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Abstract. This paper develops the study of two-sector growth models of the form
introduced by Arrow and Kurz (1970).

Being purely deterministic, the original model of Arrow & Kurz was unable to dis-
tinguish between open-loop and closed-loop control of the economy; by allowing
stochastic terms into the model, we are able to resolve this difficulty of interpreta-
tion. Moreover, we also find that in some important cases the model can be solved
explicitly in closed form, to the extent that we can write down expressions for tax
rates and interest rates. This leads to new one-factor interest rate models, with
related taxation policies; numerical examples show very reasonable behaviour.
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1 Introduction

The history of growth models is long and illustrious, stretching back at least to
Ramsey (1928). Throughout this development, much attention has been devoted
to single-sector models, where there is just one type of capital or good, which is
produced at a rate depending on current capital levels, labour force and technology
levels, and is then either consumed or reinvested into capital. One analogy is a farm
producing corn which can either be eaten or used to produce more corn. There
are two basic types of continuous time single-sector growth model appearing in
the economic literature. Firstly the Solow model as developed by Solow (1956)
and Swan (1956). This is a growth model with an exogenously given savings rate
which determines the proportion of capital reinvested (and hence also the proportion
consumed). Denison (1961) showed that this model was able to explain trends in
empirical growth data for the United States. Secondly there is the Ramsey model.
This was originally conceived by Ramsey (1928) but the term is now used to refer
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to the version as refined® by Cass (1965) and Koopmans (1965). This is a growth
model with consumer optimization - households choose their rates of consumption
over time to maximise a utility functional. See, for example, the books of Romer
(2001) and Barro and Sala-I-Martin (1995) for a more complete description of these
models and their variants.

The first two-sector model was developed by Uzawa (1961), (1963) who considered
an economy with two produced goods, a consumer good and an investment good,
produced by investment capital and labour. Again using the farm analogy, this is
using labour and tractors to make corn and tractors. Uzawa (1965) then refined this
model to one where the two goods are physical capital and human capital, both of
which are required for production of further physical capital (by manufacturing) and
human capital (by education). Arrow and Kurz (1970) chose public capital rather
than human capital and our work in this paper develops this model.

Arrow & Kurz proposed a deterministic model where there were two types of capital,
government capital and private capital, which were both needed in the production
of the single consumption good. They first set about solving the government’s opti-
mization problem, where the government’s objective was to maximise the integrated
discounted felicity from per capita consumption, where the felicity also depends on
the per capita level of government capital. This feature of the model recognises that
the felicity of the population is improved if the provision of education, healthcare,
transportation, etc. is improved, and that such infrastructure is provided largely (if
not exclusively) by government capital. Since Arrow & Kurz assume that private
and government capital can be freely switched at any time, it is clear that the state
of the optimally-controlled system at any time is completely described by the total
amount of capital, the split between government and private sectors being dictated
by optimality.

The problem gets more interesting when it comes to the behaviour of the private
sector, which is viewed as very large collection of identical non-collaborating small
households, each individually optimising its common objective, which is again an
integrated discounted felicity of per capita consumption and government capital,
but not of course the same as the government’s objective. History and fashion have
overwhelmed the centrally-planned economy, so we suppose that the government’s
control of the economy is exercised only through levying various proportional taxes,
and issuing and retiring riskless debt from time to time. The central question studied
by Arrow & Kurz is: can the government manipulate taxes and debt in such as way
as to induce the private sector to follow the government’s optimal policy?

The analysis of Arrow & Kurz is quite involved, but they are able to conclude
that, under certain conditions, various combinations of taxes and debt can steer
the economy onto the government’s desired trajectory. However, the solutions they

3 Although Ramsey’s original model was actually more subtle than Cass/Koopmans in some
respects, for example it included a disutility function to reflect the amount of labour supplied (i.e.
the longer the hours worked the less the utility). We will adopt a similar approach.



find are in terms of deterministic trajectories for the various tax rates for all future
times, and this leaves undecided the interpretation of the solution: is this open-loop
or closed-loop control? That is, do we think of the solution for the income tax
rate (which will be an explicit function of time) as something that the government
commits to at time 0, or do we rather think of the income tax rate as being a
function of the underlying state variable (the total amount of capital)? The former
interpretation seems viable only if we assume that the world really is deterministic,
and that the government can predict with perfect foresight for all time. Casual
observation suggests that this is very unlikely to be the case, so we would prefer to
have a solution where tax rates would be expressed in terms of the current state
of the economy, rather than being set according to a centuries-old plan*. In the
deterministic model of Arrow & Kurz, these two cannot be distinguished.

Another feature of Arrow & Kurz’s solution is that we have little insight into the
properties of the tax regimes the government would need to follow: in particular,
are the tax rates always between 0 and 17 If not, are the suggested values actually
credible?

To address these issues, we plan in this paper to take the model of Arrow & Kurz,
and modify it in two respects:

(i) introduce random fluctuations in output and population size;
(ii) allow the population to choose their level of effort.

The first modification allows us to distinguish between solutions which are functions
of the underlying state of the economy, and solutions which are pre-determined pro-
cesses. Without the second modification, we find that the effects of income tax
are unrealistic. Once again, it turns out that the optimal solution of the govern-
ment’s problem can be expressed in terms of a single underlying state variable, the
technology-adjusted per capita capital in the economy, which now follows a stochas-
tic differential equation, and is thus a diffusion. We are then able to solve the private
sector’s problem, and deduce relations which must be satisfied by the various tax
rates and by government debt in order to induce the private sector to follow the
trajectory desired by government. In particular, we look for (and find) solutions for
the tax rates which are functions only of the state process.

As yet, these expressions for tax rates are still quite opaque, so we are no better
placed to decide whether they will always be between 0 and 1, for example. Our
response to that has been to find explicit examples which can be solved in closed
form, and where it is possible to find the range of any of the tax rates, as these
are expressed now as explicit functions of the state variable. A collection of such
examples helps us to build up a library of possible behaviours, may lead us to other

4See Christiaans (2001) for further discussion on this point. He concludes that open-loop
solutions of dynamic optimization problems are unstable and therefore provide no reasonable basis
for a positive theory of economic growth.



interesting questions, and allows us to check further analytical and numerical work.
The approach we use is simply to take the inverse problem; write down the solution
we would like, and then see whether we can find a model to which that is the
solution! So we obtain a simple solution to a possibly slightly complicated model,
rather than no solution to a simple model. This approach applies even to the basic
one-sector model, and we show in an appendix some of the solutions which can be
obtained for that. Our consideration of explicit examples is similar to the so called
“inverse optimal” problem first studied by Kurz (1968) of constructing the class of
objective functions that could give rise to given specified consumption-investment
functions. Chang (1988) solves a similar stochastic inverse optimal problem.

Shortly after the work of Arrow & Kurz growth theory fell out of favour, not making
a return until the mid-1980s. Lucas (1988) extended the work of Denison (1961) by
showing that a two-sector model can explain not only the trends in growth data,
but also diversity between countries in the data. Consequently much of the recent
growth literature deals with economies with two capital goods, the first usually being
physical capital and examples of the second including human capital, public capital,
financial capital, quality of products and embodied and disembodied knowledge
(Mulligan and Sala-I-Martin 1993).

Models considering directly the effects of public investment come in two formula-
tions. The first considers how the rate of government expenditure on public services
effects the productivity of the economy; see Aschauer (1988) for a discrete example
or Barro (1990) for a continuous time model. The second type of formulation con-
siders the total stock of public capital, invested in such things as roads and hospitals,
as the key input to the production rate. This was the problem first studied by Arrow
& Kurz, with the stock of government capital appearing in the utility function as
well as the production function. This second approach is arguably more realistic but
has not been widely adopted, although Futagami, Morita, and Shibata (1993) have
extended the model of Barro (1990) to include government capital, and Fisher and
Turnovsky (1998) have adopted a Ramsey style framework, although in both these
models the public capital only appears in the production function and not also the
utility®. Baxter and King (1993) considered a discrete time model very similar to
that of Arrow and Kurz.

Use of continuous time stochastic calculus in economic growth models first appeared
in the papers of Bourguignon (1974), Merton (1975) and Bismut (1975). These
extend the Solow growth model to a random setting by addition of a Brownian
element to the labour supply (Bourguignon, Merton) or to the production process
(Bourguignon, Bismut). Merton also considers a stochastic version of the Ramsey
problem, again with Brownian motion appearing in the dynamics of the labour
supply. Chapter 3 of Malliaris and Brock (1982) contains a good overview of these
and similar models. More recent contributions building on Merton’s ‘Stochastic
Ramsey Model’ include Foldes (1978), (2001) who adds Brownian motions to further

5This is true for other two-sector models too. Usually the utility function is restricted to being
a function of consumption and not of levels of capital or rates of investment.

4



parameters of the model, and Amilon and Bermin (2001) who allow the government
to control the expected growth rate of the labour supply. We have been unable
to find any continuous time stochastic two-sector (private sector and government
capital) models anywhere in the literature.

One of the possible uses of a stochastic growth model is to study interest rate dynam-
ics. Merton (1975) does this for the stochastic Solow model using a Cobb-Douglas
production function and a constant savings ratio. Amilon and Bermin (2001) use a
stochastic Ramsey model and generate a variety of interest rate processes by consid-
ering different production and utility functions. Cox, Ingersoll, and Ross (1985a),
(1985b) develop a simple stochastic model of capital growth which they use to de-
termine the behaviour of asset prices including the term structure of interest rates.
Sundaresan (1984) builds on this work and that of Merton by considering multiple
consumption goods with a Cobb-Douglas production function.

The layout of the remainder of the paper is as follows. In Section 2 we describe our
model and consider the central-planning problem where the government has total
control over the economy and wishes to maximise its own utility functional. We give
conditions that the government’s optimal choices must obey. Section 3 introduces
taxation and a private sector independently optimising its own utility functional
subject to taxation constraints. We find expressions that the tax rates must satisfy
in order to force the private sector to follow the government’s optimal choices. In
Section 4 we look at ways to find explicit solutions to the problems considered in the
previous sections and give an example. We conclude in Section 5, which is followed
by four appendices. Appendix A has proofs of statements made earlier in the paper.
Appendix B is a (technical) discussion of the behaviour of the level of government
debt. Appendix C shows how our results simplify to the one-sector Ramsey model.
Finally Appendix D contains a useful summary of the notation used in the paper.

2 The government’s problem

The dynamics of the total capital K; in the economy at time ¢ evolves according to
the equation®

dK (1) = K(£)dZ° + | F(K,(t), K,(t), TOL{E)r(t) — 6K, — C, |dt,  (2.1)

where Z° is some positive multiple of a standard Brownian motion, L; is the size
of the population at time ¢, 7(t) € [0, 1] is the proportion of the population’s effort
devoted to production, and K,(t) is the amount of private capital in existence at
time ¢, K,(t) = K(t) — K,(t) the amount of government capital at time ¢. The
parameter 0 is the rate of depreciation, a positive constant, the process C' is the
aggregate consumption rate, and the process T is the labour-augmenting effect of

6 As a notational convenience, we use subscript and argument notations K; = K (t) interchange-
ably throughout, and will omit appearance of the time argument where there is no risk of confusion.
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improvements in technology. We shall assume always that K, K,, K, and C are non-
negative. Concerning the production function F', we shall make the usual assumption
of homogeneity of degree 1, which is to say that

F(AKp, AKy, \L) = \F(Kp, K4, L) (2.2)
for any A > 0. We shall also suppose that

dL, = L(dZ}F + ppdt), (2.3)
dﬂ = ,LLTﬂdt, T() = 1, (24)

where pz and pp > 0 are constants and where now Z° is again a multiple of a
standard Brownian motion, with

<dZZ> dZJ> = U'ijta Za] € {Oa L}a (25)

where (M, N) denotes the quadratic covariation between continuous martingales
M and N; see, for example, Rogers & Williams (2000) for definitions and basic
properties.

The objective of the government is to maximise

°° Cy Kyt
E/ e_”gtLt U( —t, A, ’ﬂ't) dt, (26)
0 Ly Ly

where U is strictly concave, and increasing in the first two arguments, decreasing
in the last. The objective (2.6) depends on per capita consumption and per capita
government capital, and the felicity is weighted according to the current population
size. In order to have the prospect of a time-homogeneous solution, we require that
U is also homogeneous of degree (1 — R,) for some R, > 07; this means that U can
be represented as

U(C, Ky ) = Kl Moh(e,m), €= C/K, (2.7)

for some C? function A strictly concave and increasing in its first argument and
decreasing in its second®. Our main results will be proved only subject to the

ASSUMPTION: h is either non-negative or non-positive.

This restriction seems to be satisfied in many interesting cases, and is probably not
really necessary; we require it to save us from over-clumsy statements of results, and
leave to the reader the trouble of checking our results still hold in any particular
example where A is not of constant sign.

"We also assume that R, # 1, not because the case of logarithmic utility is in any way difficult,
but rather because some of the expressions to be developed have a different appearance in this
special case.

8In fact for U to have the required properties we will also need that (1 — Ry)h > Ehg, E2hee +
2R 6he — Ry(1 — Ry)h < 0 and Rghg < —(1— Ry)hhge.
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As a consequence of the assumptions so far, it turns out to be advantageous to
work with per capita technology-adjusted variables, rather than their aggregated
equivalents. So if we define

1
= Ly = Lo exp{ ZtL + (pr — S VLL + pr)t }, (2.8)
and then define

ko=Kifm, k()= K,0/m, ko(®) = K(O)/n, o= Cifn,  (29)

and so forth, we find that the dynamics of & follow from the dynamics (2.1) of K:
dkt = kt(dZ? - dZtL) + [ F(k'p(t), kg(t), ’ﬂ't) - ’}/kt — C :|dt, (210)

where

Y =0+ pr + pr + vor — vrL-
It is now necessary to re-express the government objective (2.6) in terms of per
capita technology-adjusted variables, and here the assumption that U is homoge-
neous of degree (1 — R,) enters in an essential way. We find that the objective of
the government can be expressed as

E/ C_pgtLt U( g, ﬁ, Tt > dt = E/ e_pgtLt U(Ctﬂ,k‘g(t)ﬂ,’ﬂ't) dt
0 Ly Ly 0
- B / P LTI (¢, ky (8), ) dt
0
— LyE, / U (0, by (), m) dt (2.11)
0

where

Ag = pg — (1= Ry)pr — pir.,
and the final expectation is with respect to the measure P, which is absolutely
continuous with respect to P on every F;°, and has density

dP,
d—Ff = eXP(ZtL — SULL)-

Fi

The effect of changing measure from P to P, is to introduce additional drift'? into
the Brownian motions Z° and Z%; precisely, we have

0 0
Z, = 2z +vot,

L L
Zt = % +’ULLt,

9The filtration (F;)i>0 denotes the working filtration, with respect to which all processes are
adapted.

10T his is the famous Cameron-Martin-Girsanov Theorem; see, for example, Rogers and Williams
(2000) for an account



where (2%, 2") are two P,-martingales possessing the same covariance structure as

(Z°, Z%). This therefore transforms the dynamics (2.10) into
dky = ki(dz) — dzf) + | Fky(t), ky(t),m) — voki — ¢; | d, (2.12)

where the constant 7, is given by

7927_U0L+ULL:(5+ML+,LLT.

In order to maximise (2.11) with the dynamics (2.12), we can proceed to find the
Hamilton-Jacobi-Bellman equation for the value function

V(k) =supE, [ / e (e, ky(t), m1) dt ‘ ko =k ] (2.13)
0
The HJB equation satisfied by V is

1
sup  Ulc, kg, m) — AV (k) + 5(;21<u-21/"(1<;) + [F(k — kg, kg, m) — Yok — c]V'(k) = 0,

¢,kg,0<m<1

(2.14)
where
O'2 = Vgp — QUOL + vrrL-
From this, we deduce the necessary first-order conditions for optimality:
Uecle,kg,m) = V'(k) (2.15)
U!J(Ca k!}a ﬂ') = V,(k) (Fp(kpa k97 7T) - Fg(kpa kg: W))a (2'16)
Ur(e, kg, m) = =V'(k)Fr(kp, kg, ) (2.17)

where we use subscripts to denote differentiation, as in the abbreviations:

oUW _of _of

U=, U=<", f=<L =20
o’ V= ok =, ok,

fq
The conditions (2.15), (2.16) and (2.17) arise from considering the optimization

problem
sup  Ul(c, kg, m) +p| F(k — kg, kg, m) —C1; (2.18)

¢,kg,0<m<1

implicit in the statements (2.15) and (2.16) is the following assumption:

For every p,k > 0, the problem (2.18) has an interior solution
which depends in a C' fashion on (p, k) (2.19)

(In fact, the assumed strict concavity of U makes an interior solution unique.) This
assumption does not always hold, but we shall make it for the sake of the simplifi-
cations in the statements and proofs of results; no doubt similar conclusions can be
reached without it, but we leave that as an issue for further research.
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The observation that the optimising values (c, ky, 7) are uniquely determined as
functions of (p, k) reduces the HJB equation (2.14) to a non-linear differential equa-
tion for V'; once the solution is found, we are able to express the optimal values of
(¢, kg, m) as functions of (V(k), k), or, more simply put, functions of k. We shall
henceforth use the notation ¢*,k; and 7 for these optimal functions'! of the under-
lying state variable &, and also we shall introduce the notation

(k) = F(ky(k), kg(k), 7" (k) — gk — ¢*(k) (2.20)

for the drift in the dynamics (2.12), which therefore are more compactly expressed
as

= Uktdwt+@(kt)dt, (222)

where the P,-Brownian motion w is defined by w = (2° — 2%) /0. Under the original
measure P the dynamics (2.10) can be written as

dk, = k(dZ) —dZL) + ®(k,)dt, (2.23)
= okdW; + ®(k;)dt, (2.24)

with the identifications ®(k) = ®(k) + (v, — 7)k, and W = (Z° — Z*)/o. Under
mild conditions'? on ®, (2.21) has a pathwise-unique strong solution, and the value
function V' will satisfy the equation

U(c* (k), k5 (k), 7 (k) = AV (k) + %02k2V”(k) +(k)V'(K) = 0. (2.25)

Although there may be some issues concerning smoothness of the (¢, k;) optimizing
in (2.19), the following result is the starting point of our investigations.

Theorem 1 (i) Assuming that the value function (2.13) is finite valued and C°®,
and that assumption (2.19) holds then there exist differentiable functions ®, c*, kg,
7 and twice-differentiable ¥ = V' such that the equalities

)
&

0= W(E, — 7y — Ag) + V(& +0%) + 50K (G1)
U =0 (G2)
U, = —F, U (G3)
Ug: (Fp_Fg)\I' (G4)

(G5)

®=F—vyk-c
hold along the path given by (c*(k), k}(k), 7 (k))".

"'"The notation k} will also be used, with the obvious interpretation k7 (k) = k — k2 (k).
12Global Lipschitz will certainly be enough: Rogers & Williams (2000) again, Theorem V.11.2.

'3This means, for example, that Uy (c*(k), k} (k), 7*(k)) = (F, — F,)(k;(k), k}(k), 7*(k)) ¥ (k) in
the case of (G4).



(i1) Conversely suppose that there exist differentiable functions ®, c*, ky, ™ and
twice-differentiable U such that the equalities (G1)—(Gb) hold along the path given
by (c*(k), k;(k), m*(k)). If k* is the solution to the SDE (2.21) then provided the
transversality condition

supe 'k (ky) € L, lim e kU (kr) =0 (GT)

t —00

holds, the policy given by (c*,k;,7*) is optimal for the government, the optimally-
controlled economy follows the dynamics (2.21) and there is a value function V (k)
given by

k
Vit = [ w) i+ v
1
which satisfies the HJB equation
1
0=-\V +V'®+ 5U%QV” +U (G6)

along the optimal path, where Vi is a constant that can be determined explicitly.

PRrOOF. (i) follows from the discussion above; (G1) is obtained by differentiating
the HJB equation (2.14) with respect to k£ and then making use of conditions (2.15)—-
(2.17). (ii) - see Appendix A

Theorem 1 characterises the optimal solution to the government’s problem, but what
can we do with it? Are there examples where the solution can be expressed in closed
form? In view of the complicated way in which the optimising values c*, k and 7~
were defined, it appears at first sight unlikely, but we shall later see that it ¢s possible
to exhibit explicit solutions.

3 Government borrowing and taxation

The government’s optimal policy has been determined, but the issue now is how
to implement that policy when the government cannot directly control the private
sector, but can only shape its choices through taxation and the issuing of government
debt. Since the optimal policy of the previous Section was Markovian, in the sense
that the total technology-adjusted per capita capital k was a Markov process (even
a diffusion), we shall now seek Markovian taxation policies, which are defined by
the property that the rates of tax are functions only of k.

Before we can understand the effects of government fiscal policy, we have to under-
stand the behaviour of the private sector on which it acts, and we turn to that now.
We think of the private sector as made up of a very large number L, of identical
households; if one of these households receives a cashflow process of (AC});>¢, then
it values this cashflow as

© LA K
E/ epth,(Oicvt’ g(t),ﬂ't> dt, (31)
0 Lt Lt

10




and it wishes to maximise this. Here, u is strictly concave, increasing in its first
two arguments, and decreasing in the third, and p, > 0 is constant. The felicity u
depends on the per capita level of government capital, and on the per capita rate
of consumption for the household, which is assumed to be subject to the same size
fluctuations as the entire population; it also varies inversely with the proportion of
effort devoted to production. As with the government objective, we assume that u
is homogeneous, of degree (1 — R,), where R, > 0 is different from 1, and typically
different from R,.

We suppose that the objectives of the government and private sector are different,
and that the government aims to set taxes and to borrow in such a way as to
induce the private sector to follow the government’s desired path. We need now to
decompose the dynamics (2.1) of the economy so as to understand the effects of the
taxes. Homogeneity of order 1 of F' implies'* that we may express the output as the
sum of three terms,

F(Kp, Ky, L) = K, Fp(Ky, K4, L) + K Fy(K,, Ky, L) + LF (K, Ky, L),

which are interpreted as the return on private capital, the return on government
capital, and the return on labour, respectively. Including the random effects term
(dZ°) then, the returns on private capital, government capital and labour are (re-
spectively)

K,dZ) + K,F,dt, K,dZ}+ K,F,dt, wLTFydt. (3.2)

We shall suppose that the government is able to appropriate some fixed proportion
1 — 6, — 01, of the returns to its capital by direct charging for services such as toll
roads, university tuition fees, subsidised rail fares, and some healthcare costs, but it
is in the nature of government expenditure that much of the return on government
capital cannot be directly appropriated, so in practice this proportion may be near
to zero. A proportion 8, of the returns to government capital are included in the
returns to private capital, and the remaining proportion 6, is included in returns
to labour, so that from an accounting point of view we suppose that the returns on
private capital and labour are (respectively)

K,dZ} + K, F,dt + 0,(K,dZ;, + K,Fydt), 0.(K,dZ}+ K,F,dt)+7LTFdt, (3.3)
with the remaining (1 — 6, — 0;)(K,dZ; + K,F,dt) going directly to government.

The evolution of the levels of private and government capital are determined by the
equations

dK, = dI, - §K,dt (3.4)
dK, = dI, - 0K,dt, (3.5)

where I,(t) is the amount invested in private capital by time .

4 Differentiate the identity (2.2) with respect to \.
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The government will issue debt and levy taxes; returns on private capital will be
taxed at rate 1 — (3, income at rate 1 — 3,,, consumption at rate 1 — 5., and interest
on government debt at rate 1 — /3., so that the private sector’s aggregate budget
equation® is therefore

dl, + dD+ B,'Cdt
B[ Kp(dZ0 + Fydt) + 0,(K,dZ + K,F,dt)] + rB,Ddt
+Bu [0 KydZ) + (F — K F, — (1 — 01) K F)dt | (3.6)

where D, denotes the amount of government debt at time ¢. The interpretation
of the left-hand side is that this is the total outgoings of the private sector: the
investment in private capital, the investment in government debt, and the cost of
consumption. The right-hand side (3.6) is the after-tax income of the private sector:
return on private capital plus interest on government debt plus wage income.

The relation (3.4) can be used to eliminate dI, and rewrite the private-sector budget
equation as

dK,+dD = K,|BxdZ’ + (BxF, — 6)dt] + rB,Ddt — B;'Cadt
+BumnFrdt + (Brf, + Bulrn) (K, dZ° + K, F,dt) (3.7)

which bears the simple interpretation that the change in private-sector wealth is
accounted for by the return on private capital (adjusted for depreciation) plus the
return on government debt, less consumption plus the wage income.

Recall that we seek tax rates as functions of £ which will cause the private sector to
follow the government’s optimal trajectory. So we shall suppose that such tax rates
have been set, the economy as a whole is following the government’s optimal policy
as discussed in Section 2, and shall consider the optimisation problem faced by a
single household. If any deviation from the government’s optimal path is suboptimal
for the individual household, then we have an equilibrium in which all households
follow the government’s optimal path; we shall suppose that this is what happens,
and deduce the implications for the tax rates and borrowing policy. These are
summarised in the following result.

Theorem 2 Suppose that the government sets proportional taxes 1 — 5. on con-
sumption, 1 — By, on income, 1 — By on returns on private capital, and 1 — 3, on
returns on government debt, all functions only of the total technology-adjusted per
capita capital k in the economy at the time. If there exists a C? function v, and a

15 Arrow & Kurz have also a tax on savings, which alters the term dI,, +dD in (3.6) to 8, (dI, +
dD). Since this could be absorbed into our formulation simply by reinterpreting the other 3., we
lose no generality by studying the equations as given.
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function r such that the equations

Ozlﬁ(ﬂka—’Y—)\p-FU()L(l _Bk)) (PSl)
+ ' (® + Bro’k + (1 — Be) (g — 7)k) + %JQkQ@b”

U, = ﬂc_lzﬁ (PS2)

Ur = — B LY (PS3)

0= b(rfs + o = )+ ¥/(B + (g — ) + 30507 (PSY

all hold along the government’s optimal path'®, where \, = p, — (1 — R,)ur, and
lo = vrLr — pr, — M, then the private sector faced with these tax rates will choose to
follow the government’s optimal path, provided the transversality condition

sup ez (ki) € L', lim e ag(k]) = 0 (PST)

is satisfied, where x = k, + A, is the total technology-adjusted per capita wealth of
the private sector, split between private capital k, and government debt A,.

PROOF. See Appendix A

REMARKS. (i) Of course, the way we plan to use Theorem 2 is to enable us to find the
tax regimes which will persuade the private sector to follow the government optimal
path. So if we suppose that the government’s optimal path has been determined,
as in Section 2, we want now to know whether it is possible to have the conditions
(PS1), (PS2), (PS3) and (PS4) all holding at the same time. But this is in fact
quite easy: for example, if we choose the functional form of S, and f,, then (PS2)
determines the function ¢ and then S, 5, and r are determined from (PS1), (PS3)
and (PS4) respectively.

(ii) Note the similarities between conditions (PS1), (PS2) and (PS3) and the cor-
responding conditions (G1), (G2) and (G3) of Theorem 1. If we set the tax rates
to zero (so fr = 1 etc.) then these conditions of Theorem 2 are identical in form
to those of Theorem 1; however they depend on the private sector parameters A,
and v and on the private sector utility function u rather than the corresponding
government quantities. Only if the private sector and government share identical
values A\, = )y, 7 = 7p and u = U will the private sector follow the government’s
optimal path under a no-tax regime.

(iii) We do not claim (nor is it true in general) that the solution is Markovian in
the sense defined above, because the process A, may fail to be a function only of
k*. However, under certain conditions we can characterize the long-term behaviour

16For example, in full (PS3) says wy(c* (k), k2 (k), 7 (k) = —Bo (k) i (k5 (), ks (), 7 (k) b (k).
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of the debt, writing it in the form
A, (t) = Ga(ko)k; "7

t ajo
+f (IZ_> eVt (G () AW, + Gy (k)
t

—0o0

where Gy, G1, G2, G5 are given functions of k£ and W’ is a Brownian motion that is
completely independent of the Brownian motion W = (Z° — Z¥) /o that drives the
dynamics of k. See Appendix B for the details.

In a model with tax rates as proposed above we are unlikely to be able to find a
solution with a Markovian debt process. If we require that A, is a function of &
then z = A, + k, must also be a function of £ and hence

~ 1
dr = o' (ddt + k(dZ° — dZ*")) + 502k2x"dt. (3.8)

Equating the dZ” term in the above with that in the other expression we have for
the private sector dynamics (A.5) we find that

’k=z

and hence x = I'k for some constant I'. With this identification we can now equate
the dZ° and dt terms in (3.8) and (A.5) giving (after some rearrangement)

(I' = Br)k = {Bubr — (1 — 6,)Be}k, (3.9)
and
I®+ B, c— BunFy, = ky [Be(Fy — F,) — 6 — rB,] + Tk [0 — vor, + 7B, + F,] (3.10)

We now effectively have six equations (PS1)—(PS4), (3.9), (3.10) in five unknowns
Y, Be, B, rBr and B, so we are unlikely to be able to find a consistent solution
to these, and even if we can the solution is likely to be highly dependent on exact
choice of parameters.

(iv) If we subtract equation (PS4) from (PS1) then, after some rearrangement, we

obtain /

B <Fp — VoL + %(Uoo - UOL)k> =rp +6. (3.11)

Thus the net return on private capital 8;F), is equal to the net return on debt 74,
plus depreciation 6 and some ‘price of risk’ terms.

4 Explicit solutions

Theorem 1 tells us that provided there exist functions ¥, @, ¢*, kj and 7" satisfying
the equations (G1)-(G5) and the transversality condition (GT), then we have a

14



solution to the original problem. In general, it will be hard to find explicit solutions
for a given problem; nonetheless, we shall show in this Section that explicit solu-
tions abound, and can be manufactured readily by considering the inverse problem,
where we postulate a form for the solution and seek a problem whose solution is as
postulated.

The homogeneity of degree 1 — R, assumed for U gives the expression
Ule,ky, ) = k- h(E, m) (1)
where h(z,m) = U(z,1,7), and § = c/k,. Differentiation gives

Udcc, kg, m) = k;R9h§(§, ),
Ug(ca kg, T) = k;Rg [ (1- Rg)h(f,ﬂ') - fhﬁ(faﬂ') ],
Ur(c kg, m) = ky Toha(E,m).

To find an explicit solution'”, we first make a choice of the functions U (equivalently
V), U (equivalently, h and R,), and k,. Not all such choices will result in soluble
problems; for example, we will have to have that V is concave. Moreover, we shall
require of our proposed solution that

0<ky <k (4.5)

to avoid the possibility that either of k,, k, should be negative'®. However, we can
from these choices deduce what the solution (if it exists) must be, by solving the
equations (G1)—(Gb) and (4.1)—(4.4). To see how this is done, first note that as F
is required to be homeogenous of order 1, we have a consistency condition

F=kyF, + kFy+7Fy, (4.6)
hence

S+ yk+c = kFp+k g+ nFy
kE, — (Fp — Fy)ky + nFy,, (4.7)

by (Gb). Since (G1) can be written as
0=V (-9 +F,—~,) - U (4.8)
where U’ denotes the derivative with respect to & of the function

U(k) = Ulc(k), ky(k), n(k)), (4.9)

7Please excuse us if we do not use superscript asterisks in this discussion.

Depending on the form of the production function and the felicities, negative values may be
mathematically possible, but we shall restrict attention to more realistic situations where this does
not happen.
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we can use conditions (G1), (G3) and (G4) to rewrite (4.7) as
V(@ + gk + ) = k(U + V'yy + V'®") — kU — wUs.

Now as U is homogeneous of order (1—R,) and from (G2) we know that (1—R,)U =
cU; + kyUy = cV' + kgU, it follows that

V'®d = k(U' + V'(I>') -(1- Rg)U —aU,
and so
(V’ + kV")<I> = kU + k(V’@)' -(1- Rg)U — 7U,.

We can use equation (G6) to get an expression for & and V'®, giving

" 1 1
O:%%%)(&V—Uéia%ﬁ”):kUW%LMV—U—50%%”Y—G—RQU—WMU

which can be rearranged to give

(%V—%&%%”) _ 1 PU‘—(R-+@£>U]
™ 9

V! K2V’ v
k_l—Rg kV”
ﬁWTPm—<&+77>4. (4.10)
(G2) gives us that
V' =U, =k, Rohe(€, ). (4.11)

We will require that this equation along with (4.10) allows us to determine £(k) and
0 < 7(k) <1 for all k. As we originally chose a specific k4(k) we now also know
c(k) = ky(k)€(k), and hence the form of the function U(k) = U(c(k), kg(k), 7(k)).
We can recover ®(k) from (G6) and we can express F, (evaluated along the path
(kp(k), kg(k), m(k))) explicitly using (4.8). Similarly, combining (4.3) with (G4) gives

the relation

(1 — Rg)h(ga 7T) - fhg(f, ﬂ-)
kg V' (k)
expressing the difference F}, — F} as a known function of £, and combined with our
knowledge of F,, we get F, as a function of k. Finally we obtain Fy, from (4.4)
combined with (G3). How near are we to a solution? Equations (G1)-(G4), (4.1),
(4.2) and (4.3) hold along the trajectory by construction; equation (G5) could be
used to define the value of F' along the trajectory as a function of k, but is this

consistent with the forms of F},, F; and Fj, which we have just found? We have to
check that if F,, F,, and Fy, are obtained as above then

F,—F, = , (4.12)

, d
@+ gk +0)f = = F(ky(), hy(R), 7(B))
= F,— (F,— F)k\ + Fpr'
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Multiplying throughout by V', what we have to show is
V' +Vid = VI(F, —v,) — kU — Upnt’
U+ V' — kU, — Upr'
which is equivalent to proving
U' = dUe + kUg + Upr',
and this is immediate.

By this inverse approach we have constructed a trajectory (c(k), ky(k), 7(k))k>0, and
have found the values of the production function F' along this path. What we still
need to check is that the function F' can be extended off the path where it known to
some concave function F(Kp, K, L) increasing in all its arguments, homogeneous of
degree 1, that agrees with F' along the path (k,(k), kq(k), 7(k))k>0. Let us abbreviate
F(ky(k), ky(k),n(k)) to F'(k), with similar interpretations of F,(k), F,(k) and Fi (k).
Clearly, if there s such a concave increasing function F, we shall have to have at
very least the conditions

F,(k)>0, F,(k)>0, Fy(k)>0 Vk>0, (4.13)

along with the homogeneity condition (4.6), which holds by construction, and the
‘tangent inequality’
F(k) < A(kp(k), ky(k), m(k);w), Vk,w>0 (4.14)

where

Az, y, z,w) = Fw) + (z = kp(w)) Fp(w) + (y — kg(w)) Fy(w) + (2 — m(w)) Fr.(w)
= zF,(w) + yFy(w) + 2F(w)

is the equation of the tangent plane to F' at (k,(w), ky(w), m(w)). However, these
three conditions (4.13), (4.6) and (4.14) are already almost enough. Defining

F(z,y,2) = inf Az,y, 2z ), (4.15)

it is clear that F is concave and increasing in all its arguments. If we assume also
the infimum in (4.15) is attained uniquely, (4.16)

then for a general (z,y, z) there exists a unique wy = wy(x,y, z) such that

F(z,y,2) = Az,y,2w),
Fy(z,y,2) = Fp(wo),
Fg(x’yaz) = Fg(wo)a
L (z,y,2) = Fi(wo)
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and so
F(x, Y, z) — J:Fp(x, Y, z) — yﬁ’g(ac, Y, 2) — ZFL(ac, Y, 2)
= F(wo) — kp(wo) Fy(wo) — kg(wo) Fy(wo) — 7 (wo) F1.(wo) = 0

by (4.6), as required. The non-negativity of F still needs to be checked, but because
of the non-negativity of Fy, Fy and Fy, it is immediate that A(z,y,2;w) is non-
negative for any x,y,z > 0, and so F' is non-negative.

Thus we see that in general if we propose k4, concave U homogeneous of degree
1 — Ry, and concave V', we can construct a candidate solution: provided we can
check (4.13), (4.14), (4.16), and (GT), then we have a solution. It may well be,
of course, that the production function defined by (4.15) cannot be expressed more
simply; in this sense, then, we will have built an explicit solution to a problem
whose statement is somewhat implicit, which is arguably more use than an implicit
solution to an explicit problem.

Taking the right-hand side of the tangent inequality (4.14) less the left-hand side
and differentiating with respect to k gives us
kyp (k) [Fp(w) — Fy(k)] + ko (k) [Fy(w) — Fo(k)] + 7' (k) [Fi(w) — Fu(k)]  (4.17)

as F' = k,F, + k,Fy + ' Fj,. If we can show that this expression is non-negative for
k > w and non-positive for k¥ < w then the tangent inequality (4.14) follows. We
want a solution where £, and k, are increasing functions of k and 7 decreases with
k so that means that a sufficient condition for the tangent equality to hold is that
F, and Fj are decreasing functions of £ and Fj, is an increasing function of k. In
practice the following reworking will prove more useful. Using the abbreviation
[Fp] = Fyp(w) — Fy(k)
and similar, (4.17) above can be written as
k() [Fpli + kg (k) [Fyly, + 7' (k) [FL),
= [k Fp + kyFy + 7' FL ] — Fy(w) [k)] ) — Fy(w) [k,], — Fu(w) [}
= [F'ly + (Fp(w) — Fy(w)) [ky], + Fr(w) [~ . (4.18)

4.1 Specialising: V is CRRA

If we now suppose that
A k=5
V(k) =2

for some S > 0 different from 1, and A, a positive constant, it turns out that the
form of the candidate solution simplifies considerably. (G6) is now

T/ oA 1
=V'[Qk - @],
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where Q@ = A\,/(1 — S) + 2025 and (4.8) gives

s
Fy =1, +Q~ 2 (Qk - ). (4.19)

With this form for V' the left hand side of (4.10) is identically zero, hence we require
simply that

why = (Ry — S)h. (4.20)
Equation (4.11) becomes

Agk™5 =k Fohe. (4.21)
With these simplifications it is now possible to follow the steps of Section 4 and
obtain the following relations:

SU

Fp:%"‘@—%ﬁ (4.22)
_(1-R)U

Fp—Fy = Fy v & (4.23)

(R,—S)U
Fp = -"W v (4.24)

U
U
o= - — 4.2
Q- (4:26)
where
U_ b

As V' is positive we will find it easier to ensure F,, > 0 if we consider U < 0. We

have also U /s (R N
Fg=vg+cz+£—7(%—gk—);
g

we will require this to be non-negative too.

We will now consider the effect of different assumptions for the form of h(, 7).
Equations (4.20) and (4.21) will then be used to determine ky, 7 and £ as functions
of k (we will usually assume the form of £, and sometimes also 7). The consumption
rate c is given by ¢ = £k, and equations (4.22)—(4.26) above determine the other
quantities we require. We need to show that the conditions (4.13) and (4.16) are
satisfied along with the transversality condition (GT). All that then remains is to
check the tangent inequality holds which we will do by considering (4.17) or (4.18).

4.2 Specialising further A: h(¢, ) = hy(§)ha()

We will assume that A is of product form, so that

h(&, ) = hi(&)ha(r)
19



where we assume that we know the form of the (monotone) functions A, and hy and
also of k,. Equations (4.20) and (4.21) become

mhy(m) = (Ry — S)ha(r) (4.27)
Agk™% =k, "By (&) ho(T). (4.28)

The first of these determines 7 as a constant value for all k (there may be ambiguity
if hy solves the ODE on an interval). The second equation then determines (k) and

hence c. Finally
U hi(€)

— =c . 4.29

Vi~ ) (4.29)
Let’s assume that we know £, and

_ & _ .
m(€) = -5 ha(m) = (1 - )
so that
—(Rg—1-v) —p
Ule,ky,m) = o€ "Talm)
v
k=¥c v (1 — —K
P G (4.30)
v

where w = R; — 1 — v. We will assume that
v>0, w>0, x>0, R;>85>1,

so that U has all the required properties (concave and increasing in k, and ¢, de-
creasing in 7 and so on). U is negative so the derived utility V' must also be negative,
therefore S > 1, and the condition (4.27) then means that R, > S. From (4.27) the
optimal 7 is given by
R, — S
T=—"7""—#¥—¢€(0,1
k+ R, —S (0,1)

and the value of hy at the optimal 7 is thus

K —K
o=(Fr=s)

Note that the specific choice of the function hs(m) doesn’t really matter; the so-
lution depends only on the parameter © which we can choose arbitrarily, e.g. by
multiplying the choice of hy above by a constant.

From (4.28) we obtain
¢ = (4,07 K Skfa) V) (4.31)

and hence "
¢ = (4,07 K Ske) VU (4.32)
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We also find that

v__c

Vi

and so from equations (4.22)—-(4.26) we obtain

Sc
Fp = 7%+Q+—+ (4.33)
w

b, —F, = ;f (4.34)

R,— S
po= WS (4.35)

v oo
1

F = (,+Q)Fk+(1+ ;)c (4.36)
= Qk+ g (4.37)

As we will choose k, to be non-negative, c is also non-negative and thus F7, F), and
F are also non-negative for suitably large v, + Q.

The remaining problem is to make a good choice of k;. We may think of the problem
as one of choosing a non-negative function

p(k) = ( k"T(k) )w/(m) (4.38)

in such a way as to guarantee non-negativity of F, together with the tangent in-
equality, and the inequality (4.5): 0 < k, < k. The final inequality (4.5) can be
equivalently expressed by saying that we need to have ¢(k) > 1. In terms of ¢, we
have more simply

c = AkPyp

6 — Ak,Bfl(pRg/w
Fy = 7+ Q+ A" (Sp —wp™/) fv
® = Qk+ AkPo/v

where the parameters A and B are related to the other parameters by

QA=+ = A, (4.43)
(1+v)B=S —w. (4.44)

Non-negativity of F}, will be guaranteed by

A 1
79+szg+1_gs+§a2szo. (4.45)

Non-negativity of Fj needs to be checked case by case. Note that equation (4.44)
implies that
1-B)(1+v)=R,—S
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and hence B < 1. If we consider the limit as £ | 0 of (4.41), we see that we must

have
S(0) — we(0)"/v > 0,

and since ¢ > 1 we conclude from this that a necessary condition to be satisfied is
S > w,
from which it follows from (4.44) that B > 0.

The derivative (4.18) of the tangent inequality (bearing in mind we have 7'(k) = 0)
is

(1+3) (€)= ) + £ )y w) - Ky k)

so if ¢'(k) and kj (k) are decreasing functions of £ then the tangent inequality will
hold.

Alternatively observe from (4.32) that

and so the derivative (4.18) can be written as

(o) (5 (24

so that if c is increasing and k,/k and & are decreasing functions then the tangent
inequality will be satisfied. For the example we consider below this turns out to be a
more restrictive condition on the range of parameters we can use than the previous
condition.

We also need to check condition (4.16), that A(z,y, z; w) has a unique infimum over
w for any fixed (z,y, 2). In this case

Az, y, zw) = (2 + y) Fp(w) — y(Fp(w) = Fy(w)) + 2FL(w)

= () + Q@+ )y

We summarize the discussion above in the following lemma.

Lemma 1 Suppose that we have suitable positive constants o, A, v, Ay, K and
further constants satisfying the relations

R, > S >1, S>w=R;—1—-v>0,
S—w A 1

B= = I-+2-0°S>0.
T Ve + Q vg+1_5+2as_0
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Take a function (k) > 1 satisfying

define
c(k) = Ak ¢ (k), E(k) = AR" (k) ol kg(k) = c(k)/&(K),
and k* solving

dk* = ok*dw + ®(k*)dt
= ok*dw + (Qk* + o(k})k*" A/v)dt. (4.46)

Assume also that the following following four conditions hold:

(L1) Fy =7, +Q + AkP~1(Sp — wp(k)Rs/“) v > 0 for all k.
(L2) Fither

" <0, k; <0
or L
d >0, (f) <0, £ <.
(L3) The expression
(x—i—Sy)%—wyf—i—zc (4.47)

attains its infimum over k > 0 uniquely for all non-negative x, y, z.

(L4) k* satisfies the transversality condition (GT)

- 1- N 1-
supe Mk % € L1 lim e Aotk 5 = 0.
t t—00

Then we have constructed an explicit solution to the problem of Theorem 1 with

QA U+ 1S krvc(1—m)™*
V(k) = Wa Ule kg, m) = — . y 5

F(r,y,2z) = igfo{(x""y)(%"‘@-l- g C(;U)) . % (w) + Z(ng— S) cg:i))}

and constants ™™ and © given by

R,-S K "
*:7 @: N .
T T kTR, -S (H-l-Rg—S)

23



Example. We now consider choices of ¢ of the form
o(k) = @o(1 + ak)®, (4.48)

and check the conditions of Lemma 1. We will take ¢ > 0 and a > 0 (so that ¢ > 1),
and ¢y > 1 will be chosen small enough so that

So > wee!?; (4.49)

this can always be done, since S > w. We will also choose ¢ so that

< w(l — B)

, 4,
= R,+8 (4.50)

€

The function ¢ is increasing and hence k,;/k is decreasing. In order that we have
Fy > 0 we demand that

€ = Apy ! kP (1 + ak)* e/

be decreasing (and for A to be small enough in relation to 7, + @). This will be

true provided
< w(l— B),
=T R,
which follows from equation (4.50).

For the tangent inequality to hold we need c"(k) and k] (k) negative. In order for
" (k) to be negative, it is sufficient that £ < 1 — B which is guaranteed by inequality
(4.50). This condition also ensures that c¢/k is decreasing and hence, from equation
(4.33), F}, is decreasing. For kj(k) to be negative, it is sufficient that

w w(l— B)
e < =
~1+4v R, - S

which again follows from equation (4.50).

Under the condition (4.50) we can show that (L3) holds - see Appendix A for the
proof.

All that remains now is to check the transversality condition (L4) with the dynamics
of k* as given by (4.46) and bearing in mind that (1 — S) is negative. If we now
introduce the process z = log(k*), we see that z satisfies the SDE

1
dz = odw + (Q — 502 + h(x))dt,
where h(z) = Ap(e®)e® 12 [y and our task is therefore to establish lower bounds
on the process
At
S—-1

th.Tt+
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Now the process 7 itself is not a diffusion; however, because £ < 1— B (from (4.50)),
it is readily seen that h is decreasing, and so h(x;) > h(Z;). Using this, we can apply
the Yamada-Watanabe stochastic comparison theorem (see, for example, Rogers &
Williams (2000), V.43); the process & dominates the process y which starts at the
same value, but solves instead the SDE

1 A
dy = odw+ (Q— 502 + S——gl + h(y))dt

1
= odw+ (502(5 — 1)+ h(y))dt
The process y is a diffusion, with scale function s which satisfies

S =expl-(5 - y+ [ 2

Y

and (without loss of generality) the additional properties s(—o0) = —o00, s(oc) = 0.
If we now denote Y = inf, 3;, we have

0
a)

h at large negative values it is not

w
—~
N—

PY(Y <a) =

VA
= —

for all @ < 0, and from this and the behaviour o
hard to conclude that
Eexp(—(S—1)Y) < o0,

and (GT) follows easily from this.

4.3 Some numerics

In this section we will give graphs to show typical optimal trajectories for the above
explicit example. We will compare these with a non-explicit example where we
specify the functions U and F and then solve for the optimal (¢, kg, 7) using the nu-
merical methods described in Hartley (2003). For this non-explicit example we will
take the government’s utility function as in (4.30) with the government’s coefficient
of relative risk aversion given by!® R, = 4 and the parameters of the utility function
given by v = 1.2, w = 1.8 and k = 0.2. For the production function F' we take

F(Kp, Kga L) — K£'4K§'3L0'4

and the various other constants needed for a full specification of the government’s
problem will be taken to be pu;, = 0.01, ugr = 0.05, § = 0.10, vy, = 0.01, vgo = 0.2,
vor, = 0.005 and p; = 0.10. We will use these same constants as the basis for the

9Romer (2001) states that a value of 4 is ‘towards the high end of values that are viewed as
plausible’; although he also shows that methods for calculating R based on equity-premiums can
give values as high as 240!
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explicit solution taking also A = 0.2 and B = 0.5 (so that S = 2.9). These constants
satisfy all the relations needed for Lemma 1. Finally we take ¢ = 1.25, a = 1 and
e = 0.1 to specify (k) as in equation (4.48). Relations (4.49) and (4.50) are both
satisfied as required.

Figure 1 shows the optimal 7, k,/k and c against total capital k£ for the explicit
example of Section 4.2 - note that 7 is constant by construction. Figure 2 shows the
same optimal values for the numerical example. The extra line shows the stationary
distribution of k, scaled so that its maximum is 1. This can be easily calculated in
the numerical case - again see Hartley (2003) for the details. In this example 7 is
not constant, but it is close to the constant value we find in the explicit example.

2

18k ~ N
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141 - 4
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Figure 1: Plots of the optimal 7 (solid line), k,/k (dashed line), ¢ (dash-dot line)
against total capital k for the explicit example.

4.4 Introducing taxes.

The government’s choice of taxes will depend on the private sector’s preferences,
which we here will assume are of the form

k —Wp —Vp 1 — —Kp
u(c, kg, m) = —-2 - : (4.51)

Vp

where v, > 0, wp, = R, —1 -1, > 0 and k, > 0. We modify the notation of
the previous subsections by writing w, in place of w, v, in place of v and so on,
to emphasise the distinction between government and private-sector parameters in
what is an otherwise similar specification. With the private sector’s felicity function
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Figure 2: Plots of the optimal 7 (solid line), k,/k (dashed line), ¢ (dash-dot line)
and the (scaled) stationary distribution of £ (dotted line) against total capital k for
the numerical example.

specified as above conditions (PS2) and (PS3) from Theorem 2 combined with the

very similar conditions (G2) and (G3) from Theorem 1 tell us that
uU,
e = 2ot

kpVy

= % (4.52)

Kglp

Combining the expressions (4.38) for k, and (4.39) for ¢ in terms of £ and ¢, and
using condition (PS2) of Theorem 2, we have

ﬁc_lw = A_(1+”p) @pk_Rp+(1_B)(1+”p) SD_(1+VP)+WP(1+V9)/‘U9

= A-(Htmg g=Sppe (4.53)

where ©, = (1—7*)""*, S, = R,— (1—B)(1+,) is defined in an analogous manner
to Sy (4.44) and o =1+ vy — wy(1 + vy) /wy. We shall assume the inequality
R, < R,
14y, ~ 14y,

(4.54)

which is easily seen to be equivalent to
a=1+4+v, —wy(l+vy,)/w, > 0.

There seem to be two approaches we can take to taxation, depending on whether
we take equation (4.52) or (4.53) as our starting point.
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Approach 1 : Given the form of (4.53) and looking back at our choice of govern-
ment ¥ = V' of
¥ = Agk,'_SQ = Agk_Rg‘i'(l_B)(l‘FVg)’

it seems natural to pick an analogous function for the private sector’s function 1 (k),
i.e.
w = Apk*Rp‘F(l*B)(l‘H/p) = Apk*sp’

where A, is a constant which we shall choose as follows. We will pick some £,,(0) €
[0,1] and then equation (4.52) determines £.(0). The consumption tax is then

8. = B.(0) (3)

%o
and hence A, = 3.(0)p;*A~(1+»)Q,. Similarly

B = Bu(0) (3)

Po

As a > 0 we have automatically ensured the desirable property 0 < £, < 1 where
the tax rate on wages 1 — 3, increases as k increases. We have also constructed a
consumption tax 1 — . that decreases as k increases, eventually becoming a subsidy
at high k (if it wasn’t already a subsidy to begin with). This is intuitively correct -
in a poor economy the population should be encouraged to work more and consume
less, whilst in a very rich economy the population should be taxed highly on their
income to pay for better public services and should also be consuming more of their
capital. Taking

v, =14, w, = 0.6, kp =0.1, (4.55)

in the private sector’s felicity function (4.51) and other parameters as in Section 4.3
and taking 3,(0) = 1 gives wage and consumption®® tax rates as shown in Figure 3.

Now solving (PS4) for rf3, gives us

rBy = ASZEE15(k) + A, (4.56)

Vg

where .
Ar = )‘p — o + SP(Q + 2(79 - 7) - 5‘72(1 + Sp))-

For large enough values of p, the constant A, will be non-negative, and thus r3, will
be non-negative and decreasing. We can get [ from condition (PS1) in the same
way and find that

Bk (Fp — Spveo + (Sp — 1)vor) = rB, + 0. (4.57)

20The consumption tax is given by 8,1 —1 as f.c is the amount actually consumed if the private
sector tries to consume ¢, whereas conventional consumption taxes (e.g. VAT in the UK) add a
charge onto the amount that the private sector actually consumes.
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Figure 3: Plot of the wage tax rate (solid line) and the consumption tax rate (dashed
line) against total capital k for the explicit example.

Thus the return on private capital S;F}, is equal to the return on debt 73, plus
depreciation ¢ and some ‘price of risk’ terms. Substituting in the expression (4.33)
for F}, we have that

0+ rB,
Yo + Q — Spvoo + (Sp — Dvor, + Ay, 1S kB~ 1p(k)
6+ A 4+ Avy 'SP (k)

_ 458
Ay + Av, 1S, kP 1p(k) (4.58)

Br =

where Ay = v, + Q — Spveo + (Sp — 1)ver, will be positive for large enough ~,. If we
again make assumptions about values as in Section 4.3 and (4.55) then we find the
resulting tax rate 1 — [ is as in Figure 4. The tax rate is in fact a subsidy for all but
very low values of k£, to induce the private sector to invest in capital in preference
to consuming.

If we make the plausible assumption that 8, = 3, then there is an explicit expression
for the interest-rate process r:

A, + Av S kP (k)
6+ A, + Av LS kB o (k)

r= { Ay + Av, 'S kP (k) } (4.59)

This is illustrated in Figure 4. The interest rate r is thus expressed as a function of
the diffusion process k& which solves the SDE

dk = okdW + [(Q + vy — 1)k + AKP p(k) /v,| dt.
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Figure 4: Plot of the capital income tax rate (solid line) and the interest rate r
(dashed line) against total capital k for the explicit example with varying wage and
consumption tax.

Specializing further by assuming that ¢ is constant, this can be reduced to linear
form by considering instead the variable ¢ = k'~2, which solves

d(=(1—=B)[oCdW +(Q+~y—7— %B&)th] + A(1 — B)odt/v,.

Merton (1975) finds structurally similar interest rate processes in a study of a single-
sector growth model, and Kloeden and Platen (1992) present this under the name
of the stochastic Verhulst equation.

Approach 2 : Equation (4.52) tells us that (3.3, is constant so we choose both 3.
and f,, to be constant for all k. Taking constants as in Section 4.3 and (4.55) again
we find that 5.8, = 3/7 so we can choose (3, = 3/5 and 8. = 5/7 giving rates of
40% for both wage and consumption taxes. Equation (4.53) gives

b= Bz AOTDE kg

and then, as before, (PS1) and (PS4) can be used to determine [ and r (assuming
Br = Br). Again Sy and r will be (complicated) functions of &£ but, as Figure 5 shows,
the values obtained for this explicit example are very reasonable. The tax rate is a
subsidy for small £ and then becomes an increasing conventional tax rate for higher
k. Figure 6 shows 1 — B and r again, for the numerical example as described in
Section 4.3 and with the private sector’s felicity function given as in equations (4.51)
and (4.55). These tax rates are obtained using exactly the same sort of method and
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Figure 5: Plot of the capital income tax rate (solid line) and the

(dashed line) against total capital k for the explicit
and consumption tax.
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Figure 6: Plot of the capital income tax rate (solid line) and the interest rate r
(dashed line) against total capital k£ for the numerical example with constant wage

and consumption tax.
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turn out to be very similar to our explicit example, again showing that this explicit
example is genuinely useful.

One further calculation we can attempt now that we have the (short-term) interest
rate as a function of capital is to compute bond prices. We shall write B(¢,z;T) for
the time-t price of a zero-coupon bond paying one unit of capital at time 7', where
xy = logk; = x at time ¢t < T. The price the private sector will be prepared to pay
for such a bond is

FE ((re S By ds ‘ Ty =X

G

where ( is the private sector’s state-price density process which will be given by

Ct = e_Aptnt_luc(kt)/Bc(kt)'

B(t,z;T) =

Again following Hartley (2003) we can compute these bond prices numerically by
solving a PDE and hence find the corresponding yields, given by

Y(t,z;T) = — log B(t,z;T)

T—t
for 0 <t < T. Figure 7 shows the resulting yield surface for our numerical example.
At high levels of capital the yield curve is a conventional increasing curve and at
low levels of capital the yield curve is inverted. Figure 8 shows a selection of equally
spaced (with respect to k) curves taken from the surface in Figure 7. We see that
between the conventional and the inverted yield curves there are humped yield
curves - another type of curve occasionally spotted in the real world as the yield
curve makes a transition from increasing to inverted or vice-versa.

5 Conclusions

We have introduced stochastic terms into the model of Arrow and Kurz (1970) and
also added a factor to account for the proportion of work devoted to labour, as in the
original model of Ramsey (1928). With these modifications we have then solved the
government’s central-planning problem. Under the assumption that tax rates are
chosen so that the private sector, optimising its own utility functional, follows the
optimal path of the government we have found tax and interest rates as functions
of per-capita capital, i.e. closed loop control. Furthermore we have been able to
exhibit an explicit solution to these two problems. We have shown that the tax rates
can be chosen to take sensible values and found a novel single-factor interest rate
model.
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Figure 7: Yield at time-0 of a zero-coupon bond of maturity 7', against 7" and time-0
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Appendix A Proofs

PROOF OF THEOREM 1. Suppose that the process k; has dynamics given by (2.12)
for some consumption process ¢; and some choice 6; = ky(t)/k(t) of the proportion of
capital held by the government. We define a P,-Brownian motion w by 2°—z* = ow
and introduce a (Lagrangian) semimartingale e ¢‘'¥, = e ' (k}) where k* is the
conjectured optimal process, satisfying (2.21), and where

d\Ilt = \I!t(atdw + btdt)

We have for any stopping time 7 that (omitting explicit appearance of ¢ in most
places)

/ e_)‘gtU(c, kg, m)dt = / et [U(c, kg, m) + W (F (kp, kg, m) — 7ok — ¢) +
0 0
EW¥(b—Ag) + (mklll] dt + koWo — e Mk, U+ M,

for some P,-local martingale M; this is just obtained by integrating the process
e "W, k, by parts. Taking a stopping time 7 which reduces M strongly, we can now
take expectations to obtain

E, / e M'U(c, k,,m)dt = E, / e st [U(c, kg, ) + U(F (kp, kg, m) — Yok — )+
0 0

k(b — Ag) + aak‘ll] dt + koW — Ege_’\ngT\IlT.
(A.1)
We now consider the maximisation over k, ¢, k; and 7 of the integrand on the
right-hand side of (A.1): the first-order conditions we obtain will be
) = (Ag—b—ao)U(k")
Ucc, kg, m) = (k")
) = WE)(F, - Fy)



The last three of these are satisfied at ¢ = c¢*(k*), k, = &} (k*), 7 = 7*(k*) in view of
(G2), (G3) and (G4). The first is satisfied due to (G1), since from the It6 expansion
of W(k*) we must have that

ok* W' (k*)
¢ U (k)
; (I)(/{:*)\If'(k*) + %G*k*Q\I/"(k'*)
U (k*) '

To summarise then: the integrand on the right-hand side of (A.1) is maximised at
c=c*(k*), k, = ky(k*), kg = k;(k*), T = m*(k*). Reversing the integration-by-parts
argument by which we arrived at (A.1), we conclude that?!

B, /0 e (e, kym) dt < E, /0 MU (e (k). K2 (k7). 7 (k7)) dt
+E,[e 7 (ki — ko) U(kY) ]
< / e MU (e k), K (D), o () dt
+E,[e MR (kD) ]

Now it only remains to let the reducing time 7 tend to infinity, and appeal to the
transversality condition (GT), together with the fact that U does not change sign
to give us the required optimality result.

Finally, suppose that we take V (k) given by

where

Vi

Aig [\1:(1)@(1) + Lo2W (1) + U (1), K (1), 77 (1))
If we differentiate
AV () + V(R R) + oKV () + U(elk), ky(), (k) (A2)
with respect to k, using the fact that V'(k) = ¥ (k) we obtain
U(=Ag+ (L= k) Fp + kyFy + 7' F, — v, — )

1
+ V(@ + o%k) + 50%2\11” + U+ kUg +7'Uyr = 0

21 There is a detail here: the stopping time 7 which reduced M strongly may not reduce the
corresponding local martingale for the optimal process. We can nevertheless replace 7 by a stopping
time which is no larger and which reduces both local martingales. Since we are interested in letting
the reducing time tend to infinity, this little change affects nothing in the end.
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by (G1)-(G4). Hence expression (A.2) is constant and this constant is 0 by the
construction of V. O

ProOF OF THEOREM 2. The strategy is firstly to discover the dynamics faced by
a single household optimising in an economy which is following the government’s
optimal path. Next we rework the private household’s objective, expressing it in
intensive variables. We then use the Lagrangian method to characterise the private
household’s optimal path,

So suppose we consider what happens if we add one more household to the (large)
economy which is following the government’s optimal path. The total labour avail-
able has increased by L;/Lg, an O(1) quantity, and the total amounts of both types
of capital and of government debt will also have changed by an O(1) quantity. If
AC, AK,, AD denote the changes in the corresponding aggregate quantities, and
7 denote the proportion of effort which the new household devotes to production,
then the perturbation of (3.7) to leading order is not

dAK, +dAD = AKp[ﬁdeO (BuFyp —5)dt]+rﬁrADdt—ﬁ’1ACdt

+ﬁw7rt T ' Frdt + kq(BrOp + Buwbr)(dZ° + F,dt). (A.3)

This is because if we consider the change in (3.7) when the new household joins,
not only do the total amounts of capital, labour, consumption and debt change
by the O(1) amounts indicated in (A.3), but the coefficients . and the derivatives
f. also get changed, by amounts which are O(1/Lg). Since these changes then get
multiplied by quantities which are O(Ly), the net impact on the budget equation of
these changes is still O(1). Nevertheless, we argue that equation (A.3) is the correct
equation for the evolution of the new household’s wealth, where the tax rates and all
derivatives of f are evaluated along the original (government-optimal) path. This
is because the quantities on the right-hand side of (A.3) are items directly visible to
the new household: the return on its private capital, the wages for its labour, etc..
The other O(1) changes in the budget equation, such as the changes in total wages
due to the O(1/Ly) shift in wage rates, get distributed among the population as a
whole, and so have only an O(1/Ly) effect on any one household.

This agreed, the problem facing the typical private sector household is to optimise
the objective (3.1) with the dynamics given by (A.3), where the tax rates, the £,
the f., 7 and f are all evaluated along the government’s optimal path. As with the
government’s problem, we first reduce to technology-adjusted per capita variables,
expressing the objective as

00 LyAC; K, = -
E/ e"”’tu(oict, g(t),frt> dt, = E/ e P T ey, ky (1), 7e) dt
0 Lt Lt 0

[e.e]
= B[ eMula kg @ (A
0
where we are reserving starred variables (kj, k) for the government’s optimal values,
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and are using the notations?
kp = AKPL()/’I], Ap = ADL()/’I], Cy = ACtL()/?]t, )‘p =pPp— (1 — Rp),LLT.

The dynamics (A.3) implies the following dynamics for the (technology-adjusted per
capita) private-sector wealth process © = k, + A,

dz = k| BrdZ°® — dZ" + (BeF, — v + vor.(1 — Be))dt | + BuTFrdt
+ Ap[—dZ" + (po + 7B:)dt ] — B 'edt + AdZ° + Bdt, (A.5)

where we have used the abbreviations pig = v — pir, — pr, A = (B, +ﬂw9L)k; and
B = k;(ﬁ;ﬂp + ngL)(Fg - ’UOL).

Let us now combine the objective (A.4) with the dynamics (A.5) using a Lagrangian
process e ?iyp* = el (kF), where by It6’s formula

dy* = [a*(dZ° — dZ") + b*dt ], (A.6)

using the notation af = a(k}), bf = b(k;), and where

ak) = KRWE (A7)
b(k}) 29 k=9 (]2("]:)¢ (k)é(k) . (A.S)

Again omitting superfluous appearances of the time variable, integrating ze=*»!1)*

22This notation conflicts slightly with the earlier use of ¢, k, for the technology-adjusted per
capita consumption C'/n and private capital K,/n. For the remainder of this proof, we shall treat
c and k, as local variables, distinct from those discussed earlier, and to be freely chosen by the
private sector household. It will turn out in the end that the private sector will choose ¢; = ¢*(k;}),
kp(t) = ky(kf), of course.

39



by parts gives us

/OT e (e, ky, ®) dt = /OT et [u(c, ky, ) + xp™ (0" — Ap) + 1/1*{Bw7~rFL - Bt
o (BrFy = 7+ vor(1 = Be)) + Ap(r; + po) + B}
+a*yp*{ (Beky + A)(voo — vor.) + z(vrr — vor) } | dt
+zoty — T T + M,
= /0 ' e Mt [u(c, ky, @) = B, ' e+ BuFLy T

’H/J*kp{ﬁka -7 )‘p + UOL(l - Bk) + b*
+a* B (voo — vor) + a*(viz — vor) }
+¢*Ap{7'ﬁr + Mo — )\p + b* + CL*(’ULL — ’UOL)}

+* (B + Aa*(vgo — vor,)) | dt
+zos — T PTF + M,
= /0 ' e vt [u(c, ky, &) — Bl e + BuFrap*
{0 (BeFy =7 =y oun (1= 1)) + 5K ()
+9 (k) (® + (Br(voo — vor) + viL — vor)k) }
AU (15, + o = ) + 50K (K)
+¢'(k*)(® + (viz — vor)k)}
+* (B + Aa*(voo — vor.)) | dt
+xoth — xre Y+ M,

where M is some continuous local martingale. Now because we are assuming that
the conditions

0 = ¥ (Brkp—7—Ap+vor(l—5))
FU R @+ Buok + (1 ) (3 — 1)) + 50 K ()

u(c*, ky,m*) = B
UW(C*a k;a ﬂ—*) = _/B’wFL,L/)*

0 = W (B o~ d) + W)@+ (3 — 1) + 50B E)

of Theorem 2 hold, and using the identities vy, — vor = 74 — v and vgo — vor =
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0? — (y4 — ) we deduce that

/0 e (e, ky@)dt < /0 et [u(c, ky, ") — Bl et + BuFrtT
+¢*(B + Aa*(voo — vor))| dt + b — ze TYE + M,

= / e Meby(c* kI, m) dt + (xF — . )e Tk 4+ M,
0

1 g

y Vg

< / e Mlu(ct, ki, m) dt + xie Mt 4+ M,
0

for some other local martingale M. Here, we obtained the second line by reversing
the integration-by-parts used on the Lagrangian form. Taking expectations gives us
that

E/ e hy(c, k7, 7) dt < E/ e (et ky, ) dt + Bxye ),
0 0

and the transversality condition (PST) allows us to let 7 — oo to conclude that

» g

E/ e (e, ky, @) dt < E/ e Mtu(ct, kX, ) dt
0 0

as required. O
PrOOF THAT (L3) HOLDS FOR ¢(k) = ¢o(1 + ak)®

We need to show that the expression

Ao(k) = — (x-l—Sy)%—wyS-l—zc

= (z + Sy)kB (k) — wykB (k) B/Y + 2kB (k)

attains its infimum over £ > 0 uniquely for all non-negative z, y, z. If x =y =0
it will attain its infimum at £ = 0 as c is increasing, and similarly if y = z = 0 the
infimum will be attained at k£ = oo as ¢/k is decreasing. We will assume from now
on that either y is non-zero or both z and z are non-zero.

Differentiating Ao with respect to &, and using the fact that Ry/w =1+ (1 +v)/w,
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gives

Ag(k) = kP2 [(x + Sy) (k + (B - 1)%) +2 <k2 + Bk%)

P e o B (1) e
oy <(B — )Lt 4 0 )}

= kB72(1 4 ak)*! [az(s + B)k* + (2B —a(z+ Sy)(1 — B —¢))k

—(1-=B)(z+ Sy) + wygo(()1+")/w(1 + ak)s+0)/e ((1 —B)+a(l—B - 6%)k>]

=kP?(1 + ak)*! [az(e + B)k* + (2B —a(z + Sy)(1 — B —¢))k

— (1= B)(z + Sy) + wyel (1 + ak)™ (1 - B+ aok)]
= KB2(1 + ak) f(R)

with the appropriate identifications. If we can show that the equation f(k) = 0 holds
for only one point k£ then the minimum of Ay must be attained uniquely. Firstly
observe that

f(0) = =(1 = B) [z + (S — wef )]

is negative due to equation (4.49). Secondly ay = a(l — B — ¢R,/w) is positive
because of (4.50) and so f(k) — oo as k — oo. Finally

7" (k) = wyel T (1 + ak)o? laoa’eo(e0 + 1)k + ago(2a0 + (1 — B)a(ey — 1))]
+ 2az(e + B)

and so a sufficient condition for f to be convex is
ago(2a9 + (1 — B)a(eg — 1)) > 0
which is easily seen to be equivalent to

w(l — B)

<
“="R,+5

and this is assumption (4.50). Putting these three facts together we can conclude
that f(k) has only one root and so Ag(k) does attain its infimum uniquely. O

Appendix B The debt process A,

We define a P-Brownian motion W by oW = Z° — Z1 so that 02 = vy — 2vor, +v11,
and the dynamics (2.23) of k are

dk = okdW + ®(k)dt. (B.1)
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From (A.5) and It6 applied to k,(k) the dynamics of A, are given by

dA, = Ap[—dZ" + (o + 1B,)dt | — ki (okdW + &dt) — %a%%;’dt + AdZ° + Bdt

+ ky [ BrdZ® — dZ" + (BeF, — v + vor (1 — Bi))dt] + Bu Frdt — B, cdt.
(B.2)

We wish to express Z° and Z% in terms of W so we write
dZt = adW + bdW’
where W' is a P-Brownian motion independent of W so that
a0 = Vo1, — VLL a?+v? =g

and then dZ° is given by dZ° = (a + o)dW + bdW’. Inserting these expressions into
(B.2) and collecting A,, dW, dWW' and dt terms gives

dA, = Ap[—adW — bdW' + (o + 5, )dt |
+ [(A+ Brky)(a + o) — ak, — okk)|dW + [Ab+ bByk, — bk,|dW’

|
+ [B— k& — 50%%;' + kp(BrEpy — v+ vor (1 — Be)) + Bu@Fr — B, 'c|dt

= Ap[—adW — bdW' + (uo + rB,)dt | + Ag(k)dW + Ay (k)dW' + Lo (k)dt
(B.3)

with the necessary identifications. To deal firstly with the A, term we consider Z
solving the homogeneous stochastic differential equation

dZ = Z[—adW — bdW' + (o + r3,)dt . (B.4)
The solution to this stochastic differential equation is given (up to a constant) by
1 t
Zt = exp (—CLWt - bWtI — 5(0:2 + bQ)t + / (,U:0 + T(ks)ﬁr(kS))CLS) . (B5)
0

Observe that from (B.1)

dk  ®(k)
1 d(k
= d(logk) + (502 — %) dt
and so we can write equation (B.5) as
1 t
Zt = kt—a/a exp (-bWtI — §b2t +/ G()(ks)d8> s (B6)
0
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where Go(k) = po + r(k)B, (k) + 16> — vor, + a®(k)/ok. Combining the dynamics
for A, (B.3) and Z (B.4) gives

A\ dA, 1 1
d (7) =z "o (z) +d<A‘” Z>
A, A, [ dZ 1

P —+ P <—— + ’l)LLdt> + E(QAO(]C) + bAl (k) - APULL)dt

Z ' Z

VA
(Ao(k)dW + A, (k)dW' + (To(k) + ado(k) + bA, (k))dt)

(Ag(k)dW + Ay (k)dW' + Ty (k)dt)

N[ = N =

where I'y (k) = T'o(k) + aAo(k) + bA1 (k). Thus for s < t

ApZEt) _ APZ(SS) n /: Z (Ao (ko) AW, + Ay (ky)dW! + T (ky)du} . (B.7)

We can re-express the dW part of this integral. Define G (k) so that
kG (k) = k%7 Ay (k)
and then we have that
~ 1
dGy(k) = G' (k) (ckdW + ®(k)dt) + §a2k2G’1’(l€)dt
= kY7 Ao(k)dW + LG (k)dt

where L is the generator of the process k;. We can now rewrite the dWW term in
expression (B.7) as follows

t t
/ 7 Ao (k) dW, = / Wit sb*u—f' Golko)av g (k) — LG (ko) du}
t
= [Gl(ku)k;“/“zu‘l}i— / k7 Z1 G (ky) {bdW, + (b2 — Go(ky))du}
t
— / k797 21 LGy (k) du. (B.8)

Hence expression (B.7) can be written as

Ap(t) _ Ayls) | Gilhke ™" Galko)ks ™" (B.9)
Zt ZS Zt ZS .

t
+ / Z, { Ay (ky) — Dk G (ky) } AW,

t
+ / Z; {Tolky) — kg LG1(ky) + k7 (Go(ky) — b%) } du

—a/o —ajo t
ApZ(S) i Gl(kgkt _ Gl(kgks + / 7, {Ga(ky)dW,, + G3(ky)du}
B t s s
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and A, is given by

e T 2 N .
Ay(t) = Ga(k)ky ™7 + (Dy(s) = Ga(k)k, ) (?) ¢ bV W (a4 ] Gotku)d

t ajo
o [ (Ge) et R (G, )W+ Ga( )i
s t
(B.10)
Suppose that we start with zero debt so that A,(s) = 0 at some time s in the past.

Can we hold ¢ fixed, let s -+ —oo and get some meaningful limit? We would like

something like

. 1132 s
lim Gl(ks)ebws 5675+ [ Go(ky)du — O,
s—00

E™ /OO kia/0G2(ku)2eb2u+2f0" Go(ks)dsdu <00,
0

E" / |k2/7 Gy (k)| elo Golk)ts gy < oo
0

where 7 is the invariant law of k. An example of the sort of simpler (sufficient)
conditions needed for these to hold would be

G1(k), Go(k),G5(k)  all bounded,
(k)

T—>—£<O as k — o0,

1
sup Go(k) < —=b>.
k 2

The condition on ® makes the tail of the invariant law of & like a Gaussian, so all
moments exist, and the condition on sup GGy makes the exponential term decreasing,
so then we do get convergence as s — —o0o, with

Ap(t) = Gi(ke)k, */° (B.11)
t ajo
s [ () e Gk Gy ) + G ()}
—c0 t

Appendix C The one-sector problem

In the one-sector problem there is no distinction between public and private capital,
and we can follow a similar development; or we may alternatively deduce the one-
sector results as special cases of the two-sector results above. Either way, we will
assume that the private sector works all the hours available to them (7 =1 in the
previous notation) so that the rate of production is given simply by F(K,LT) =
LT f(k) and the objective of the government is to maximise

E / e Pt LU (%) dt = LyE, / e MU (cy)dt
0 0

t
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where we use exactly the same notation as in the two-sector problem, and again
assume that U is homogeneous of order 1 — R,. The optimality equations corre-
sponding to those of Theorem 1 are

0 = Ule) = AV (k) + 50 RV (k) + SRV (R (1)
®(k) f(k) — vk —c (C.2)
U'(e) = V'(k). (C.3)

We have assumed that U is homogeneous of order 1— R, so it must have the Constant
Relative Risk Aversion (CRRA) form

with Ry > 0 and R, # 1. Again it is possible to construct an explicit solution to the
government’s problem; choosing V', we find the optimal ¢ from (C.3), then deduce
® from (C.1), and then deduce f from (C.2). It remains only to check that the f
so obtained is concave, increasing and non-negative.

As a simple example, if we pick a value function that is also CRRA
A8

1-S 7
with Ay > 0,5 > 0 and S # 1 then (C.3) gives us

V(k) =

c(k) = Ay k5/Be

and then (C.1) yields

Finally (C.2) gives

10 = o+ Qb+ (1- =7 )e

. BgAvkSIRe

= (Ku+Q) 1-R
9

For these last two equations to make economic sense we require that

Q+7% >0, R;,>S>1.
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Appendix D Summary of notation

A ¢ argument /subscript denotes a quantity at time t. Other subscripts are used to
denote partial differentiation in the case of functions of two or more variables (e.g
fo = 0f/0k,). Notation unique to the section on explicit solutions (Section 4) is
not covered in this appendix.

N ERR RSSO DO

N M3

F(K,, K,,7mLT)
Ule, kg, )

u(c, kg, )

V(k)

®(k)

Consumption rate

Level of government debt

Amount invested in government capital
Amount invested in private capital
Total capital

Government capital

Private sector capital

Labour force / population size
Technology level

Total private sector wealth K, + D
=C/LT,K/LT,K,/LT,K,/LT, X/LT
Optimal values of ¢, kg, 7 for a given &
Tax rate on consumption

Tax rate on returns on private capital
Tax rate on returns on government debt
Tax rate on wages

=D/n

Per household rate of consumption, holding in government debt
and amount of private capital

=LT

=C/K, =c/k,

Proportion of time devoted to production
Production (rate) function

Government felicity function

Private sector felicity function

Government value function

= F(ky(k), k;(k), 7*(k)) — vk — c*(k). The drift in k along the
optimal path under P,
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AN A

(2°, 2%)

= >

Pg> Pp

= F(ky(k), k;(k),7*(k)) — vk — c*(k). The drift in k& along the
optimal path under P

= V'(k). The Lagrange multiplier process corresponding to the
government’s optimization problem.

The Lagrange multiplier process corresponding to the private sec-
tor’s optimization problem.

Expectation taken under P, P, respectively

Real world probability measure

Government’s valuation measure

Covariation (per unit time) of Z* and Z7, 4,5 € 0, L
A P-Brownian motion defined by oW = Z° — ZL
A P,-Brownian motion defined by ow = 2% — 2F
Multiples of standard Brownian motions

Two Pj,-Brownian motions with same covariance structure as
(2°,2%)

U is homogeneous of order 1 — R, in ¢k,

u is homogeneous of order 1 — R, in c,k,

Rate of depreciation of capital

=0+ pr + pr + VoL — VL

=7 — oL +vLL

Proportion of return on government’s capital included in returns
to private sector capital and labour respectively

= pg— (1= Rg)pr — pur

= pp— (1= Ry)pur

= vrr — pr — . Exponential drift of n=—*

Exponential drift term of labour

Exponential growth rate of technology level

Government and private sector utility time-discount factors

= voo — 2V, + VLL
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