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This paper develops the study of two-sector growth models of the form introduced by Arrow and Kurz
(1970). We extend their deterministic model by allowing the population process to become random
and by allowing the population to choose their level of effort. We find that under suitable conditions
the government is able to tax and borrow in such as way as to induce the private sector to invest and
consume along the path which the government considers optimal. Moreover, we also find that in some
important cases the model can be solved explicitly in closed form, to the extent that we can write
down expressions for tax rates and interest rates. This leads to new one-factor interest rate models,
with related taxation policies; numerical examples show very reasonable behaviour.

 

I . I n t r o d u c t i o n

 

The history of growth models is long and illustrious, stretching back at least to Ramsey
(1928). Throughout this development, much attention has been devoted to single-sector models,
where there is just one type of capital or good, which is produced at a rate depending on current
capital levels, labour force and technology levels, and is then either consumed or reinvested into
capital. One analogy is a farm producing corn which can either be eaten or used to produce
more corn. There are two basic types of continuous time single-sector growth model appearing
in the economic literature. Firstly the Solow model as developed by Solow (1956) and Swan
(1956). This is a growth model with an exogenously given savings rate which determines the
proportion of capital reinvested (and hence also the proportion consumed). Denison (1961)
showed that this model was able to explain trends in empirical growth data for the United States.
Secondly there is the Ramsey model. This was originally conceived by Ramsey (1928) but the
term is now used to refer to the version as refined
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 by Cass (1965) and Koopmans (1965). This is
a growth model with consumer optimisation – households choose their rates of consumption over
time to maximise a utility functional. See, for example, the books of Romer (2001) and Barro
and Sala-I-Martin (1995) for a more complete description of these models and their variants.

The first two-sector model was developed by Uzawa (1961), (1963) who considered an economy
with two produced goods, a consumer good and an investment good, produced by investment
capital and labour. Again using the farm analogy, this is using labour and tractors to make corn
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Although Ramsey’s original model was actually more subtle than Cass/Koopmans in some respects, for
example it included a disutility function to reflect the amount of labour supplied (i.e. the longer the hours
worked the less the utility). We will adopt a similar approach.
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and tractors. Uzawa (1965) then refined this model to one where the two goods are physical
capital and human capital, both of which are required for production of further physical capital
(by manufacturing) and human capital (by education). Arrow and Kurz (1970) chose public
capital rather than human capital and our work in this paper develops this model.

Arrow and Kurz proposed a deterministic model where there were two types of capital,
government capital and private capital, which were both needed in the production of the single
consumption good. They first set about solving the government’s optimisation problem, where
the government’s objective was to maximise the integrated discounted felicity from 

 

per capita

 

consumption, where the felicity also depends on the 

 

per capita

 

 level of government capital. This
feature of the model recognises that the felicity of the population is improved if the provision of
education, healthcare, transportation, etc. is improved, and that such infrastructure is provided
largely (if not exclusively) by government capital. Since Arrow and Kurz assume that private
and government capital can be freely switched at any time, it is clear that the state of the
optimally-controlled system at any time is completely described by the total amount of capital,
the split between government and private sectors being dictated by optimality.

The problem gets more interesting when it comes to the behaviour of the private sector,
which is viewed as very large collection of identical non-collaborating small households, each
individually optimising its common objective, which is again an integrated discounted felicity
of 

 

per capita

 

 consumption and government capital, but not of course the same as the govern-
ment’s objective. History and fashion have overwhelmed the centrally-planned economy, so we
suppose that the government’s control of the economy is exercised only through levying various
proportional taxes, and issuing and retiring riskless debt from time to time. The central question
studied by Arrow and Kurz is: 

 

can the government manipulate taxes and debt in such as way as
to induce the private sector to follow the government’s optimal policy?

 

The analysis of Arrow and Kurz is quite involved, but they are able to conclude that, under
certain conditions, various combinations of taxes and debt can steer the economy along the govern-
ment’s desired trajectory. However, the solutions they find are in terms of deterministic trajectories
for the various tax rates for all future times, and this leaves undecided the interpretation of the
solution: 

 

is this open-loop or closed-loop control?

 

 That is, do we think of the solution for the
income tax rate (which will be an explicit function of time) as something that the government
commits to at time zero, or do we rather think of the income tax rate as being a function of the
underlying state variable (the total amount of capital)? The former interpretation seems viable
only if we assume that the world really is deterministic, and that the government can predict
with perfect foresight for all time. Casual observation suggests that this is very unlikely to be
the case, so we would prefer to have a solution where tax rates would be expressed in terms of
the current state of the economy, rather than being set according to a centuries-old plan
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. In the
deterministic model of Arrow and Kurz, these two cannot be distinguished.

Another feature of Arrow and Kurz’s solution is that we have little insight into the properties
of the tax regimes the government would need to follow: in particular, are the tax rates always
between zero and one? If not, are the suggested values actually credible?

To address these issues, we plan in this paper to take the model of Arrow and Kurz, and
modify it in two respects:

(i) introduce random fluctuations in output and population size;
(ii) allow the population to choose their level of effort.
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See Christiaans (2001) for further discussion on this point. He concludes that open-loop solutions of
dynamic optimisation problems are unstable and therefore provide no reasonable basis for a positive the-
ory of economic growth.
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The first modification allows us to distinguish between solutions which are functions of the
underlying state of the economy, and solutions which are pre-determined processes. Without the
second modification, we find that the effects of income tax are unrealistic. Once again, it turns out
that the optimal solution of the government’s problem can be expressed in terms of a single under-
lying state variable, the technology-adjusted 

 

per capita

 

 capital in the economy, which now follows
a stochastic differential equation, and is thus a diffusion. We are then able to solve the private sector’s
problem, and deduce relations which must be satisfied by the various tax rates and by government
debt in order to induce the private sector to follow the trajectory desired by government. In particu-
lar, we look for (and find) solutions for the tax rates which are functions only of the state process.

As yet, these expressions for tax rates are still quite opaque, so we are no better placed to
decide whether they will always be between zero and one, for example. Our response to that has
been to find explicit examples which can be 

 

solved in closed form

 

, and where it is possible to
find the range of any of the tax rates, as these are expressed now as explicit functions of the
state variable. A collection of such examples helps us to build up a library of possible behaviours,
may lead us to other interesting questions, and allows us to check further analytical and numerical
work. The approach we use is simply to take the inverse problem; write down the solution
we would like, and then see whether we can find a model to which that is the solution! So we
obtain a simple solution to a possibly slightly complicated model, rather than no solution to a
simple model. This approach applies even to the basic one-sector model, and we show in an
appendix some of the solutions which can be obtained for that. Our consideration of explicit
examples is similar to the so called ‘inverse optimal’ problem first studied by Kurz (1968) of
constructing the class of objective functions that could give rise to given specified consumption-
investment functions. Chang (1988) solves a similar stochastic inverse optimal problem.

Shortly after the work of Arrow and Kurz growth theory fell out of favour, not making a
return until the mid-1980s. Lucas (1988) extended the work of Denison (1961) by showing that
a two-sector model can explain not only the trends in growth data, but also diversity between
countries in the data. Consequently much of the recent growth literature deals with economies
with two capital goods, the first usually being physical capital and examples of the second
including human capital, public capital, financial capital, quality of products and embodied and
disembodied knowledge (Mulligan and Sala-I-Martin 1993).

Models considering directly the effects of public investment come in two formulations. The
first considers how the 

 

rate

 

 of government expenditure on public services effects the productivity
of the economy; see Aschauer (1988) for a discrete example or Barro (1990) for a continuous
time model. The second type of formulation considers the total 

 

stock

 

 of public capital, invested in
such things as roads and hospitals, as the key input to the production rate. This was the problem
first studied by Arrow and Kurz, with the stock of government capital appearing in the utility
function as well as the production function. This second approach is arguably more realistic but
has not been widely adopted, although Futagami, Morita, and Shibata (1993) have extended the
model of Barro (1990) to include government capital, and Fisher and Turnovsky (1998) have
adopted a Ramsey style framework, although in both these models the public capital only
appears in the production function and not also the utility
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. Baxter and King (1993) considered
a discrete time model very similar to that of Arrow and Kurz.

Use of continuous time stochastic calculus in economic growth models first appeared in the
papers of Bourguignon (1974), Merton (1975) and Bismut (1975). These extend the Solow
growth model to a random setting by addition of a Brownian element to the labour supply
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This is true for other two-sector models too. Usually the utility function is restricted to being a function
of consumption and not of levels of capital or rates of investment.
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(Bourguignon, Merton) or to the production process (Bourguignon, Bismut). Merton also
considers a stochastic version of the Ramsey problem, again with Brownian motion appearing
in the dynamics of the labour supply. Chapter 3 of Malliaris and Brock (1982) contains a good
overview of these and similar models. More recent contributions building on Merton’s
‘Stochastic Ramsey Model’ include Foldes (1978), (2001) who adds Brownian motions to further
parameters of the model, and Amilon and Bermin (2001) who allow the government to control
the expected growth rate of the labour supply. We have been unable to find any continuous time
stochastic two-sector (private sector and government capital) models anywhere in the literature.

One of the possible uses of a stochastic growth model is to study interest rate dynamics. Merton
(1975) does this for the stochastic Solow model using a Cobb-Douglas production function and
a constant savings ratio. Amilon and Bermin (2001) use a stochastic Ramsey model and generate
a variety of interest rate processes by considering different production and utility functions. Cox,
Ingersoll, and Ross (1985a), (1985b) develop a simple stochastic model of capital growth which
they use to determine the behaviour of asset prices including the term structure of interest rates.
Sundaresan (1984) builds on this work and that of Merton by considering multiple consumption
goods with a Cobb-Douglas production function.

The layout of the remainder of the paper is as follows. In Part I, we develop the theory of the
model, firstly (in Section II) characterising the solution to the government’s problem in terms of
the Lagrangian shadow price function, and then in Section III we introduce taxation and a private
sector independently optimising its own utility functional subject to taxation constraints. We
find conditions that the tax rates must satisfy in order to induce the private sector to follow the

 

government’s

 

 optimal choices. In Part II, we try to find examples of the model studied in Part I
which can be solved in closed form. As mentioned above, we do this by solving the 

 

inverse

 

problem, where we postulate a particular solution to the government’s problem, in terms of their
utility, the proportion of capital held by the government as a fraction of the total capital in the
economy, and the value function, and then we seek a production function which would give rise
to this solution. One issue that needs to be addressed (which is a methodological innovation of
this paper) is that if we have selected the government’s solution then we can only hope to know
the production function and its derivatives 

 

along the optimal path

 

; can the production function
then be extended off this path so as to remain concave and homogeneous of degree one? We
are able to show that under mild conditions this 

 

is

 

 possible, even though the exact form of the
production function may be rather indirect. We go on to present some quite concrete examples,
and look at the kinds of tax regimes that would be applied by the government. We also find
quite explicit and novel one-factor models for interest rates. We conclude in Section VI, which
is followed by four appendices. Appendix A has proofs of statements made earlier in the paper.
Appendix B is a (technical) discussion of the behaviour of the level of government debt.
Appendix C shows how our results simplify to the one-sector Ramsey model. Finally Appendix
D contains a useful summary of the notation used in the paper.

 

P A R T  I

I I . T h e  G o v e r n m e n t ’ s  P r o b l e m

 

The dynamics of the total capital 

 

K

 

t

 

 in the economy at time 

 

t

 

 evolves according to the equation

 

4
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As a notational convenience, we use subscript and argument notations 

 

K

 

t

 

 

 

≡

 

 

 

K

 

(

 

t

 

) interchangeably
throughout, and will omit appearance of the time argument where there is no risk of confusion.
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where 
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 is the size of the population at time 

 

t

 

, 
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 [0, 1] is the proportion of the population’s
effort devoted to production, and 
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) is the amount of private capital in existence at time 
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) the amount of government capital at time 

 

t

 

. The parameter 

 

δ

 

 is the rate of
depreciation, a positive constant, the process 

 

C

 

 is the aggregate consumption rate, and the process

 

T

 

 is the labour-augmenting effect of improvements in technology. We shall assume always
that 

 

K

 

, 

 

K

 

g

 

, 

 

K

 

p

 

 and 

 

C

 

 are non-negative. Following Arrow and Kurz (1970), we shall suppose that
capital can be freely switched between government and private sectors; the implications of this
assumption are discussed by Arrow and Kurz, and we refer the reader there for more detail.
Suffice it to say that the problem is hard enough already with this simplifying assumption. Concerning
the production function 

 

F

 

, we shall make the usual assumption of homogeneity of degree one,
which is to say that
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for any 

 

λ

 

 

 

>

 

 0. The dynamics (2.1) are the same as the dynamics of Arrow and Kurz (1970), but where
our account begins to differ is in the assumptions we make concerning population growth. While
Arrow and Kurz took this to be deterministic, we shall suppose (perhaps more realistically) that

 

dL

 

t

 

 

 

=

 

 

 

L

 

t(σ dWt + µLdt), (2.3)

dTt = µTTt dt, T0 = 1, (2.4)

where µL and µT ≥ 0 are constants and where W is standard Brownian motion. The objective of
the government is to maximise

(2.5)

where U is strictly concave, and increasing in the first two arguments, decreasing in the last.
The objective (2.5) depends on per capita consumption and per capita government capital, and
the felicity is weighted according to the current population size. In order to have the prospect
of a time-homogeneous solution, we require that U is also homogeneous of degree (1 − Rg) for
some Rg > 05; this means that U can be represented as

(2.6)

for some C 2 function h strictly concave and increasing in its first argument and decreasing in its
second6.

As a consequence of the assumptions so far, it turns out to be advantageous to work with per
capita technology-adjusted variables, rather than their aggregated equivalents. So if we define

(2.7)

and then define

kt ≡ Kt /ηt, kg(t) ≡ Kg(t)/ηt, kp(t) ≡ Kp(t)/ηt, ct ≡ Ct /ηt, (2.8)

5 We also assume that Rg ≠ 1, not because the case of logarithmic utility is in any way difficult, but rather
because some of the expressions to be developed have a different appearance in this special case.
6 In fact for U to have the required properties we will also need that (1 − Rg)h > ξhξ, ξ 2hξξ + 2Rgξhξ −
Rg(1 − Rg)h < 0 and .
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and so forth, we find that the dynamics of k follow from the dynamics (2.1) of K:

dkt = −ktσ dWt + [F(kp(t), kg(t), π t) − γ kt − ct]dt, (2.9)

where

γ  ≡ δ + µL + µT − σ 2.

It is now necessary to re-express the government objective (2.5) in terms of per capita technology-
adjusted variables, and here the assumption that U is homogeneous of degree (1 − Rg) enters in
an essential way. We find that the objective of the government can be expressed as

(2.10)

where

λ g ≡ ρg − (1 − Rg)µT − µL,

and the final expectation is with respect to the measure Pg which is absolutely continuous with
respect to P on every Ft

7, and has density

The effect of changing measure from P to Pg is to introduce additional drift8 into the Brownian
motion σ W; precisely, we have

Wt = wt + σ t,

where w is a Pg-Brownian motion. This therefore transforms the dynamics (2.9) into

dkt = −ktσ dwt + [F(kp(t), kg(t), π t) − γgkt − ct]dt, (2.11)

where the constant γ g is given by

γ g = γ  + σ 2 = δ + µ L + µT .

In order to maximise (2.10) with the dynamics (2.11), we can proceed to find the Hamilton-
Jacobi-Bellman equation for the value function

(2.12)

7 The filtration (Ft)t ≥ 0 denotes the working filtration, with respect to which all processes are adapted.
8 This is the famous Cameron-Martin-Girsanov Theorem; see, for example, Rogers and Williams (2000)
for an account.
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The HJB equation satisfied by V is

(2.13)

From this, we deduce the necessary first-order conditions for optimality:

Uc(c, kg, π ) = V ′(k) (2.14)

Ug(c, kg, π ) = V ′(k)(Fp(kp, kg, π ) − Fg(kp, kg, π )), (2.15)

Uπ(c, kg, π ) = −V ′(k)FL(kp, kg, π ) (2.16)

where we use subscripts to denote differentiation, as in the abbreviations:

The conditions (2.14), (2.15) and (2.16) arise from considering the optimisation problem

(2.17)

implicit in the statements (2.14) and (2.15) is the following assumption:

For every p, k > 0, the problem (2.17) has an interior solution 
which depends in a C 1 fashion on ( p, k) (2.18)

(In fact, the assumed strict concavity of U makes an interior solution unique.) This assumption
does not always hold, but we shall make it for the sake of the simplifications in the statements
and proofs of results; no doubt similar conclusions can be reached without it, but we leave that
as an issue for further research.

The observation that the optimising values (c, kg, π ) are uniquely determined as functions of
( p, k ) reduces the HJB equation (2.13) to a non-linear differential equation for V ; once the solution
is found, we are able to express the optimal values of (c, kg, π ) as functions of (V ′(k), k), or,
more simply put, functions of k. We shall henceforth use the notation c*,  and π * for these
optimal functions9 of the underlying state variable k, and also we shall introduce the notation

(2.19)

for the drift in the dynamics (2.11), which therefore are more compactly expressed as

dk t = −σ ktdwt + Φ(k t) dt. (2.20)

Under the original measure P the dynamics (2.9) can be written as 

dk t = −σ ktdWt + 0(kt)dt, (2.21)

with the identification

0(k) ≡ Φ(k) + σ 2k.

Under mild conditions10 on Φ, (2.20) has a pathwise-unique strong solution, and the value function
V will satisfy the equation

9 The notation  will also be used, with the obvious interpretation .
10 Global Lipschitz will certainly be enough: Rogers and Williams (2000) again, Theorem V.11.2.
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(2.22)

Although there may be some issues concerning smoothness of the (c, kg) optimising in (2.18),
the following result is the starting point of our investigations.

Theorem 1
 (i) Assuming that the value function (2.21) is finite valued and C 2, and that assumption (2.18)

holds then there exist differentiable functions Φ, c*, , π* and twice-differentiable Ψ
≡ V ′ such that the equalities

(G1)

Uc = V ′ (G2)

Ug = (Fp − Fg)V ′ (G3)

Uπ = −FLV ′ (G4)

hold along the path given by (c*(k), (k), π *(k))11, where

Φ = F − γ gk − c. (G5)

(ii) Conversely suppose that there exist differentiable functions Φ, c*, , π * and C 3 function12

V such that the equalities (G1)–(G5) hold along the path given by (c*(k), (k), π *(k)). If
k* is the solution to the SDE (2.20) then provided the transversality condition 

(GT)

holds, the policy given by (c*, , π *) is optimal for the government, the optimally-
controlled economy follows the dynamics (2.20) and V is the value function.

Proof. (i) follows from the discussion above. (ii) – see Appendix A.

Theorem 1 characterises the optimal solution to the government’s problem, but what can we do
with it? Are there examples where the solution can be expressed in closed form? In view of the
complicated way in which the optimising values c*,  and π * were defined, it appears at first
sight unlikely, but we shall later see that it is possible to exhibit explicit solutions.

Though nothing in the analysis so far (or for some time to come) requires it, we have it in
mind that we are looking for a solution where k is an ergodic diffusion; this is the stochastic
equivalent of a balanced growth path in a deterministic model. A balanced growth path is a
path where k is (or tends to) a fixed point of the dynamics, and in some sense describes an
economy where everything grows in step with the technology-adjusted population. It makes
most sense economically to consider such situations; models where this does not happen either
offer the population something for nothing, or nothing for something.

11 This means, for example, that  in the case
of (G3).
12 We require 3 continuous derivatives because the proof uses the Lagrangian process , and to
apply Itô’s formula to this we request two continuous derivatives for V ′.
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I I I . G o v e r n m e n t  B o r r o w i n g  a n d  T a x a t i o n

The government’s optimal policy has been determined, but the issue now is how to implement
that policy when the government cannot directly control the private sector, but can only shape
its choices through taxation and the issuing of government debt. Since the optimal policy of the
previous Section was Markovian, in the sense that the total technology-adjusted per capita capital
k was a Markov process (even a diffusion), we shall now seek Markovian taxation policies,
which are defined by the property that the rates of tax are functions only of k.

Before we can understand the effects of government fiscal policy, we have to understand the
behaviour of the private sector on which it acts, and we turn to that now. We think of the private
sector as made up of a very large number L0 of identical households; if one of these households
receives a flow (∆Ct)t ≥ 0 of the consumption good, then it values this flow as

(3.1)

and it wishes to maximise this. Here, u is strictly concave, increasing in its first two arguments, and
decreasing in the third, and ρp > 0 is constant. The felicity u depends on the per capita level of govern-
ment capital, and on the per capita rate of consumption for the household, which is assumed to
be subject to the same size fluctuations as the entire population; it also varies inversely with the
proportion of effort devoted to production. As with the government objective, we assume that u is
homogeneous, of degree (1 − Rp), where Rp > 0 is different from 1, and typically different from Rg.

We suppose that the objectives of the government and private sector are different, and that
the government aims to set taxes and to borrow in such a way as to induce the private sector to
follow the government’s desired path. We need now to decompose the dynamics (2.1) of the
economy so as to understand the effects of the taxes. Homogeneity of order one of F implies13

that we may express the output as the sum of three terms,

F(Kp, Kg, L) = KpFp(Kp, Kg, L) + KgFg(Kp, Kg, L) + LFL(Kp, Kg, L),  (3.2)

which are interpreted as the return on private capital, the return on government capital, and the
return on labour, respectively.

We shall suppose that the government is able to appropriate some fixed proportion 1 − θp − θL

of the returns to its capital by direct charging for services such as toll roads, university tuition
fees, subsidised rail fares, and some healthcare costs, but it is in the nature of government
expenditure that much of the return on government capital cannot be directly appropriated, so
in practice this proportion may be near to zero. A proportion θp of the returns to government
capital are included in the returns to private capital, and the remaining proportion θL is included
in returns to labour, so that from an accounting point of view we suppose that the returns on
private capital and labour are (respectively)

KpFp + θpKgFg, θ LKgFg + π LTFL, (3.3)

with the remaining (1 − θp − θL)KgFg going directly to government.
The evolution of the levels of private and government capital are determined by the equations

dKp = dIp − δ Kpdt (3.4)

dKg = dIg − δ Kgdt, (3.5)

13 Differentiate the identity (2.2) with respect to λ.
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where Ip(t ) is the cumulative amount invested in private capital by time t.
The government will issue debt and levy taxes; returns on private capital will be taxed at rate

1 − β k, income at rate 1 − β w, consumption at rate 1 − β c, and interest on government debt at
rate 1 − β r, so that the private sector’s aggregate budget equation14 is therefore

(3.6)

where Dt denotes the amount of government debt at time t. The interpretation of the left-hand
side is that this is the total outgoings of the private sector: the investment in private capital, the
investment in government debt, and the cost of consumption. The right-hand side (3.6) is the
after-tax income of the private sector: return on private capital plus interest on government debt
plus wage income.

The relation (3.4) can be used to eliminate dIp and rewrite the private-sector budget equation as

(3.7)

which bears the simple interpretation that the change in private-sector wealth is accounted for
by the return on private capital (adjusted for depreciation) plus the return on government debt,
less consumption, plus the wage income, plus unappropriated return on government capital.

Recall that we seek tax rates as functions of k which will cause the private sector to follow
the government’s optimal trajectory. So we shall suppose that such tax rates have been set, the
economy as a whole is following the government’s optimal policy as discussed in Section II,
and shall consider the optimisation problem faced by a single household. If any deviation from
the government’s optimal path is suboptimal for the individual household, then we have an
equilibrium in which all households follow the government’s optimal path; we shall suppose
that this is what happens, and deduce the implications for the tax rates and borrowing policy.
These are summarised in the following result.

Theorem 2 Suppose that the government sets proportional taxes 1 − β c on consumption,
1 − βw on income, 1 − β k on returns on private capital, and 1 − β r on returns on government
debt, all functions only of the total technology-adjusted per capita capital k in the economy at
the time. If there exists a C 2 function ψ, and a function r such that the equations

(PS1)

(PS2)

uπ = −βwFLψ (PS3)

βk Fp = rβr + δ (PS4)

all hold along the government’s optimal path15, where λp = ρp − (1 − Rp)µ T, then the private
sector faced with these tax rates will choose to follow the government’s optimal path, provided
the transversality condition

(PST)

is satisfied, where x ≡ kp + ∆p is the total technology-adjusted per capita wealth of the private
sector, split between private capital kp and government debt ∆p.

14 Arrow and Kurz have also a tax on savings, which alters the term dIp + dD in (3.6) to .
Since this could be absorbed into our formulation simply by reinterpreting the other β, we lose no generality
by studying the equations as given.
15 For example, in full (PS3) says .
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Proof. See Appendix A.

Remarks (i) Of course, the way we plan to use Theorem 2 is to enable us to find the tax
regimes which will persuade the private sector to follow the government optimal path. So if we
suppose that the government’s optimal path has been determined, as in Section II, we want now
to know whether it is possible to have the conditions (PS1), (PS2), (PS3) and (PS4) all holding
at the same time. But this is in fact quite easy: for example, if we choose the functional form
of β c and β r , then (PS2) determines the function ψ and then β k , βw and r are determined from
(PS1), (PS3) and (PS4) respectively.

(ii) Note the similarities between conditions (PS1), (PS2) and (PS3) and the corresponding
conditions (G1), (G2) and (G4) of Theorem 1. If we set the tax rates to zero (so β k = 1 etc.) then
these conditions of Theorem 2 are identical in form to those of Theorem 1; however they
depend on the private sector parameters λ p and γ and on the private sector utility function u
rather than the corresponding government quantities. Only if the private sector and government
share identical values λ p = λ g, γ = γp and u ≡ U will the private sector follow the government’s
optimal path under a no-tax regime.

(iii) We do not claim (nor is it true in general) that the solution is Markovian in the sense
defined above, because the process ∆ p may fail to be a function only of k*. However, it is
possible16 to express the private sector’s wealth x ≡ kp + ∆ p as

(PSW)

where

G0(k) = (F − c*)/k − β kFp, (3.8)

(3.9)

with the understanding that F and its derivatives are evaluated along the optimal path; see
Appendix B for the details.

In general, the expression (PSW) for the private-sector wealth will be path dependent;
the effects of earlier borrowing persist. In this sense, the solution is not Markovian, in that
private-sector wealth depends not just on k, but on the history of k. A special situation
obtains when

B(k) = qkG0(k) > 0; (3.10)

the integral in (PSW) is exact, and under mild conditions (ergodicity of k will certainly be
enough) we can let s → −∞ in (PSW) to learn that

xt = qkt; (3.11)

the private sector’s wealth is a fixed proportion of the total capital in the economy.
(iv) Note the interpretation of (PS4): the net return on private capital β kFp is equal to the net

return on debt rβ r plus depreciation δ.

16 See (A.5).
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P A R T  I I

I V . E x p l i c i t  S o l u t i o n s :  T h e  G o v e r n m e n t ’ s  P r o b l e m

Given the government’s felicity function U, impatience parameter λg, and the production
function F, it will in general not be easy to find the value function V. Our approach here is to
solve the inverse problem: given the government’s felicity function U, impatience parameter λg

and V, try to find a production function F for which V is the value.
The homogeneity of degree 1 − Rg assumed for U gives the expression

(4.1)

where h(x, π ) ≡ U(x, 1, π ), and ξ ≡ c /kg. Differentiation gives

(4.2)

(4.3)

(4.4)

Accordingly, the conditions (G1)–(G5) of Theorem 1 take the form

(g1)

(g2)

(g3)

(g4)

Φ = f − γ gk − c (g5)

The reason for the notational switch from F to f is that in Theorem 1 the production function
F was known, with certain assumed properties, such as concavity, monotonicity and homogeneity.
Here however, we shall be starting with assumed forms for h, V, and ξ, π , and will use (g1)–
(g5) to try to find F. Of course, we will use (g1)–(g5) to try to define f, fp, fg, fL, but there is a
priori no reason to suppose that there is any (concave, increasing, homogeneous) function F
relating them, and the use of a different notation is to emphasise that no such relations should
be assumed. For F, the homogeneity property (3.2) holds17, giving us

F = kp Fp + kg Fg + π FL, (4.5)

and differentiating  gives us

(4.6)

along the path, but there is no reason to suppose that the corresponding properties

f = kp fp + kg fg + π fL, (g6)

and

(g7)

should hold for f, fp, fg, fL obtained from (g1)–(g5). Certainly properties (g6) and (g7) are
necessary for f, fp, fg, fL to be related through a production function F; the remarkable thing is
that (g6) and (g7) are effectively sufficient for such a relation, as the following result establishes.

17 For this Section, we will omit the superscript stars when not essential.
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Theorem 3 (Extension Theorem) Suppose given monotone18 C1 functions z : �+ → �+
d  and ψ :

�+ → �+
d , where ψ and z are co-monotone19, and C 1 φ : R+ → �+. Then the following are equivalent.

 (i) There exists some concave F : �+
d → �+ which is increasing in each argument, and homo-

geneous of degree 1, such that for all t ≥ 0

φ (t) = F(z (t)) (4.7)

and ψ (t) is a supergradient 20 to F at z(t).
(ii)

φ (t) = z (t) ⋅ ψ (t) (4.8)

φ′(t) = z ′(t) ⋅ ψ (t) (4.9)

Remarks The amazing thing about this result is that knowledge of φ and ψ only tells us about
the function F and its gradient at points on the path z; nevertheless, co-monotonicity and (4.8)–
(4.9) are together sufficient to extend F off the path z so as to be globally concave, homogeneous
and increasing.

Proof.
(i ) ⇒ (ii ) is immediate in view of the previous discussion.
(ii ) ⇒ (i ). Define for each x ∈ �d

+ and each t ≥ 0

Λ(x; t) ≡ φ (t) + (x − z(t )) ⋅ ψ (t) 
= x ⋅ ψ (t)

in view of (4.8). Notice that Λ(⋅; t) is concave, increasing, and homogeneous of degree 1.
If there were to be a concave F with the properties we seek, then Λ(⋅; t) would have to be a
supporting hyperplane to F at z(t). Consequently, we define F by

(4.10)

and observe that F(z(t)) ≤ φ (t). We also observe that ψ (t) is a supergradient to F at z(t), so all
that now remains is to establish (4.7), for which we must check is that for all t, w ≥ 0,

φ (t ) ≤ Λ(z (t); w) = φ (w) + (z (t ) − z (w)) ⋅ ψ (w).

However, for 0 ≤ t < w,

18 By this we mean that each component of z is monontone; some components may be increasing while
others are decreasing.
19 That is, ψ increases in the components where z decreases, and vice versa.
20 That is, F (y) ≤ F(z(t)) + ψ (t) ⋅ ( y − z(t)) for all y.
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using (4.9) going from the first line to the second, and using the co-monotonicity going from
the second line to the third. The case w < t follows mutatis mutandis.

The strategy should now be clear. We assume given U, V, λ g, γg, and shall propose π (⋅), ξ (⋅).
We now use (g2) to determine kg(⋅), which will tell us what U(k) ≡ U(c(k), kg(k), π(k)) should
be, and then we use (g3) to give us fp − fg, (g4) to give us fL. As yet, we do not know fp, but from
(g6) we have

f = k fp − ( fp − f g)kg + π fL,

so substituting this into (g5), (g1), gives us fp in terms of known functions. All that remains is to
check (g7) and the co-monotonicity of (kp, kg, π) and (fp, fg, fL), and the Extension Theorem finishes
the job for us, constructing a production function F. The check of (g7) will impose an equation to
be satisfied by the proposed π(⋅), ξ(⋅), so we are not able to choose both of these freely.

Carrying out this program in more detail, we have firstly from (g2) that

kg = (hξ /V ′ )1/Rg, (4.11)

then dividing (g3) by (g2) we learn that

(4.12)

dividing (g4) by (g2) gives us

(4.13)

Using (g5), (g6) and (g1) gives two alternative expressions for Φ:

Rearrangement gives an expression for fp:

(4.14)

Now (g6) holds by construction, so (g7) will hold if and only if

a condition equivalent (in view of (4.14)) to

(4.15)
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V . P a r t i c u l a r  C h o i c e s

a) Special forms for V and U

The equation (4.15) is as far as we can expect to get without more specific assumptions. In
this Section, we shall make some very specific assumptions to begin the exploration of this
model. We shall see that these assumptions are in a sense too special, but they give us a place
to begin. We shall take the value function to be CRRA:

(5.16)

for some S ∈ (1, Rg), and positive A. Notice that this eliminates the first term in (4.15). Inspection
of this equation suggests that we should introduce the function

ϕ (k) ≡ kg(k )/k. (5.17)

Our next assumption concerns h, which we shall suppose is of Cobb-Douglas form,

h(ξ, π) = −ξ −ν(1 − π )−κ, (5.18)

for positive ν, κ , where we assume that

ω ≡ Rg − 1 − ν > 0. (5.19)

Returning to (g2), (g3), (g4) gives us respectively

(5.20)

(5.21)

(5.22)

This now allows us to write ξ as a function of π, and, assuming ϕ has been chosen, to treat (4.15)

as an equation to determine π. The derivatives of π vanish from this equation, and π is
determined simply as

(5.23)

a constant 21 in (0, 1)! Abbreviating (1 − π)−κ /(1+ν)A−1/(1+ν) to ag, we are able to simplify various
expressions:

c = agk(S−ω)/(1+ν)ϕ −ω /(1+ν) (5.24)

(5.25)

(5.26)

21 In fact, it can be shown that π is constant whenever h is separable.
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(5.27)

(5.28)

Φ = Qk + ν −1c (5.29)

(5.30)

where

b) A special form for ϕ

This is as far as we can get without specific choices for ϕ. Let us then assume that there exist
positive constants a0, a1, b, and α such that

ϕ (k) = a0 + a1(1 + bk)−α. (5.31)

Notice that ϕ is decreasing; the interpretation of this is that the government’s share of capital
should decrease as the total stock of capital grows. There may be interest in other types of
behaviour, but this seems a natural enough property for any realistic economy. Note also that
we shall require that

a0 + a1 ≤ 1 (5.32)

in order that 0 ≤ ϕ ≤ 1 everywhere. We propose also to restrict attention to situations where
both kg and kp are increasing, just to fix ideas. This will not happen for all possible parameter
choices, but by insisting that

α ≤ 1 (5.33)

we guarantee that kg is increasing (kp is automatically increasing). We now have to ensure the co-
monotonicity, which is to say that fp and fg are both decreasing (the monotonicity of fL is irrelevant
in view of the fact that π is constant.) For the decrease of fp (equivalently, of c/k), it is sufficient that

(5.34)

a condition that we shall assume. Finally, we have to guarantee that fg decreases, and that it is
non-negative. For non-negativity, it is sufficient to suppose that

a0 > ω /S (5.35)

which we shall also assume22. Now fg is decreasing as a function of k if and only if it is increasing
as a function of z ≡ (1 + bk) −α; a few calculations now lead to the conclusion that the condition
(5.34) will also ensure that fg is decreasing.

We therefore have the required co-monotonicity to apply the Extension Theorem, and deduce
that there does exist a production function consistent with the solution constructed here. It
remains for us to check the transversality condition (GT), which concerns the growth of .
Since k* solves the SDE

22 Note that this imposes the condition ω ≡ Rg − 1 − ν < S.
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dk = σ kdw + (Qk + ν −1c)dt,

by the Yamada-Watanabe stochastic comparison theorem (see, for example, Rogers and Williams
(2000), V.43), since c ≥ 0 we can say that k is pathwise everywhere above the solution y to the SDE

dy = σ ydw + Qydt.

This then bounds

using the particular expression for Q. In view of this, provided the inequality

(5.36)

is satisfied (which we shall assume), the transversality condition (GT) is satisfied.

c) Taxation and the private sector

The government’s choice of taxes will depend on the private sector’s preferences, which we
here will assume are of the form

(5.37)

where νp > 0, ωp ≡ Rp − 1 − νp > 0 and κ p > 0. We modify the notation of the previous subsections
by writing ωg in place of ω, νg in place of ν and so on, to emphasise the distinction between
government and private-sector parameters in what is an otherwise similar specification. With
the private sector’s felicity function specified as above conditions (PS2) and (PS3) from Theorem
2 combined with the very similar conditions (G2) and (G4) from Theorem 1 tell us that

(5.38)

say, a constant.
The equations (PS1)–(PS4) do not determine the tax rates uniquely; we could, for example,

pick any nice enough ψ and then invert those four equations to find the β ’s. We therefore
propose to study two possible approaches, applied to a few numerical examples.

We will consider the following parameter regimes for government:

Cautious government: Rg = 4, Sg = 3, λg = 0.02, σ = 0.02, δ = 0.1, µL = 0.02, µT = 0.03, νg =
1.2, a0 = 0.1, a1 = 0.8, b = 1, κ g = 0.2, α = 0.9;
Adventurous government: Rg = 1.5, Sg = 1.4, λg = 0.2, σ = 0.1, δ = 0.2, µL = 0.05, µT = 0.05, νg

= 0.2, a0 = 0.3, a1 = 0.65, b = 1, κ g = 0.2, α = 0.5;

and the following parameter regimes for the private sector:

Cautious private sector: Rp = 4, νp = 2.5, κ p = 0.06, λ p = 0.04;
Adventurous private sector: Rp = 2, νp = 0.5, κ p = 0.06, λ p = 0.14;
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The cautious government has a relatively high coefficient of relative risk aversion Rg = 4, and
has quite a long mean look-ahead time in its objective (50 years). The volatility and mean of
population growth are both quite small, as would be expected. The technology is also growing
at a modest rate of three per cent. When k = 0, the government holds 90 per cent of all the
capital, but as k → ∞, this falls to 10 per cent.

The adventurous government (perhaps in a developing nation) has quite small co-efficient
of relative risk aversion, and a short mean look-ahead time, five years (next election?!). The
population is growing faster, with more volatility, and technological progress is also faster.

Figure 1. Invariant density, βk, and r, cautious government, and cautious private sector (βk above r, βc = βw

= 0.38)

Figure 2. Invariant density, βk, and r, cautious government, and adventurous private sector (βk above r, βc

= βw = 0.849)
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The cautious private sector is more risk-averse, and also has a longer mean look-ahead
(25 years) than the adventurous private sector.

Approach 1: constant ββββc, ββββw. This approach is driven by the fact that the product βcβw is
constant. We use the relation (PS2) to determine ψ, and then the ODE (PS1) gives us β k. We
shall make the not unreasonable assumption that β k = β r as the way to determine the short rate
r. We present the plots of the invariant density (scaled to have height 1), βk, and the short rate
r for the four possible combinations of government and private sector.

Figure 3. Invariant density, βk, and r, adventurous government, and cautious private sector (βk above r, βc

= βw = 0.155)

Figure 4. Invariant density, βk, and r, adventurous government, and adventurous private sector (βk above r,
βc = βw = 0.346)
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We see some very reasonable values for the tax rates and interest rates, reflecting the nature
of the two participants in the economy. For example, the cautious government has to offer the
cautious private sector a tax break on returns to capital in order to get the private sector to invest.
The adventurous government must actually penalise the cautious private sector for investing in
government debt if k is too high – there is too much capital around for the government’s liking,
and the private sector is to be induced to consume. In all four examples, the riskless rate
falls as capital rises, which is intuitively reasonable; high rates of interest are needed at low
k to get the private sector to invest so as to raise capital levels, but the need for this diminishes
as k rises.

Approach 2: . Looking at (5.24), we see that for small values of k we have
, so a few calculations show that

using (PS2). Here, the constant Sp satisfies

We therefore propose to take  for all k > 0, and derive the forms of the β s from that.
Once again, we see tax rates that make a lot of sense: the cautious government facing the

cautious private sector gives a subsidy on returns to capital, but gives a low rate of interest on
riskless investment. The cautious government encourages the adventurous private sector by tax
breaks on returns to invested capital, and lowered tax on labour income as k rises, but takes more
of consumption in tax as k rises. The adventurous government faced with a cautious private sector
gives negative rates of interest when k is high, but quite generous positive rates when k is low so
as to encourage investment. In contrast, the rates of tax on consumption and on labour income
remain almost constant; as a result, as would be expect then, Figures 3 and 7 look very similar.
Similar comments apply to the case of adventurous government and adventurous private sector.
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Figure 5. Invariant density, βc, βw, βk, and r: cautious government, and cautious private sector. (βk > βc >
βw > r on the right of the diagram)
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Let us briefly explore the implications of this model for the riskless rate. Under the assumption
that βr = βk, we have that

r = Fp – δ /β k,

which in this case gives us explicitly that

(5.39)

Figure 6. Invariant density, βc, and βw, βk, and r: cautious government, and adventurous private sector. (βk

> βc > βw > r on the right of the diagram)

Figure 7. Invariant density, βc, and βw, βk, and r: adventurous government, and cautious private sector. (βk

> βc > βw > r on the right of the diagram)
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The interest rate is thus expressed as a function of the underlying diffusion k, which itself
solves the SDE

(5.40)

If we take ϕ to be constant, then c is proportional to k B, where B ≡ (Sg − ωg)/ (1 + νg); the SDE
can now be reduced to linear form by considering instead the variable ζ ≡ k 1−B which solves

Merton (1975) finds structurally similar interest rate processes in a study of a single-sector growth
model, and Kloeden and Platen (1992) present this under the name of the stochastic Verhulst equation.

V I . C o n c l u s i o n s

We have introduced stochastic population fluctuations into the model of Arrow and Kurz
(1970), which we have further modified by allowing the population to choose the proportion of
its time to devote to working, as in the original model of Ramsey (1928). With these modifications
we have then solved the government’s central-planning problem. Under the assumption that tax
rates are chosen so that the private sector, optimising its own utility functional, follows the optimal
path of the government we have found tax and interest rates as functions of per-capita technology-
adjusted capital – in other words, closed-loop control.

While it is not obvious whether the original problem can be solved in closed form if we
assume that the production function is given, in a methodological innovation we have shown
that the inverse problem, of finding a production function which gives rise to a particular (simple
explicit) solution, may be solved in considerable generality. This opens the way to a host of
explicit solutions, some of which we have begun to explore. The dependence of tax rates and
interest rates on the state variable in the few examples we have studied takes on credible forms;
there is scope for fitting the model to data, but such a study must wait til later.

dk kdW Q k c kg   ((   )   ( )).= − + + + −σ σ ν2 1

d B dW B Q B a dtgζ σ ζ σ σ ζ ν  (   )   (   ){(     )   }= − + − + − + −1 1
1

2
2 2 1

Figure 8. Invariant density, βc, and βw, βk, and r: adventurous government, and adventurous private sector.
(βk > βc > βw > r on the right of the diagram)
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A p p e n d i x  A . P r o o f s

Proof of Theorem 1. Suppose that the process kt has dynamics given by (2.11) for some
consumption process ct and some choice  θt = kg(t)/k(t) of the proportion of capital held by the
government. We define a Pg-Brownian motion w by −zL ≡ σw and introduce a (Lagrangian) semi-
martingale  where Ψ = V ′ and k* is the conjectured optimal process, satisfying
(2.20), and where

d Ψt ≡ Ψt(at dw + bt dt).

We have for any stopping time τ that (omitting explicit appearance of t in most places)

for some Pg-local martingale M ; this is just obtained by integrating the process  by
parts. Taking a stopping time τ which reduces M strongly, we can now take expectations to obtain

(A.1)

We now consider the maximisation over k, c, kg and π of the integrand on the right-hand side of
(A.1): the first-order conditions we obtain will be

Ψ(k*)(Fp(kp, kg, π ) − γ g ) = (λ g − b − aσ )Ψ(k*)

Uc(c, kg, π ) = Ψ(k*)

Ug(c, kg, π ) = Ψ(k*)(Fp − Fg)

Uπ(c, kg, π ) = −Ψ(k*)FL.

The last three of these are satisfied at c = c*(k*), , π = π *(k*) in view of (G2),
(G4) and (G3). The first is satisfied due to (G1), since from the Itô expansion of Ψ(k*) we must
have that

To summarise then: the integrand on the right-hand side of (A.1) is maximised at c = c*(k*),
, , π = π *(k*). Reversing the integration-by-parts argument by which we

arrived at (A.1), we conclude that23

23 There is a detail here: the stopping time τ which reduced M strongly may not reduce the corresponding
local martingale for the optimal process. We can nevertheless replace τ by a stopping time which is no
larger and which reduces both local martingales. Since we are interested in letting the reducing time tend
to infinity, this little change affects nothing in the end.
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Now it only remains to let the reducing time τ tend to infinity, and appeal to the transversality
condition (GT), together with the fact that U does not change sign to give us the required
optimality result.

Proof of Theorem 2. The strategy is firstly to discover the dynamics faced by a single
household optimising in an economy which is following the government’s optimal path. Next
we rework the private household’s objective, expressing it in intensive variables. We then use
the Lagrangian method to characterise the private household’s optimal path.

So suppose we consider what happens if we add one more household to the (large) economy
which is following the government’s optimal path. The total labour available has increased by
Lt /L0, an O(1) quantity, and the total amounts of both types of capital and of government debt
will also have changed by an O(1) quantity. If ∆C, ∆Kp, ∆D denote the changes in the correspond-
ing aggregate quantities, and 9 denote the proportion of effort which the new household devotes
to production, then the perturbation of (3.7) to leading order is not

(A.3)

This is because if we consider the change in (3.7) when the new household joins, not only do the
total amounts of capital, labour, consumption and debt change by the O(1) amounts indicated
in (A.3), but the coefficients β. and the derivatives f. also get changed, by amounts which are
O(1/L0). Since these changes then get multiplied by quantities which are O(L0), the net impact
on the budget equation of these changes is still O(1). Nevertheless, we argue that equation (A.3)
is the correct equation for the evolution of the new household’s wealth, where the tax rates and all
derivatives of f are evaluated along the original (government-optimal) path. This is because the
quantities on the right-hand side of (A.3) are items directly visible to the new household: the
return on its private capital, the wages for its labour, etc. The other O(1) changes in the budget
equation, such as the changes in total wages due to the O(1/L0) shift in wage rates, get distributed
among the population as a whole, and so have only an O(1/L0) effect on any one household.

This agreed, the problem facing the typical private sector household is to optimise the
objective (3.1) with the dynamics given by (A.3), where the tax rates, the β., the f., r and f are
all evaluated along the government’s optimal path. As with the government’s problem, we first
reduce to technology-adjusted per capita variables, expressing the objective as

(A.4)
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where we are reserving starred variables ( ) for the government’s optimal values, and are
using the notations24

kp ≡ ∆Kp L0/η, ∆p ≡ ∆DL0/η, ct ≡ ∆CtL0/ηt, λ p ≡ ρ p − (1 − Rp)µT .

The dynamics (A.3) implies the following dynamics for the (technology-adjusted per capita)
private-sector wealth process x ≡ kp + ∆p:

(A.5)

where we have used (4.9) and the abbreviations .
Let us now combine the objective (A.4) with the dynamics (A.5) using a Lagrangian process

, where by Itô’s formula

dψ * = ψ *[−a*dZ + b*dt], (A.6)

using the notation , and where

a(k) = kψ ′(k)/ψ (k) (A.7)

(A.8)

Again omitting superfluous appearances of the time variable, integrating  by parts
gives us for the Lagrangian

where M is some continuous local martingale. Now because we are assuming that the conditions

24 This notation conflicts slightly with the earlier use of c, kp for the technology-adjusted per capita
consumption C/η and private capital Kp /η. For the remainder of this proof, we shall treat c and kp as local
variables, distinct from those discussed earlier, and to be freely chosen by the private sector household. It
will turn out in the end that the private sector will choose , of course.
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of Theorem 2 hold, and using the identity σ 2 = γg − γ, we deduce that

for some other local martingale M. Here, we obtained the second line by reversing the integration-
by-parts used on the Lagrangian form. Taking expectations gives us that 

and the transversality condition (PST) allows us to let τ → ∞ to conclude that

as required. �

A p p e n d i x  B . T h e  W e a l t h  P r o c e s s  X

The dynamics

dk = σ kdW + /(k)dt. (B.1)

of k and the dynamics (A.5) of x

dx = x (σ dW + (δ + rβ r − γ )dt ) + Bdt

allow us to develop x/k:

(B.2)
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The SDE (B.2) can be solved reasonably explicitly: for s < t,

(B.3)

A p p e n d i x  C . T h e  O n e - s e c t o r  P r o b l e m

In the one-sector problem there is no distinction between public and private capital, and we can
follow a similar development; or we may alternatively deduce the one-sector results as special
cases of the two-sector results above. Either way, we will assume that the private sector works
all the hours available to them (π  = 1 in the previous notation) so that the rate of production is
given simply by F(K, LT ) ≡ LT f (k) and the objective of the government is to maximise

where we use exactly the same notation as in the two-sector problem, and again assume that U
is homogeneous of order 1 − Rg. The optimality equations corresponding to those of Theorem
1 are

(C.1)

Φ(k) = f (k) − γg k − c (C.2)

U ′(c) = V ′(k). (C.3)

We have assumed that U is homogeneous of order 1 − Rg so it must have the Constant Relative
Risk Aversion (CRRA) form

with Rg > 0 and Rg ≠ 1. Again it is possible to construct an explicit solution to the government’s prob-
lem; choosing V, we find the optimal c from (C.3), then deduce Φ from (C.1), and then deduce f
from (C.2). It remains only to check that the f so obtained is concave, increasing and non-negative.

As a simple example, if we pick a value function that is also CRRA

with AV > 0, S > 0 and S ≠ 1 then (C.3) gives us
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and then (C.1) yields

Finally (C.2) gives

For these last two equations to make economic sense we require that

Q + γ g ≥ 0, Rg > S >1.

A p p e n d i x  D . S u m m a r y  o f  N o t a t i o n

A t argument/subscript denotes a quantity at time t. Other subscripts are used to denote partial
differentiation in the case of functions of two or more variables (e.g. fg ≡ ∂f /∂kg). Notation
unique to the section on explicit solutions (Section IV) is not covered in this appendix.

C Consumption rate
D Level of government debt
Ig Amount invested in government capital
Ip Amount invested in private capital
K Total capital
Kg Government capital
Kp Private sector capital
L Labour force/population size
T Technology level
X Total private sector wealth Kp + D
c, k, kg, kp, x ≡ C/LT, K/LT, Kg/LT, Kp/LT, X/LT

Optimal values of c, kg, π for a given k
1 − βc Tax rate on consumption
1 − βk Tax rate on returns on private capital
1 − βr Tax rate on returns on government debt
1 − βw Tax rate on wages
∆p ≡ D/η
∆C, ∆D, ∆Kp Per household rate of consumption, holding in government debt

and amount of private capital
η ≡ LT
ξ ≡ C/Kg ≡ c/kg

π Proportion of time devoted to production
F(Kp, Kg, π LT ) Production (rate) function
U(c, kg, π) Government felicity function
u(c, kg, π) Private sector felicity function
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V(k) Government value function
Φ(k) . The drift in k along the optimal

path under Pg

/(k) . The drift in k along the optimal
path under P

ψ The Lagrange multiplier process corresponding to the private sector’s
optimization problem.

E, Eg Expectation taken under P, Pg respectively
P Real world probability measure
Pg Government’s valuation measure
Rg U is homogeneous of order 1 − Rg in c, kg

Rp u is homogeneous of order 1 − Rp in c, kg

δ Rate of depreciation of capital
γ ≡ δ + µL + µT + −σ 2

γg ≡ γ + σ 2

θp, θ L Proportion of return on government’s capital included in returns to
private sector capital and labour respectively

λg ≡ ρg − (1 − Rg)µT – µL

λp ≡ ρp − (1 − Rp)µT

µL Exponential drift term of labour
µT Exponential growth rate of technology level
ρg, ρp Government and private sector utility time-discount factors
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