus we shall have in general that

St = δtv(ξt), (7)

where

v(x) = E

[∫ ∞

0

exp
{
−ρt+

∫ t

0

f(ξs)ds
}
dt

∣∣∣∣ ξ0 = x

]
.

Routine methods allow us to express v in terms of the generator Q of the Markov
chain:

v = (ρ−Q− F )−11, (8)

where 1 is the constant vector all of whose entries are 1, and F is the diagonal
matrix of f . We assume that ρ is large enough that all eigenvalues of ρ−Q− F
are in the open right half plane.

The explicit form (7) for the stock price shows how jumps of S arise at jump
times of the chain ξ. The equilibrium analysis that has led to the equilibrium
price (7) for S also allows us to compute the equilibrium riskless rate, and the
martingale measure. Indeed, we have

ζt = e−ρtδ−R
t

= exp
{
−ρt−R

∫ t

0

σ(ξs)dWs − R

∫ t

0

µ̃(ξs)ds
}

= exp
{
−R

∫ t

0

σ(ξs)dWs −
1

2

∫ t

0

R2σ(ξs)
2ds−

∫ t

0

r(ξs)ds
}
,
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where

r(x) = ρ+Rµ̃(x) −
1

2
R2σ2(x). (9)

Under the pricing measure we therefore have

dδt
δt

= σ(ξt)dW
∗
t + (µ(ξt) − Rσ(ξt)

2)dt, (10)

where W ∗ is a Brownian motion in the pricing measure.

It is also clear from (7) that if |I| = 1 then the stock price process will be a geo-
metric Brownian motion with no jumps, and with a dividend process proportional
to S:

dS = S(σ̄dW ∗ + (r − b)dt) (11)

- that is, the Black-Scholes model. To match up the parameters in this familiar
specification with those of the equilibrium model, we see from (7) and(10) that

σ̄ = σ,

b = ρ− f from (8), (7);

≡ ρ− (1 − R)(µ−Rσ2/2),

r = ρ+ µR−R(1 +R)σ2/2 from (9),

and the consistency condition r− b = µ−Rσ2 from comparing drifts in (10) and
(11) is easily checked. There are three parameters in the equilibrium model, ρ, R
and µ to fit the two parameters r, b of the Black-Scholes model, so there is one
degree of indeterminacy; however, if we also require to match µ, then there is a
unique choice of R and ρ that will work:

R = −
r − b− µ

σ2
, (12)

ρ = b+ (1 − R)(µ−Rσ2/2). (13)

There is no guarantee that these values of ρ and R will satisfy the required bounds
ρ > 0 and R > 0, however. There is no contradiction here; an equilibrium model
is arbitrage-free, but not every arbitrage-free pricing system need arise from an
equilibrium, as this example shows.

3 Option pricing by integral transforms

In this section we show how to use integral transforms to price put options under
the model described in the previous sections. It is well known (see, for example,
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[CM], or [RZ]) that pricing a put option when we only know the cumulant-
generating function of the log-stock price2 is best done by transforming the put
price in the log strike, and then numerically inverting the transform.

In more detail, the price of a put option with maturity T is given by

PT (k) :=
1

ζ0
E

[
ζT

(
ek − es

)+
]
, (14)

where ζt is given by (5), and s and k are the log stock and the log strike respec-
tively. For Re(α) > 1 we define

P̂T (α) ≡

∫ ∞

−∞

e−αkPT (k)dk, (15)

and now change the order of integration, taking ζ0 = 1 with no loss of generality:

P̂T (α) =

∫ ∞

−∞

e−αkE
[
ζT

(
ek − es

)+
]
dk

= E ζT

∫ ∞

−∞

e−αk

∫ ∞

s

I{y≤k}e
ydydk

= E ζT

∫ ∞

s

e−(α−1)y dy/α

= E ζT exp(−(α− 1)s)/α(α− 1)

= E[ζTS
1−α
T ]/α(α− 1)

= δ1−α
0 e−ρTE

[
δ1−α−R
T v(ξT )1−α

∣∣δ0 = 1
]
/α(α− 1)

= δ1−α
0 e−ρTE

[
e(1−α−R)(

R

T

0
σ(ξs)dWs+

R

T

0
µ̃(ξs)ds)v(ξT )1−α

∣∣δ0 = 1
]
/α(α− 1)

= δ1−α
0 e−ρTE

[
e

R

T

0
zα(ξs)dsv(ξT )1−α

∣∣δ0 = 1
]
/α(α− 1)

= δ1−α
0 e−ρT exp(T (Q+ Zα))v1−α/α(α− 1),

where

zα(x) ≡ (1 − α− R)µ̃(x) +
1

2
(1 − α− R)2σ2(x),

and Zα is the diagonal matrix of zα.

We used the method of Hosono [Ho] (see also Abate-Whitt [AW]) to numerically
invert the Laplace transform of the put price (15). We then compared the results
obtain with the B&S formula in case of constant dividend yield. Results are quite
encouraging. The speed of computation using the Laplace transform method is
broadly comparable with that of the analytic B&S formula.

2As in this example, or more commonly for log-Lévy price processes.
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4 Hedging

The market we have so far analyzed is intrinsically incomplete, that is, apart from
the trivial case of a single state chain, it is not possible to replicate all contingent
claims in the economy (not even the simple put option considered in the previous
paragraphs) by simply forming a self financing portfolio of stocks and bonds. In
such a market in fact, we have no way to hedge the jump risk associated with a
change in the state of the chain. However, we can complete the market by adding
a number of traded options.

Assume that the stock price process is given by equation (3), where ξt is an N -
state Markov chain. Suppose we want to hedge claim C(t, δt, ξt) and we have at
our disposal instruments H(1)(t, δt, ξt), . . . , H

(N)(t, δt, ξt). In order to hedge the
claim C, we form a self-financing portfolio Vt

Vt = ψ(t)Bt + ϕ(0)(t)S(t) +

N∑

k=1

ϕ(k)(t)H(k)(t), (16)

where ϕ(k)(t) is the quantity of asset k, with k = 0, . . . , N held in the portfolio
at time t, and ψ(t) is the number of units of the money-market account B held
at time t. We choose the portfolio weights ϕ(i) so that

C(t, δt, ξt) = Vt ;

by Itô’s formula, this amounts to the conditions

∂C

∂δ
= ϕ(0)(t)v(ξt) +

N∑

k=1

ϕ(k)(t)
∂H(k)

∂δ
(17)

∆Cij(t) = ϕ(0)(t)∆Sij(t) +
N∑

k=1

ϕ(k)(t)∆Hij(t) (18)

for j = 1, . . . , N . Here, we have written ∆Cij(t) ≡ C(t, δt, j) − C(t, δt, i), with
analogously ∆Sij(t) = (vj − vi)δt. Equations (17) and (18) represent a system of
N + 1 linear equations in the N + 1 unknowns ϕ(i)(t), i = 1, . . . , N , which can in
general be solved to find the hedge ratios.

We still need to calculate the derivatives of the hedging instruments and claim C
with respect to δ, and this is requires knowledge of the structure of the claims in
question. For example, in the case of a put, the analysis of the previous Section
shows easily that

P T (α) ≡

∫ ∞

−∞

e−αk ∂PT (δ, k)

∂δ
dk

= −
δ−α
0

α
e−ρT exp(T (Q+ Zα))v1−α,
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which is then inverted the usual way.

5 Calibration methodology

In order to understand how well the model we are working with might fit data,
we took some put option prices on the S&P500, and tried a number of different
fitting procedures. This section presents the calibration methods used, and the
next presents and discusses the numerical results obtained.

The data set consisted of put option prices written on the S&P500 referring to five
consecutive trading days from February 23th, 2004 to February 27th, 2004. The
choice of this particular index was motivated by its liquidity and the availability
of option data for a reasonable set of expiries and strikes.

For each day under consideration, the set of data consisted of 12 strikes ranging
from 950 to 1200 (on average approximately -17% to +6% of the at the money
strike), and 3 expiries: 18 September 04, 18 December 04 and 18 June 05. We

shall indicate by P̂ n the set of data observed on day n. For each n thus, P̂ n is a

12×3 matrix whose ijth entry is the price of put option with strike Ki and expiry
Mj . We will denote by P (θ, x), the 12 × 3 matrix of model prices for parameter
vector θ, given that the Markov chain is in state x. Explicitly, θ contains the
coefficient of relative risk aversion R, the agent’s discount factor ρ, the elements
of the Q-matrix Q, and the vectors µ and σ from the model specification (1).

As a first attempt, we tried a day by day calibration using a two state Markov
chain. In order to find the set of parameters θn which best fitted market data on
day n, we minimized the Average Relative Percentage Error (ARPE)3

L(θn) =
1

N

∑

ij

∣∣∣∣P̂ n
ij −

(∑S

x=1 π
n
xP (θn, x)

)

ij

∣∣∣∣

P̂ n
ij

, (19)

where N is the total number of market prices considered in each day of the
calibration, S the number of possible states of the Markov chain and πn

x denotes
the weight assigned to state x of the chain on day n. The ARPE criterion gives
the average loss per dollar invested if we used the model prices instead of the
market prices.

3The calibration was performed using also other quality of fit measures such as the Average
Absolute Error as a percentage of the mean price (APE), the Average Absolute Error (AAE)
and the Root Mean Square Error (RMSE). A mathematical definition of these measure is
given in [SST] . The results obtained minimizing these loss functions are comparable to those
obtained using ARPE, so we do not report them.
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As it is apparent from (19), we are comparing observed prices with a weighted
average of the prices stemming from our model. The rationale behind this is
the following: the model requires knowledge of the current state of the Markov
chain in order to produce a unique price for the option, and this state will in
general not be observable. We propose therefore that the market price should
be some average over the ‘pure’ prices obtained if the state of the Markov chain
were known with certainty. Indeed, Arbitrage Pricing Theory tells us that market
prices should be expectations (under the pricing measure) of discounted payoffs,
and these expectations may be computed by firstly conditioning on the current
state of the Markov chain, then averaging over the possible states of the chain;
this explains the assumed form.

In calibrating the model thus, we have to mix over all possible states of the
chain on each given day. To select the weights used, we should ideally use the
conditional distribution (under the pricing measure) of the current state of the
chain given all observations to date. In the absence of a long run of data to
give a meaningful estimate of this distribution, we simply treat the weights as
unknowns to be optimised over. This approach turned out to be the most effective
and produced quite satisfactory results.

One of the main objections to the day-by-day calibration method is that the
estimated parameters θn depend on n, so are not constant over the calibration
period. However, as Table 1 shows, parameters estimated using this method were
fairly stable over the (short) time interval. To increase parameter stability, we
modified (19) by including a penalty for inter-day changes in the parameters.
More precisely, we set

LS(θn) = Ln(θn) + β ‖ (θn − θn−1)
2 ‖ . (20)

where β is an arbitrary positive constant. A high β, will increase the stability
of the parameter set but will worsen the fit to market data. In general we found
that the stability of θn did not significantly improve by using (20) instead of (19),
and the related results will be omitted.

So far we have only included option prices in the calibration, ignoring interest
rates or equivalently bond prices. However, once we specify the parameter vector
θ, we have uniquely determined the vector of interest rates consistent with the
model. In other words, there exists only one piecewise constant, right-continuous,
short-rate process r(ξ) consistent with the model assumptions and it is given by

r(ξ) = ρ+ µ(ξ)R−
1

2
σ(ξ)2R(R + 1); (21)
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see (9). Once the value of θ is chosen, the bond prices are given by

Bt,T (θ, x) = Et

[
exp

(∫ T

t

r(ξu)du

)]

= (exp [(T − t) (Q− R)]1) (x),

where R is obtained by diagonalizing the vector r. Function (19) can be easily
modified to include bond prices. The new quality of fit measure will be given by

LB(θn) =
L(θn)

2
+

γ

2NB

∑

T

∣∣∣B̂n,T −
∑N

x=1 π
n
xB

n,T (θn, x)
∣∣∣

B̂n,T
, (22)

where γ is an arbitrary constant measuring the relative weight of bond prices in
the calibration, B̂n,T is the market price of a US T-bill or T-bond on day n with
maturity T , and NB is the number of bond prices used in the calibration. In
particular we tried to fit the short-term end of the US treasury curve by using
the 3, 6, 12 month T-bill and the 2 year T-bond.

We also calibrated the model using a 3 state Markov-chain. However, the qual-
ity of fit was not better than the one obtained using a 2 state chain, and the
estimation procedure was significantly slower. We thus omit these results.

6 Numerical Results

We shall now present some of the numerical results obtained using the calibration
methodologies discusses in the previous section. Table 1 shows the value of the
calibrated parameter set θ when π is chosen “optimally”, that is, it is included
in the parameter set and no bond is included in the calibration.

Note that the average relative percentage price error is roughly of the order of
0.53%. In words, the model is able to fit the volatility surface skew quite closely.
As a check we compared the implied volatility surface obtained from market
prices with the one obtained using our model prices. To measure the goodness of
fit of the surface, we used the following function

Lσ =
1

N

∑

ij

∣∣σ̂n
ij − σn

ij

∣∣ .

The error so calculated was in the order of 6 bps, which is well inside the bid-ask
spread for vanilla options on the S&P500. Also, estimated parameters appear to
be fairly stable over time, even when we do not include any penalty for deviating
from the previous day estimate. The numerical values obtained are broadly where
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Table 1: Parameter estimates
Day 1 Day 2 Day 3 Day 4 Day 5

µ1 0.0460 0.0586 0.0585 0.0590 0.0562
µ2 0.3397 0.3281 0.3278 0.3343 0.4056
σ1 0.0859 0.1008 0.1019 0.1045 0.1075
σ2 0.4423 0.4570 0.4557 0.4608 0.4867
Q12 1.3702 1.0471 1.0291 1.0218 0.9425
Q21 3.5778 3.5590 3.5608 3.5589 3.5638
ρ 0.1021 0.0900 0.0918 0.0911 0.0900
R 2.0072 2.1156 2.1067 2.1017 2.0648
π1 0.0839 0.0849 0.0718 0.0619 0.0184
v1 3.7133 4.0523 4.0024 4.0247 4.0036
v2 3.6363 3.9955 3.9446 3.9647 3.8971

ARPE 0.626% 0.482% 0.556% 0.499% 0.466%

one would expect them to be, so the fit does not stretch belief. In particular,
the estimates of v1 and v2 imply jumps in price of the order of 2% when the
underlying state changes, and this is big enough to be noteworthy, but not so big
as to be extremely rare.

Table 2 shows the parameter estimates when bonds are included in the calibration
for both the approaches highlighted in the previous paragraph. As one would ex-
pect, trying to fit the interest rate curve and the volatility surface simultaneously
leads to larger errors than in the ‘vanilla’ cases. However, the quality of fit is still
acceptable.

Table 2: Parameter estimates including bonds
Day 1 Day 2 Day 3 Day 4 Day 5

µ1 0.0100 0.0100 0.0101 0.0100 0.0100
µ2 0.0100 0.0106 0.0100 0.0143 0.0100
σ1 0.0274 0.0299 0.0340 0.0345 0.0337
σ2 0.2655 0.2572 0.2470 0.2482 0.2408
Q12 0.3916 0.3603 0.3469 0.3466 0.3712
Q21 3.4136 2.8707 2.6272 2.5873 2.5920
ρ 0.0900 0.0900 0.0900 0.0900 0.0900
R 4.3911 4.3038 4.3539 4.3397 4.3504
π1 0.8382 0.8323 0.8325 0.8271 0.8274

ARPE 1.45% 1.37% 1.38% 1.34% 1.46%

The quality of fit is summarised in Figure 1, expressed in terms of the implied
volatilities. Notice that this was not the criterion used to achieve the fit; never-
theless, the quality of fit is quite satisfying.

12



950 1000 1050 1100 1150
0.16

0.18

0.2

0.22

0.24
Sept−04 Maturity

Market Imp Vol
DG Imp Vol    

950 1000 1050 1100 1150
−15

−10

−5

0

5
x 10

−4 Sept−04 Maturity

Market−Model Vol

950 1000 1050 1100 1150 1200
0.16

0.18

0.2

0.22
Dec−04 Maturity

Im
p

lie
d

 V
o

l

950 1000 1050 1100 1150 1200
0.16

0.18

0.2

0.22

0.24
Jun−05 Maturity

   K

950 1000 1050 1100 1150 1200
−1

0

1

2
x 10

−3 Dec−04 Maturity

Im
p

lie
d

 V
o

l

950 1000 1050 1100 1150 1200
−5

0

5

10
x 10

−3 Jun−05 Maturity

   K

Figure 1: Summary of the quality of fit for each of the three expiries.

7 Comparison with other Models

In order to get a better grasp of how well our equilibrium model (for short, DR
model), is able to fit market data and generate realistic dynamics for the volatility
surface, we compared it to some well established equity models in the literature.
In particular the benchmarks we chose were the Variance-Gamma and the Nor-
mal Inverse Gaussian model both under CIR and gamma-OU stochastic clock,
which we shall refer to as VGCIR, VGOU, NIGCIR and NIGOU respectively
(see Schoutens et al [SST]). Those models were calibrated on the same set of
data described in section 5. For the purpose of this exercise, bond prices were
not included in the data set.

As a first test, we performed a single-day calibration for all the models and
compared the corresponding ARPE over the five day reference period. Table
3 shows that our DR model performs well, being the one associated with the
lowest ARPE. It is conceivable that the better performance of the DR model can
be partially attributed to its larger number of parameters compared to the other
models (9 instead of 6).
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Table 3: ARPE across models, single day calibration
Model Day 1 Day 2 Day 3 Day 4 Day 5

VGOU 1.240% 0.979% 1.051% 1.026% 1.126%
VGCIR 0.922% 1.111% 1.049% 1.013% 1.095%
NIGOU 1.009% 0.954% 1.092% 1.004% 1.018%
NIGCIR 1.221% 0.919% 1.040% 0.977% 1.049%
DR 0.545% 0.462% 0.551% 0.501% 0.475%

While a higher number of parameters could be seen as a disadvantage when
calibrating to a single volatility surface, the higher flexibility of the DR model
(the number of parameters is a function of our choice of number of states in the
Markov-chain) can prove extremely useful when calibrating to a larger data set,
e.g. prices on i successive days. As a first step towards this direction, we fitted a
single set of parameters to option price data relative to two consecutive trading
days. More precisely, in the DR model with two states, we forced θn and θn+1

to be the same while allowing πn and πn+1 to be chosen optimally on each day.
Similarly for the VGCIR, VGOU, NIGCIR and NIGOU we fixed the parameter
set on any two consecutive days and allowed only the initial volatility v to vary.
Results are reported in Table 4. Again, the DR model outperformed the others
in terms of volatility surface fitting. In principle, the DR model allows you to
calibrate to j days (say a week) simultaneously while keeping an acceptable fit
by increasing the number of chain states, an option not present in the other
models here examined. However, by increasing the number of chain states, the
calibration effort becomes more involved and requires some extra care.

Table 4: ARPE across models, two days calibration
Model Day 1 Day 2 Day 3 Day 4 Day 5

VGOU 1.217% 1.230% 1.789% 1.188% 2.112%
VGCIR 1.060% 0.989% 1.078% 1.139% 1.149%
NIGOU 1.078% 1.061% 1.122% 1.228% 1.177%
NIGCIR 1.134% 1.048% 2.427% 1.202% 1.183%
DR 0.690% 0.590% 0.593% 0.664% 0.582%

As a further check, we performed an out of sample test. More precisely, we used
the set of parameters obtained from the day-to-day calibration on the nth day
to generate model prices for day n + i, where i = 1 . . . 5, and compared them to
the corresponding market prices P̂ n+i using (19). We repeated the same exercise
in the case of the two-day fitting. Table 5 and Table 6 report the mean out of
sample ARPE for each model. For example the 1-day frwd column represent the
average error over the five day calibration period when we use today’s parameters
to compute tomorrow’s prices.
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One problem which arises when performing such an out of sample test, is how to
choose the forward weights πn+i and the forward initial volatility vn+i relative to
day n + i. For the sake of simplicity, in the case of the single day calibration we
used πn and vn obtained from the nth day calibration to generate the volatility
surface for day n + i. In the case of the two days calibration, assuming that the
calibration was performed on day n − 1 and n, πn+1 and vn+i were set equal to
πn and vn respectively. As shown in Table 5 and Table 6 the out of sample error
was comparable across models.

Table 5: Out of sample average ARPE, single day calibration
Model 1 day frwd 2 day frwd 3 day frwd 4 day frwd 5 day frwd

VGOU 2.440% 2.880% 3.770% 4.720% 5.090%
VGCIR 2.450% 2.730% 3.640% 4.560% 4.990%
NIGOU 2.520% 2.650% 3.690% 4.490% 4.860%
NIGCIR 2.490% 2.920% 3.800% 4.830% 5.170%
DR 2.310% 2.590% 3.530% 4.400% 4.770%

Table 6: Out of sample average ARPE, 2 day calibration
Model 1 day frwd 2 day frwd 3 day frwd 4 day frwd 5 day frwd

VGOU 2.540% 2.660% 3.840% 3.910% 4.840%
VGCIR 2.310% 2.240% 3.510% 3.410% 4.580%
NIGOU 2.360% 2.210% 3.460% 3.410% 4.650%
NIGCIR 2.350% 2.290% 3.670% 3.510% 4.640%
DR 2.130% 2.330% 3.610% 3.620% 4.580%

8 Conclusions

We have presented a simple equilibrium model where the single production activ-
ity in the economy pays a continuous stochastic dividend whose dynamics follows
a Markov-modulated geometric Brownian motion. Such a model may offer one
explanation for the observed phenomenon of jumps in stock prices. The model
also allows for stochastic drift and volatility in the dynamics of the stock. We
showed how to price European-style vanilla options by Laplace transform meth-
ods. In terms of computational speed, this method turned out to be very fast.
Calibration to market data required some care, but even using a two state Markov
chain, the model is able to fit the volatility surface quite closely.
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