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Abstract

In this paper, we seek a model for asset returns which reproduces several well-
documented stylized facts:

1. log returns are not Gaussian;

2. absolute log returns are serially correlated, but the log returns are not;

3. the Taylor effect.

There are many attempts to deal with the first, using various log-Lévy models for
the asset; some of these are successful in fitting the unconditional distribution of log
returns, but cannot of course reproduce the second stylized fact. We propose to model
the returns with a hidden two-state Markovian regime (as in [24]), conditional on the
value of which the returns have different distributions. A key observation is that if the
means of the returns in the different regimes are the same, then the log returns are
automatically uncorrelated, so we fit to index data under this restriction. By choosing
symmetric hyperbolic distributions for the conditional returns, we are able to fit well
the unconditional distributions, the autocovariances of absolute returns and the Taylor
effect. Moreover, we find that a common regime model explains simultaneously these
statistics for the S&P500, FTSE, DAX, Nikkei and CAC40.

Implications for investment and option pricing are discussed.
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1 Introduction

The study of the asset returns has led to the settlement of some old disputes regarding
the nature of the data but has also generated new challenges. A set of properties,
common across many instruments, markets and time periods, has been observed by
independent studies and classified as ’stylized facts’. In the light of the previous research
[6, 7, 10, 13, 14, 20, 22, 26], we focus on the following properties in this paper (especially
the first three).

1. Log returns are not Gaussian: the (unconditional) distribution of log returns
seems to display a power-law or Pareto-like tail for most data sets studied.

2. Absolute log returns are serially correlated, but the log returns are not:
autocorrelations of asset returns are often insignificant while the autocorrelation
function of absolute returns decays slowly as a function of the time lag.

3. The Taylor effect: autocorrelations of powers of absolute return are highest at
power one.

4. Aggregational gaussianity: as one increases the time scale over which returns
are calculated, their distribution looks more and more like a normal distribution.

5. Volatility clustering: different measures of volatility display a positive autocor-
relation indicates that high-volatility events tend to cluster in time.

6. Gain/loss asymmetry: large drawdowns in stock prices and stock index values
but not equally large upward movements. In other words, the distribution is
skewed.

The first has been studied widely and particular choices for the Lévy processes have
been proposed to fit the unconditional distribution of log returns [2–4, 8, 11, 18, 19, 25].
However, the second stylized fact can not be reproduced by these methods. So we
propose to model the log returns with a hidden two-state Markovian regime (HMM,
also known as Regime Switching Model), conditional on the value of which the returns
have different distributions.

The Regime Switching Model was first introduced by [17], followed by [16, 23, 29].
In the last two decades, this model has been used in explaining US real GNP [15],
interpreting futures markets [1] and analysing foreign exchange markets [21]. In this
model, it is suggested that the market returns flip between different states according to
a Markov Chain; in each state, returns have the same distribution (usually Gaussian) but
with different parameters. This structure can provide a simple explanation of volatility
clustering.

In this paper, we propose a model with new (non-gaussian) distributions for the
regimes. More importantly, we prove that if the means of the returns in the different
regimes are the same, then the returns are automatically uncorrelated. Fitting subject
to this constraint guarantees that the returns are not serially correlated; as we shall
show, it proves to be possible also to match the observed serial correlation of absolute
returns, which has not been achieved by the previous model [24]. The calibrated model
also exhibits the Taylor effect.
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Under these restrictions, we fit index data (S&P500, FTSE, DAX, Nikkei and CAC40)
to various return distributions. Some of the distributions investigated are rejected by a
Kolmogorov-Smirnov (KS) test; of the survivors, some do not have closed-form expres-
sions for the characteristic function, which renders them unsuitable for option pricing.
In the end, we settle on symmetric hyperbolic distributions for the conditional returns,
as we find that this choice allows us to match well the stylized facts recorded above. If
necessary, the regime distribtions could be extended to hyperbolic distributions to per-
mit asymmetry of returns. Eberlein & Keller [11] prove that this distribution satisfies
‘aggregational gaussianity’.

The fitting of the five indices results in estimates of the posterior probabilities of
the state of the hidden Markov chain, which allows us to discuss optimal investment
strategy and option pricing.

The plan of the paper is as follows. Section 2 contains the model setup, and discusses
the ACF of returns and absolute returns in this model. Conditional on the state of
the hidden Markov chain, the returns are drawn from some parametric distribution,
and we present the candidate distributions which have been considered. The data we
fitted is introduced in Section 3, followed by the calibration and statistical testing in
Section 4. Section 4.2 demonstrates how well the Taylor effect is explained by fitting
the model based on the symmetric hyperbolic distribution. In Section 5, we discuss
various consequences of the model fitting from Section 4, in particular, how the posterior
probability of the two states evolves over time; how one would optimally invest given
these dynamics, and how to price options in such a model. The paper is concluded by
Section 6.

2 Model Setup

2.1 Two-state Markovian Model

We choose to model the asset dynamics through a two-state hidden Markov model
(HMM). There is no reason why the HMM should not have more than two states or a
time-varying transition matrix. However, previous research [1,24] into three-state chains,
or time-varying jump intensities fails to reveal any conclusive advantage. Set against this
is the additional complexity of estimation and filtering, which can be expected to be a
substantial technical obstacle. Moreover, we find that the much simpler two-state chain
already does a perfectly adequate job, which is why we stick to a two-state Markovian
model with constant transition matrix.

We work throughout in discrete time, as our data will be daily prices. The modelling
assumption is that there is an unobserved ergodic Markov chain (ξn)n∈Z which takes
values in I = {1, 2}, moving between the states according to the transition matrix P .
The invariant law of ξ will be denoted by π. Independently of ξ, we have two sequences
(Xi

n)n∈Z of independent random variables, i = 1, 2, with Xi
n ∼ Fi for all n and i, in
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terms of which the return rn on day n is expressed as

rn =

2
∑

i=1

I{ξn=i}X
i
n. (2.1)

We shall shortly discuss various forms for the distribution functions Fi; for now, we shall
write

µi =

∫

x Fi(dx)

for the mean of the distribution Fi.
According to Granger et al. [14], there is no empirical evidence to reject the hypothe-

sis that asset returns are uncorrelated. The following elementary result guarantees that
if the two means µ1 and µ2 are equal, then the model has this property.

Proposition 1. Suppose that µ1 = µ2 = µ. Then

E[rnrn+k] = µ2 (2.2)

for any k > 0 and n ∈ Z.

Proof. Fix k > 0 and let X ≡ σ(ξm,m ∈ Z). From (2.1), we see that

E[rnrn+k] = E[E[rnrn+k | X ]]

=
2
∑

i=1

2
∑

j=1

E[E[Xi
nXj

n+k | X ]; ξn = i, ξn+k = j]

=

2
∑

i=1

2
∑

j=1

E[µiµj; ξn = i, ξn+k = j]

= µ2,

using the fact that the X’s are independent of X and of each other, and then using the
hypothesis that µ1 = µ2.

�

Remarks. (i) The proof does not require that the chain has two states; any Markov
chain ξ for which the conditional means µj are the same for all j will have uncorrelated
returns.

(ii) The model of Rydén et al [24] follows a similar modelling path, using a two-state
or three-state hidden Markov chain and conditionally independent returns driven by
that chain. The main differences between our work and theirs is that they assume
that the distributions F1 and F2 are zero-mean Gaussians, whereas we consider other
distributional forms, and allow the (common) mean to be non-zero. We shall also show
that a common hidden Markov chain can be used to explain the dynamics of several
indices at once.
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2.2 Autocovariance of Absolute Returns

The autocorrelation of absolute returns has been found to decay quite slowly with lag
(Granger et al. [14]). In the model we propose, if we set

νi =

∫

|x − µ| Fi(dx) (2.3)

for the (centered) absolute first moment in regime i, we find that E|rn−µ| = π1ν1+π2ν2,
and

E|(rn − µ)(rn+k − µ)| =
(

π1ν1 π2ν2

)

P k

(

ν1

ν2

)

. (2.4)

It now follows that the covariance of the centred absolute returns is given by (for k > 0)

cov(|rn − µ|, |rn+k − µ|) =
(

π1ν1 π2ν2

)

(

P k −
(

1
1

)

(

π1 π2

)

)(

ν1

ν2

)

(2.5)

=
(

π1ν1 π2ν2

)

vλkuT

(

ν1

ν2

)

, (2.6)

where λ is the eigenvalue of P different from 1, and v (respectively, u) is the right
(respectively, left) eigenvector of λ.

It is an inevitable consequence of our modelling assumptions that autocorrelations of
centred absolute returns decay geometrically with lag. This appears to be in contradiction
of the findings quoted in the introduction. We shall let the calibration decide for us.
Visually, a slow geometric decay and a slow polynomial decay look quite similar over
a reasonably long range, so if the non-unit eigenvalue λ = p11 + p22 − 1 is quite close
to 1, then we stand a chance of making a reasonable approximation to the empirical
autocovariance. Rydén et al. [24] find poor agreement in their model (see Figure 4 in
their paper), and we find we do better. The main reason for this is that our calibration
objective includes a term penalizing the failure of the model to fit the observed ACF of
absolute returns, since this is something that we want the calibrated model to match.
The use of penalized likelihood methods is widespread, as in (for example) the Akaike
Information Criterion; see for example [12] and references therein.

2.3 Conditional distributions of returns

We consider conditional distributions Fi of returns given the state of the Markov chain
ξ which are members of the generalized hyperbolic class of distributions, or of some
subclass. The generalized hyperbolic class (GH) is a flexible class of distributions,
introduced in [5], see also [11]. The density of GH(λ, α, β, δ, µ) is

x 7→ (γ/δ)λ√
2πKλ(δγ)

Kλ−1/2

(

α
√

δ2 + (x − µ)2
)

(

√

δ2 + (x − µ)2/α
)1/2−λ

eβ(x−µ) (2.7)
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where γ ≡
√

α2 − β2, and the moment-generating function (MGF) is

z 7→ eµz γλ

(α2 − (β + z)2)λ/2

Kλ(δ
√

α2 − (β + z)2)

Kλ(δγ)
. (2.8)

The tails of the generalized hyperbolic distribution are exponential, as can be seen from
the well-known large-x asymptotic

Kν(x) ∼ e−x

√

π

2x
; (2.9)

see p202 of [30]. Various subfamilies of the GH class are of interest in their own right:

(i) taking β = 0 gives the symmetric generalized hyperbolic class;

(ii) taking λ = 1 gives the hyperbolic class;

(iii) taking λ = 1 and β = 0 gives the symmetric hyperbolic class;

(iv) taking δ = 0 and β = 0 gives the symmetric variance-gamma class;

(v) taking α = β = 0 and λ = −ν/2 gives a Student-tν distribution.

Thus it can be seen that the GH family contains a wide range of possible distributional
shapes. We investigated quite a number of candidate conditional distributions, including
the mixture of two gaussians considered by Rydén et al., and eventually settled on just
four classes after eliminating classes which appeared to be unable to match the data
adequately: symmetric variance-gamma, symmetric hyperbolic, symmetric generalized
hyperbolic and hyperbolic. In choosing these classes of distributions, we were guided by
several considerations:

1. ease of calculation of absolute moments;

2. smallest number of parameters consistent with fitting the data;

3. degree of asymmetry exhibited by the data.

For the first of these, Barndorff-Nielsen [5] gives expressions for the moments and abso-
lute moments of the generalized hyperbolic distributions: for every θ > 0 and n ∈ N:

(i) E[(X − µ)n] =
2⌈

n

2
⌉ (δγ)λ δ2⌈n

2
⌉βm

√
πKλ (δγ) (δα)λ+⌈n

2
⌉

∞
∑

k=0

2k(δβ)2kΓ(k + ⌈n
2 ⌉ + 1

2)

(δα)k(2k + m)!
Kλ+k+⌈n

2
⌉(δα)

(2.10)

(ii) E[|X − µ|θ] =
2

θ

2 (δγ)λ δθ

√
πKλ (δγ) (δα)λ+ θ

2

∞
∑

k=0

2k(δβ)2kΓ(k + θ
2 + 1

2 )

(δα)k(2k)!
Kλ+k+ θ

2

(δα) (2.11)

where m := n mod 2, ⌈n
2 ⌉ := n mod 2+n

2 and Kλ is Bessel function of second kind. More
simply, the mean of a GH(λ, α, β, δ, µ) is

µ +
δβKλ+1(δγ)

γKλ(δγ)
. (2.12)
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For the second consideration, it is generally found that to fit univariate return dis-
tributions it is necessary to allow a four-parameter family of distributions (to set the
centering, scale, right tail and left tail), and in order to fit the decay of the autocorre-
lation of centered absolute returns we need another two parameters, one for the rate of
decay, one for the amplitude. Thus we should expect to need at least six parameters,
but probably not many more, otherwise we may get overfitting. The Markov transition
matrix requires two parameters to specify it ( p11 and p22), and if we had two symmetric
hyperbolic distributions at our disposal, there would be a further five1 free parameters,
giving seven in total, which should be about right.

For the third consideration, it turned out that the index data that we were trying to
fit did not exhibit marked asymmetry, but if we were working with individual stocks we
might have found more asymmetry of returns, which might have altered our preferred
choice of distribution.

3 Data Set

We apply our model to the Stock indices from the top GDP countries (S&P500, FTSE,
DAX, NIKKEI, CAC40). The series consists of 5016 daily observations from 1 January
1990 to 31 December 2009. We choose 1990 as the starting date since it was the water-
shed for German and Japanese economics. Although China has been a major economic
power for much of the 20 years analysed, there is no comparable stock index data, so
we were not able to include China in the study.

Addtionally, we adjust these indices to US currency by the daily exchange rates to
make the comparisons and the calibration of the model. The movements of these indices
are given by Figure 1.

From Figure 1, we observe that the three European indices moved largely in step
for the last two decades, and appear to rise and fall roughly in line with the US. The
Japanese recession in the 1990s is visible in the rather different trajectory of the Nikkei
during that time. Nevertheless, its gains and losses in the second decade fall back into
line with other world markets.

The similarities of the different stock indices in Figure 1 suggest that all the markets
may be driven by the similar effects, which will be modelled in our account by a common
Markov chain. We will discuss interpretations of this common Markov chain in Section
4.

4 Calibration and results

In this section, we calibrate the parameters for different distributions by maximising
the likelihood function and fitting the ACFs of absolute returns. Then we check these
results with Kolmogorov-Smirnov Tests.

1Recall that the means are constrained to be equal.
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Figure 1: 1990-2009 daily Stock indices (S&P500, FTSE, DAX, NIKKEI, CAC40) adjusted
by US currency

4.1 Maximum Likelihood Estimation for HMM

The log-likelihood function of an observed sequence r1, r2, . . . , rm of returns is easily
seen to be (see [24])

L(θ1, θ2; r1, . . . , rm) = log (πF (r1; θ1, θ2)PF (r2; θ1, θ2)P · · ·PF (rm; θ1, θ2)1) (4.1)

where

π = (π1 π2), F (r; θ1, θ2) =

(

f(r; θ1) 0
0 f(r; θ2)

)

, 1 =

(

1
1

)

. (4.2)

From this, we are able to calculate maximum-likelihood estimators for the parameters,
assuming that the returns are symmetric hyperbolic. Using the MLE values results in
the plot shown in Figure 2 for the autocovariance of absolute returns, where the blue
dashed line is the model autocovariance, and the solid black line comes from the data.
It is clear that the fitted model is not matching the data well. We therefore introduce
a penalty function to improve the fit:

P(θ1, θ2) = A
w
∑

k=0

(ρ̂k − ρk)
2 (4.3)

where w is the total lag number for summation, A is the scale of the penalty function,
and ρ̂k and ρk are estimated and real autocovariances of absolute returns with k lags.
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Explicitly, we maximize2

L(θ1, θ2; r1, . . . , rm) −P(θ1, θ2). (4.4)

Figure 3 shows the quality of fit achieved when we fit using A = 1011, still assuming
symmetric hyperbolic distributions for the individual conditional return distributions.
How does this change when we try to fit all five indices simultaneously with the same
driving Markov chain? The log-likelihood still has the form (4.1) where we now define

F (r; θ1, θ2) =

(

∏5
j=1 f(rj; θj

1) 0

0
∏5

j=1 f(rj; θj
2)

)

, (4.5)

and once again we maximize (4.4), where now

P(θ1, θ2) = A

5
∑

j=1

w
∑

k=0

(ρ̂j
k − ρj

k)
2. (4.6)

Figure 4 presents the autocovariance of absolute returns for the S&P500 when we fit
a common Markov chain to all five indices. As can be seen, the quality of fit is very
similar to that achieved in Figure 3 when fitting just the S&P500 on its own.

For each of the parametric families of distributions under consideration, we firstly
fitted each index on its own, then we insisted that the Markov chain was common across
all indices, and fitted subject to that more exacting requirement. The results are listed
in Tables 1-8. We set the penalty scalar A = 1011 for all the cases.

The tables also report the value of the Kolmogorov-Smirnov (KS) test statistic [9] for
each of the fits. To explain more fully what happened here, we firstly obtained the ML
estimators of the parameters of the model, and then we calculated the supremum of the
absolute differences of the empirical return distribution minus the return distribution
given by the ML-fitted model. The significance levels are computed from the limiting
distribution of the KS test statistic. Focusing on the KS values for the fitting of the
common Markov chain, we see that all four families of distributions are doing quite well.
The symmetric variance-gamma has a highest significance level of 91.46% (fitting the
DAX), the symmetric hyperbolic has a highest significance level of 89.07% (again on the
DAX) the symmetric generalized hyperbolic has highest significance level of 90.70% on
the DAX, and the hyperbolic has highest significance level of 78.28%. There is little to
choose between the first two, though the symmetric hyperbolic has a slight edge over
the symmetric variance-gamma. We prefer both of these to the other two candidates,
because of the smaller number of parameters that need to be fitted.

2It is clear that what we are doing is not a ‘pure’ maximum-likelihood fit. On the other hand, it is
also generally well understood that MLEs are unsatisfactory for a variety of reasons, which is why penalized
likelihood methods have been introduced; see, for example, [27].
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Figure 2: autocovariances of absolute return with 50 lags (1990-2009 daily S&P500)
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Figure 3: autocovariances of absolute return with penalty function (1990-2009 daily S&P500)10



0 10 20 30 40 50
−5

10

−4
10

lag number

A
C

F

Figure 4: autocovariances of absolute returns with common Markov chain (1990-2009 daily
S&P500)
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4.2 Taylor Effect

A further stylized fact of returns data is the so-called ‘Taylor effect’, which says that
the autocorrelation of powers of absolute returns are highest at power one [28]:

corr(|rn|, |rn+k|) > corr(|rn|θ, |rn+k|θ), for any θ 6= 1. (4.7)

Here, we check this out for the absolute moments of the centred returns, using formulae
(2.10) and (2.11). Plotting out the theoretical ACF3 for different lags k and exponents
θ gives us Figure 5.
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Figure 5: Autocorrelation function of |rn−µ|θ, θ = 0.2, 0.3, . . . , 2.0 estimated from symmetric
hyperbolic distribution

As can be seen, the autocorrelation is unimodal in θ for each k, with the maximising
value of θ lying in (0.8, 1.2) for each k. This is consistent with the earlier findings of [24],
and with the original observation of Taylor [28], which we therefore confirm within the
context of our model.

3Here we assume the best-fitting symmetric hyperbolic model.
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5 Applications

5.1 Posterior Probability

In our model, the posterior probabilities of two states are given by

pn =
pn−1PF (rn; θ1, θ2)

pn−1PF (rn; θ1, θ2)1
(5.1)

where pn = (p1
n, p2

n) and pi
n is the probability of being in state i at time n. Figure 6

depicts the posterior probability of being in state 2 for five indices (with the common
Markov chain) from 1 January 2008 to 31 December 2009.

2007.12.31 2008.12.31 2009.12.31
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 6: 2008-2009 daily S&P500 posterior probability of being optimistic.

We see that the posterior probability swings between extremely low and extremely
high values, with very low values from the late summer of 2008 for almost a year. The
period of very low values covers the deepest gloom of the recession, starting at about the
time of the collapse of Lehman Brothers, and lasting well into the start of the Obama
presidency, as more and more money was pushed into the financial system to prevent a
systemic collapse. This suggests that we might interpret state 2 as an optimistic state;
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it is reassuring that the hidden Markov state that we find does indeed appear to be
related to major events in the world economy.

5.2 Optimal Investment

In our model, the posterior distribution of the hidden Markov state will affect invest-
ment choices; we therefore numerically solve a one-period4 optimal investment problem.
Assume an agent invests his wealth into the five stock indices (S&P500, FTSE, DAX,
Nikkei and CAC40) and has CRRA utility function

U(x) =
x1−R

1 − R
, R > 0. (5.2)

He wants maximize the expectation of this utility function by choosing the portfolio
πn

5. We assume the agent cannot short any of the indices. Then his objective function
is

max
πn

E [U(wn+1)|pn, wn] (5.3)

where wn is the agent’s wealth at time n, and pn is the posterior distribution of ξ at
time n. Let Sn be the vector of indicex prices at time n. Thus, wn evolves as

wn+1 = πT
n Sn+1 + (wn − πT

n Sn)er

= wner + πT
n Sn

(

Sn+1

Sn
− er

)

= wn

(

er + πT
n

(

eXn+1 − er1
))

(5.4)

where r is the (constant) risk-free daily return rate6, and πn is proportion of the agent’s
wealth which gets invested in the stock indices. Thus, the agent’s objective becomes

max
πn

w1−R
n

1 − R
pnP







∫ (

er + πT
n (ex1 − er)

)1−R
f(x1; θ1) dx1

∫ (

er + πT
n (ex2 − er)

)1−R
f(x2; θ2) dx2






(5.5)

where f(xi; θi), i = 1, 2 are density functions of symmetric hyperbolic distribution with
different parameters 7.

The numerically computed values of π are displayed in Table 9 where ’pessimistic’
represents p = (1, 0) and ’pessimistic’ stands for p = (0, 1) It is generally believed that
the agent should cut the proportions of other assets and invest more in US ones when
the market is pessimistic. Our results are consistent with this wisdom, and suggest that
the agent will invest bigger proportion of the wealth in US if he is more risk-averse.
Table 9 also indicates that the agent should ’put his eggs in different baskets’ when the
market is pessimistic.

4Because we suppose a CRRA investor, the investment decision will be the same as for a multi-period
investment problem.

5πn =
(

πS&P500
n , πFTSE

n , πDAX
n , πNikkei

n , πCAC40
n

)

.
6We set the annual interest rate at 5%.
7Note that x1,x2 are vectors (with 5 rows).
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5.3 Option Pricing

Now we calculate the European call option price based on our model. Since the symmet-
ric hyperbolic distribution is not closed under convolution [11], we handle the risk-neutral
distribution of multi-period returns using the characteristic function.

Assume the time to maturity of the European call option is N ∈ N, the charateristic
function of N -period return distribution is calculated by

φN (t) = pn

(

P

(

φ1(t) 0
0 φ2(t)

))N

1 (5.6)

where pn =
(

p1
n, p2

n

)

is posterior probability at time n, P is the transition matrix and
φi(t), i = 1, 2 are one-period characteristic functions for two states. To convert the real
probability measure into the pricing measure, we follow common practice by assuming
a constant market price of risk, which simply shifts the real mean µ to the daily riskless
rate r, considered as a constant. Therefore, the characteristic function of returns in the
pricing measure is given by

φQ
N (t) = φN (t) · eitN(r−µ) (5.7)

Then the risk-neutral density function is given by the Fourier inversion formula

fQ
N (x) =

1

2π

∫ ∞

−∞
e−itxφQ

N (t)dt (5.8)

The integral on the right-hand side can be computed numerically. Here we apply FFT
to get this density function and calculate the call option price by

Cn(N,K) = e−rN

∫ ∞

−∞
(Snex − K)+ fQ

N (x)dx (5.9)

where K is the strike price at maturity.

6 Conclusion

This paper takes a two-state hidden Markov model for asset prices, similar to Rydén
et al. [24], but using different families of conditional return distributions, including
variance-gamma and symmetric hyperbolic, which we find work satisfactorily. Like
them, we find that this simple modelling assumption is very successful at explaining
many key stylized facts of asset returns, as identified by Granger et al. [13], [14]. How-
ever, we are able to obtain a good fit of our model to the stylized fact that the ACF of
absolute returns decays quite slowly; this contrasts with the results of [24], where the
empirical and fitted ACFs were substantially different.

We have fitted our model to five major stock indices simultaneously, and find that
we get an excellent fit, explaining the unconditional distributions of returns in all five
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indices to the satisfaction of a KS test. We believe that it is important to try to do this,
because if it can be made to succeed, it suggests that the rather nebulous hidden Markov
state may actually be something with an economic significance; if we had to use very
different Markov chains to explain each index separately, then it much harder to pin any
interpretation on the states. However, we find that there is an economic significance to
the state of the hidden Markov chain, representing pessimism or optimism. The posterior
probability of state 2 during the period September 2008 to June 2009 is virtually zero,
and this corresponds to the darkest months of the global financial crisis. We solve the
optimal investment problem for a CRRA investor in this model, and find that in bad
times there is a strong ‘flight to the US’ effect, again consistent with what is generally
believed. Our modelling framework is also capable of pricing European options using
Fourier transform techniques, and we find that here too it does a good job.

Of the six stylized facts stated in the Introduction, our modelling hypothesis deals
conclusively with the first five; the last, relating to asymmetry of returns, does not arise
in the index data we have been using, though if one were to work with individual stock
data this would quite probably be a more prominent feature, which might require us to
slightly extend the family of conditional return distributions allowed. There are many
different generalizations of the standard Black-Scholes model for asset prices which have
been proposed; there are, for example, GARCH models, log-Lévy models, stochastic
volatility models, which all explain the stylized facts of asset returns to a greater or
lesser degree. Log-Lévy models completely fail to explain the autocorrelation of absolute
returns, and must be discarded. GARCH models capture many of the stylized facts,
and are popular with econometricians. There are some technical issues in their use, such
as the implied heavy-tailed distribution of returns, time aggregation, and the difficulty
of pricing options in this modelling framework. However, their main drawback is at a
conceptual level, where it is unclear how to model the feedback of returns into asset
volatility in a multi-asset situation; do shocks to asset B impact on asset A, and if so,
what is the mechanism? Figure 7 makes the point. Here we plot the realized quadratic
variation of 29 stocks from the S&P500 index (suitably scaled to have comparable size),
taking 200-day moving averages over the ten-year period July 2000 to July 2010. It is
clear that the realized quadratic variation of each stock is highly variable during this
ten year period, but it is also clear that periods of high volatility are common to all the
stocks; heteroskedasticity is market-wide, not stock-specific.

The family of stochastic volatility models is also able to handle most of the stylized
facts of asset returns. While such models are often formulated in a diffusion setting, what
we have presented here can be considered as possibly the simplest form of stochastic
volatility model - and since we impose a common mean across all the conditional return
distributions, it is only the higher moments which change with the hidden state, so
the stochastic volatility label is no misnomer. Our modelling framework is not difficult
to work with, captures the stylized facts of asset returns, makes sense in a multi-asset
situation, and offers an economically sensible interpretation of the hidden driving state.
There is doubtless room for further testing, but this already seems to be a good start.
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Figure 7: Heteroskedasticity.
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Table 1: Calibration for S&P500, FTSE, DAX, NIKKEI, CAC40 (symmetric variance-gamma
distribution, penalty function for 50 lags)

S&P500 FTSE DAX NIKKEI CAC40
p11 0.994365 0.991132 0.990237 0.982163 0.987646
p22 0.997882 0.997283 0.996864 0.993746 0.997012
α1 123.5765 126.0500 102.3876 113.8233 108.2128
α2 288.8004 388.1931 270.9607 237.6916 328.9721
λ1 3.203089 3.775019 3.888206 4.767314 4.478893
λ2 2.148713 4.975458 4.204840 4.264164 6.357085
µ 0.000560 0.000436 0.000676 -0.000025 0.000450

Likelihood 16121.907 15755.240 14289.664 13680.784 14508.566
K-S test 0.800203 0.542250 0.775005 0.207451 0.200302

Table 2: Calibration with common Markov chain for S&P500, FTSE, DAX, NIKKEI and
CAC40 (symmetric variance-gamma distribution, penalty function for 50 lags)

S&P500 FTSE DAX NIKKEI CAC40
p11 0.989361
p22 0.997056
α1 104.2179 116.8230 95.5038 98.9172 98.9356
α2 274.6175 369.5939 262.0965 194.6877 300.8480
λ1 2.795357 3.457729 3.647810 3.764878 3.446001
λ2 2.092718 4.470190 4.044641 3.465385 4.929850
µ 0.000500 0.000508 0.000742 0.000072 0.000520

Likelihood 74375.673
K-S test 0.740803 0.681655 0.914569 0.756120 0.824289
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Table 3: Calibration for S&P500, FTSE, DAX, NIKKEI, CAC40 (symmetric hyperbolic
distribution, penalty function for 50 lags)

S&P500 FTSE DAX NIKKEI CAC40
p11 0.994400 0.991231 0.990264 0.981943 0.987802
p22 0.997879 0.997285 0.996834 0.993737 0.997180
α1 102.5440 99.2412 82.5476 97.9610 80.6891
α2 240.6482 297.9068 208.3344 174.8190 240.5264
δ1 0.027138 0.030850 0.041595 0.056029 0.043254
δ2 0.005567 0.014360 0.016282 0.017624 0.022019
µ 0.000563 0.000437 0.000681 -0.000026 0.000454

Likelihood 16121.046 15756.961 14290.552 13681.444 14509.151
K-S test 0.841059 0.527911 0.772892 0.212998 0.158088

Table 4: Calibration with common Markov chain for S&P500, FTSE, DAX, NIKKEI and
CAC40 (symmetric hyperbolic distribution, penalty function for 50 lags)

S&P500 FTSE DAX NIKKEI CAC40
p11 0.989014
p22 0.997316
α1 99.3756 91.1722 75.0741 76.4510 73.9903
α2 228.9119 298.2663 207.8281 145.5122 263.6378
δ1 0.036723 0.032127 0.043078 0.040359 0.035098
δ2 0.006044 0.014666 0.017798 0.015606 0.024547
µ 0.000471 0.000571 0.000724 0.000025 0.000562

Likelihood 74385.057
K-S test 0.590283 0.785565 0.890691 0.531141 0.436961
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Table 5: Calibration for S&P500, FTSE, DAX, NIKKEI, CAC40 (symmetric generalized
hyperbolic distribution, penalty function for 50 lags)

S&P500 FTSE DAX NIKKEI CAC40
p11 0.994391 0.991287 0.990264 0.981976 0.987802
p22 0.997866 0.997282 0.996834 0.993691 0.997140
α1 99.6301 73.3167 82.5476 96.9700 80.6891
α2 284.8554 296.8810 208.3344 214.4108 240.5264
δ1 0.028314 0.042424 0.041595 0.067780 0.042883
δ2 0.000000 0.014824 0.016282 0.000000 0.022019
λ1 0.765809 -1.242269 0.999971 -0.180869 1.000000
λ2 2.097148 0.842863 1.000019 3.534746 1.000000
µ 0.000561 0.000444 0.000681 -0.000035 0.000454

Likelihood 16123.433 15757.866 14290.552 13682.650 14509.151
K-S test 0.843431 0.526178 0.772859 0.126681 0.170188

Table 6: Calibration with common Markov chain for S&P500, FTSE, DAX, NIKKEI and
CAC40 (symmetric generalized hyperbolic distribution, penalty function for 50 lags)

S&P500 FTSE DAX NIKKEI CAC40
p11 0.988792
p22 0.997178
α1 99.3858 91.1957 75.0997 76.4506 74.0177
α2 228.8687 298.2773 207.8440 145.3948 263.6820
δ1 0.037271 0.031027 0.041896 0.039926 0.033512
δ2 0.006029 0.014686 0.017504 0.015421 0.023420
λ1 0.999993 0.999960 0.999951 0.999995 0.999995
λ2 1.000061 0.999998 0.999997 1.000103 0.999989
µ 0.000503 0.000487 0.000726 0.000068 0.000502

Likelihood 74390.800
K-S test 0.569885 0.527125 0.906958 0.649574 0.609072
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Table 7: Calibration for S&P500, FTSE, DAX, NIKKEI, CAC40 (hyperbolic distribution,
penalty function for 50 lags)

S&P500 FTSE DAX NIKKEI CAC40
p11 0.994387 0.991204 0.990288 0.981960 0.987764
p22 0.997896 0.997283 0.996843 0.993699 0.997204
α1 101.5300 99.0992 82.1679 99.4592 80.1378
α2 241.2241 300.0012 210.9870 174.9946 243.2188
β1 5.400847 0.724002 1.804565 8.601457 4.315595
β2 -8.044014 -16.743963 -13.808965 2.625868 -12.305323
δ1 0.026507 0.030814 0.041178 0.056179 0.042716
δ2 0.005595 0.014430 0.016483 0.017569 0.022320
µ1 -0.001730 0.000063 -0.000708 -0.006206 -0.002936
µ2 0.000942 0.001505 0.002196 -0.000365 0.001892

Likelihood 16122.720 15758.364 14292.825 13682.408 14510.557
K-S test 0.742916 0.277541 0.542016 0.095147 0.224072

Table 8: Calibration with common Markov chain for S&P500, FTSE, DAX, NIKKEI and
CAC40 (hyperbolic distribution, penalty function for 50 lags)

S&P500 FTSE DAX NIKKEI CAC40
p11 0.988756
p22 0.997117
α1 99.2543 97.1892 80.2113 91.1607 77.7592
α2 234.6340 278.9116 209.1618 151.8779 212.7413
β1 5.427253 0.030126 0.962682 6.560401 3.067956
β2 -7.074472 -11.722466 -14.073590 -1.392728 -8.850390
δ1 0.036583 0.034685 0.046883 0.053758 0.036340
δ2 0.006467 0.013122 0.017625 0.017502 0.016540
µ1 -0.002418 0.000443 -0.000148 -0.005033 -0.001778
µ2 0.000867 0.001250 0.002351 0.000345 0.001469

Likelihood 74387.887
K-S test 0.410540 0.459051 0.683431 0.782770 0.691301
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Table 9: Investment strategies for five indices

R 2 5
posterior probability optimistic pessimistic optimistic pessimistic

S&P500 0 0.157823 0.010009 0.203158
FTSE 0.097100 0.253471 0.316011 0.237559
DAX 0.781689 0.342397 0.464363 0.223542
Nikkei 0 0 0 0.056037
CAC40 0.121211 0.246309 0.209617 0.195069
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