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Abstract

We present two new stochastic–volatility models in which option prices for European
plain vanilla options have closed–form expressions. The models are motivated by the well-
known SABR model but use modified dynamics of the underlying asset. The asset process
is modelled as a product of functions of two independent stochastic processes: a Cox–
Ingersoll–Ross process and a geometric Brownian motion. Anapplication of the model to
options written on foreign currencies is studied.
Keywords: SABR; European options; volatility smile;

1 Introduction

There is a growing interest in stochastic volatility modelsin all areas of financial mathematics:
see for example Hull & White (1987), Hull & White (1988), Scott (1987), Wiggins (1987),
Johnson & Shanno (1987), Stein & Stein (1991), Heston (1993), Hofmann et al. (1992), Dupire
(1992). One stochastic volatility models which has gained great popularity with practitioners in
particular for modelling the foreign exchange market is theso-called SABR model Hagan et al.
(2002). As presented in Hagan et al. (2002) it has the advantage that it allows asset prices and
market smiles to move in the same direction. Moreover, a closed–form (approximate) formula
for the implied volatility is given. This implied volatility is not constant but a function of
the strike price and some other model parameters. Hence the market prices and market risk,
including Vanna and Volga risk, can be obtained very easily.Moreover, the SABR model is
said to fit the implied volatility smile quite well. However,the SABR option pricing formula
is not the option price corresponding to the underlying stochastic process, but is obtained by
using an approximation, and as such must be treated with caution; the asymptotic is based on
the assumption that the time-to-expiry is small, and recentwork of Benaim (2007) shows that
the extreme-strike behaviour of the formula is not consistent with arbitrage-free pricing.

The aim of this paper is to build an alternative model which retains many of the desirable
features of the SABR model but also hasexact closed–formexpressions for the price of a Euro-
pean call option. The expressions involve a one-dimensional integral of elementary functions.
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2 MOTIVATION

We begin by applying certain natural transformations to theSABR model, which suggest
varying the model in such a way that the discounted asset price process becomes the product of
two independent processes, whose transition densities areknown in closed form. The explicit
formulae for the option prices follow easily from this representation.

We then generalise the model in Section 4. We define the discounted stock price as the
product of a geometric Brownian motion and afunctionof the CIR process. The function used
is essentially a confluent hypergeometric function. This choice makes the discounted asset
price a martingale without restricting the choice of model parameters, creating a new model
with seven parameters, in contrast to the four parameters ofSABR, and the three of our original
variant.

We therefore end up with a stochastic volatility model whichis consistent with arbitrage-
free pricing for all strikes and maturities. We do not rely onapproximation techniques to derive
the option prices for European plain-vanilla options but get closed–form formulae. This is rarely
possible for other stochastic volatility models. Another not too common feature of our model
is the fact that we constructed an asset price process which is a martingale and not only a local
martingale and has finite higher moments, see e.g. Sin (1998)and Andersen & Piterbarg (2007)
for further discussion on this matter.

The recent preprint Jäckel & Kahl (2007) presents a model similar to the ones we consider
here.

2 Motivation

The SABR model is a stochastic volatility model in which the asset price and the volatility are
correlated. The stock priceS is assumed to solve the SDE

dS = σSβdW, dσ = ησdB, dBdW = ρdt,

for some constantsβ ∈ (0, 1), η > 0, ρ ∈ (−1, 1) andW, B are Brownian motions. In this
model, singular perturbation techniques are used to obtainEuropean option prices. Closed–form
approximations to the option price and the implied volatility are stated in Hagan et al. (2002).
Here, we transform the basic SABR model, making various changes along the way, to arrive at
a new model for which option prices are available in closed form. The prices are represented as
one–dimensional integrals. It should be emphasised that this section is purely for motivation;
we take the basic SABR model and carry out various transformations, changing the dynamics
in various ways when it suits us, and making whatever simplifying choices appear helpful at the
time. The reader for whom such free–form mathematics is anathema should immediately pass
to the next section, where an explicit model is proposedab initio, inspired by, but completely
independent of, the account of this section.

Recall the constant elasticity of variance model (CEV model, Cox (1996)) where the stock
price solvesdS = σSβdW for a constantσ > 0. In this model it can be shown that the
processY = Sγ, γ = 2(1 − β), solves the SDE of a time–changed squared Bessel process. In
particular,Yt = X(γ2σ2t/4) whereX is a Bessel process with dimension2(1 − γ−1), that is,
dX = 2(1 − γ−1)dt + 2

√
XdB̃, see for example Delbaen & Shirakawa (2002). Then,

dY = γσ
√

Y dW +
1

2
γ(γ − 1)σ2dt.
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3 FIRST ALTERNATIVE TO SABR

Let us apply this transformation to the SABR model. We have toaccount for the fact that in
the SABR model the two Brownian motionsB andW are correlated. We therefore define the
processY ′ as the sum of two independent squared Bessel processes,Y ′ = y + ỹ, where

dy = γσ
√

ydW ′ + aσ2dt,

dỹ = γσ
√

ỹdB + bσ2dt,

for constantsa, b which sum toγ(γ−1)/2. Then the correlation isdY ′dσ = ησ2γ
√

ỹdt instead
of dY dσ = ησ2γ

√
Y ρdt, so that now the constantρ changes to the variable

√

ỹ/Y . We can set
some initial value forρ by choice ofY0, ỹ0, but notice that we cannot modelnegativecorrelation
this way.
A particularly obliging choice ofb is to takeb = γ2/4 since then

d
√

ỹ =
σγ

2
dB =

γ

2η
dσ

one solution of which is

ỹ =

(

γσ

2η

)2

.

The corresponding choice fora will be a = −β(1 − β) and ifx = y/σ2 we find that

dx = γ
√

xdW ′ − 2ηxdB + (a + 3η2x)dt.

For tractability, we propose instead to takey = σ2x′ where

dx′ = γ
√

x′dW ′ + (a + 3η2x′)dt,

which is of course a different model, having the virtue thatx′ andσ are independent. This leads
to the model

Yt = yt + ỹt = σ2
t

(

(

γ

2η

)2

+ x′
t

)

,

whereσ andx′ are independent. However we will not necessarily haveY 1/γ a local martingale.

3 First Alternative to SABR

3.1 Model Description

Guided by the argument of the preceding section, we propose to represent the discounted asset
price process by

St = Y
1

γ

t =
(

σ2
t zt

) 1

γ , (1)
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3.1 Model Description 3 FIRST ALTERNATIVE TO SABR

with z andσ the diffusions

dz = (a1 − a2z)dt + 2
√

zdW,

dσ = ησdB,
(2)

where0 < η and0 < γ < 2 are constants andW andB are two independent Brownian motions.
The constantsa1 anda2 are given by

a1 =
2(γ − 1)

γ
, a2 =

(2 − γ)η2

γ
, (3)

values which (as we shall shortly see) makeS a martingale.

Remark 3.1. If a1 < 0 the processz will hit 0 almost surely. Letτ := inf{0 ≤ t : zt = 0}. For
a1 < 0 we consider the stopped processzt∧τ rather thanz.

Definition 3.2. We refer to the model for the asset price defined by (1), (2) and(3) as the
stochastic volatility model (SV1).

We show in the following lemma thatS is a martingale.

Lemma 3.3. Suppose the diffusionsz andσ satisfy (2) and the parameters are as in (3). Then

the processSt = σ
2

γ

t z
1

γ

t is a martingale and solves the SDE

dS = S
2

γ

(

dW√
z

+ ηdB

)

.

A proof is given in the appendix.
Before we can compute the prices of European put and call prices we formulate the follow-

ing lemma which specifies the transition density of the processz.

Lemma 3.4. Suppose the diffusionz satisfies (2). We define fort < T

c :=
2a2

4(1 − exp(−a2(T − t)))
, u := czt exp(−a2(T − t)),

v := czT , q :=
a1

2
− 1.

Then

1. Givenzt, zT is distributed as1
2c

times a noncentralχ2 random variable witha1 degrees
of freedom and noncentrality parameter2u:

zT =
1

2c
χ2

a1
(2u).

2. For a1 > 0 the transition density fromzt to zT is given by

p(zt, zT ) = c exp(−u − v)
(v

u

)q/2

Iq(2
√

uv), (4)

whereIq(·) denotes the modified Bessel function of the first kind of orderq.
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3.1 Model Description 3 FIRST ALTERNATIVE TO SABR

3. If a1 < 0 the CIR process will hit0 a.s.. Since we require that it is then absorbed at0, the
distribution ofz has point mass1 −

∫∞
0

p(zt, z)dz > 0 at zero. Fora1 < 0 the transition
density is given by

p(zt, zT ) = c exp(−u − v)
(v

u

)q/2

I|q|(2
√

uv).

The proof is given in Göing-Jaeschke & Yor (2003). For additional information we refer
also to Cox et al. (1985) and (Glasserman, 2004, Chapter 3.4).

In the following we exploit the independence of the two processesσ andz and compute
prices for European put and call options by conditioning. This allows us to get analytic expres-
sions for the option prices as the next theorem states.

Theorem 3.5(SV1 Model). SupposeSt = σ
2

γ

t z
1

γ

t , where the diffusionsz andσ satisfy (2) and
the parameters are as in (3). Letr denote the interest rate and̃St := ertSt is the underlying
asset price. Then the time–0–price of a European put optionP SV 1 and of a European call
optionCSV 1 with expiryT and strike priceK is given by

P SV 1(S0, T, K, r, η, z0, γ) = E
[

(e−rT K − ST )+
]

=

∫ ∞

0

h1(z)pT (z)dz (5)

and

CSV 1(S0, T, K, r, η, z0, γ) = E
[

(ST − e−rT K)+
]

=

∫ ∞

0

h2(z)pT (z)dz, (6)

where

h1(z) := e−rT KΦ(−d2) − σ
2

γ

0 z
1

γ exp

(

η2T

γ

(

2

γ
− 1

))

Φ (−d1) ,

h2(z) := σ
2

γ

0 z
1

γ exp

(

η2T

γ

(

2

γ
− 1

))

Φ (d1) − e−rTKΦ(d2).

Here

d1 := d2 +
2η

γ

√
T , d2 :=

γ

2η
√

T



log





σ
2

γ

0 z
1

γ

e−rT K



− η2

γ
T



 ,

Φ(·) is the cumulative distribution function of the standard normal distribution andpT (z) :=
p(z0, zT ) is the probability density function of the non–centralχ2 distribution as specified in
Lemma (3.4).

The integrals (5) and (6) can be rewritten as the definite integral
∫ 1

0

h

(

1 − x

x

)

pT

(

1 − x

x

)

dx

x2

and can be evaluated by numerical integration. Alternatively they can be evaluated by Monte
Carlo methods by sampling from a noncentralχ2 distribution.

The theorem is proved in the appendix.
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3.2 Empirical Analysis 3 FIRST ALTERNATIVE TO SABR

Remark 3.6. In this model, the correlation between the asset and its volatility will always
be positive, in contrast to the SABR model. Hagan et al. (2002) state that with FX options,
a key feature of the asset dynamics is that if the spot rises, then the place where the implied
volatility is minimal should also rise, and this was a feature that they claim is not reflected by
many stochastic volatility models. The model we propose here allows for this feature to some
extent, since a shift ofσ has the effect of multiplyingS by some constant, but not altering
the dynamics in any other way. Thus if the spot moves upward due to an increase inσ, then
the implied volatility surface also shifts to the right. However, the effect of a change inz is
ambivalent.

Remark 3.7. In the context of FX options, withY denoting the price of one unit of foreign
currency in domestic currency units we have thatSt = exp((rf − rd)t)Yt is a martingale. Then
the time–0–price of a European put option is given by

E
[

e−rdT (K − YT )+
]

= e−rfT
E
[

(Ke−(rd−rf )T − ST )+
]

We denote the corresponding put and call prices in our model by
P SV 1(S0, T, K, rd, rf , η, z0, γ) andCSV 1(S0, T, K, rd, rf , η, z0, γ).

3.2 Empirical Analysis

This section presents some empirical results. We consider data used by Bisesti et al. (2005).
In the FX market option prices are not quoted directly. The quotes are in terms of the Black
Scholes implied volatility. We consider EUR/USD volatility quotes as of 12 February 2004. On
that day the spot exchange rate was 1.2832. The data contain observations for nine different
maturities (1 and 2 weeks; 1, 2, 3, 6, 9 months; and 1 and 2 years) and 7 different strikes.

3.2.1 The Fitting Criterion

In the classical Black Scholes model the exchange rate process solves the SDE

dSBS = SBS((rd − rf )dt + σBSdW ),

whererd, rf denote the constant domestic and foreign interest rate respectively. The volatility
σBS is assumed to be constant. The price for a European callCBS and putP BS at time0 with
maturityT and strikeK is then given by

CBS(S0, T, K, rd, rf , σ
BS) = e−rdT

[

S0e
(rd−rf )T Φ(dBS

1 ) − KΦ(dBS
2 )
]

,

P BS(S0, T, K, rd, rf , σ
BS) = e−rdT

[

KΦ(−dBS
2 ) − S0e

(rd−rf )T Φ(−dBS
1 )
]

,

wheredBS
1,2 =

{

log (S0/K) +
(

rd − rf ± 1

2
(σBS)2

)

T
}

/σBS
√

T ,
from which implied volatilities are computed from prices.

A common feature in the FX market is that the implied volatilities are not constant but U–
shaped (volatility smile). In the following we try to fit the SV1 model to the data such that
we minimise the squared difference between the observed implied volatilities and the model
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3.2 Empirical Analysis 3 FIRST ALTERNATIVE TO SABR

implied volatilities. We denote byσ(SV 1) := σ(SV 1)(η, z0, γ) a model implied volatility meaning
that it solves

P BS(S0, T, K, rd, rf , σ
(SV 1)) − P SV 1(S0, T, K, rd, rf , η, z0, γ) = 0.

Suppose(σimplied
1 , . . . , σimplied

N )T ∈ R
N is the vector containing the observed implied volatil-

ities for European options corresponding to the vector(K1, . . . , KN)T ∈ R
N of strike prices,

(T1, . . . , TN)T ∈ R
N of maturities, and(rd,1, . . . , rd,N)T , (rf,1, . . . , rf,N)T ∈ R

N of domestic
and foreign interest rates respectively.S0 denotes the asset price at time zero. In the following
we minimise the squared difference between the observed implied volatility and the implied
volatility derived from the model price, i.e. we compute

min
η,z0,γ

N
∑

i=1

(

σ
(SV 1)
i (η, z0, γ) − σimplied

i

)2

.

3.2.2 Implementation

The computation of the option price involves a numerical evaluation of an integral
∫ ∞

0

h(z)pT (z)dz,

see Theorem 3.5. This requires some care since in many examples the integrand has a very high
and small peak. Simple integration routines might miss thispoint and might therefore compute
too small prices. To overcome this problem we did the following.

The integrand consists essentially of a product of a Black–Scholes type formulah(·) and the
density of a non centralχ2 random variablepT (·). So there are special functions involved: the
cumulative distribution function of the standard normal distributionΦ and the modified Bessel
function of first kindIq. Both function can cause problems (regarding numerical precision)
when considered with very small or large arguments. We therefore expressedΦ in terms of the

logarithm of the complementary error functionlog
(

2√
π

∫∞
x

exp(−t2)dt
)

. Moreover we did not

computeIq directly, but its scaled versionIq(x)e−|x|.
Then we considered the logarithm of the integrand rather than the integrand itself. We used

an optimisation routine to determine the maximum of the logarithm of the integrandx⋆. We
then split the area of integration and computed

∫ x⋆

0

h(z)pT (z)dz +

∫ ∞

x⋆

h(z)pT (z)dz.

Therefore we ensured that the numerical integration routine did not miss the main mass. The
pricing routine was implemented inC using theGNU Scientific Library.

We used different optimisation routines to fit the data. We used gradient search methods,
simulated annealing and the simplex algorithm by Nelder & Mead (1965).

7



4 SECOND ALTERNATIVE TO SABR
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Model Optimal parameters
SABR β = 0.99 η = 1.0052314 σ0 = 0.1078418 ρ = 0.147685
SV1 η = 0.01 z0 = 91.576027 γ = 1.9980815

Figure 1: Comparing the fit of the SV1 model to the fit of the SABRmodel.

3.2.3 Empirical Results

In this section we present the empirical results from the analysis for one maturity (3 months)
only. The model parameters are as follows: The exchange rateat time 0 isS0 = 1.2832, the
maturity isT = 0.2493 and the interest rates arerd = 0.0112995 andrf = 0.0209007. We
consider 7 observations. Figure 1 shows the results. We see that our model (SV1) and the
SABR model seem to fit the European put prices well. However, if we consider the implied
volatilities we see that our model does not fit the implied volatilities as well as SABR does.
SABR seems to fit the observed smile perfectly. However we have to bear in mind that our

model contains only three parametersη, z0, γ (sinceσ0 =
√

Sγ
0

z0
) whereas the SABR model

contains 4 parameters.

4 Second Alternative to SABR

4.1 Model Description

We now generalise the approach of the previous section. We still assume that the discounted
stock price can be written as a product of two independent processes. However, we now assume
that the discounted stock priceS is a product of a geometric Brownian motion and ageneral
function of a CIR process:

St = σtg(zt), (7)
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4.1 Model Description 4 SECOND ALTERNATIVE TO SABR

whereσ is a geometric Brownian motion andz is a CIR–process, i.e.

dσ = σ(µdt + ηdB),

dz = (a1 − a2z)dt + 2
√

zdW.
(8)

The two Brownian motionsB andW are assumed to be independent, which makes the analysis
tractable, but restricts the correlation between asset andvolatility to be non–negative. The
functiong solves the following second order ODE

2zg′′(z) + (a1 − a2z)g′(z) + µg(z) = 0. (9)

[Observe thatg(z) = z1/γ is a solution ifa1 = 2(1 − γ−1) andµ = (2 − γ)η2/γ2, so model
SV1 is a special case of model SV2.] The ODE (9) is almost a Whittaker ODE. Its solutiong
can therefore be expressed in terms of the Whittaker’s function WM andWW and is given by

g (z) = C1 e
a2z

4 z−
a1

4 WM

(

a1a2 + 4µ

4a2
,−1

2
+

a1

4
,
a2z

2

)

+ C2 e
a2z

4 z−
a1

4 WW

(

a1a2 + 4µ

4a2
,−1

2
+

a1

4
,
a2z

2

)

,

whereC1, C2 are some constants. The Whittaker functionsWM andWW are related to the
Kummer functionsM(·, ·, ·) andU(·, ·, ·) as follows, see Abramowitz & Stegun (1964):

WM(µ, ν, z) = exp(−1/2z)z1/2+νM(1/2 + ν − µ, 1 + 2ν, z),

WW (µ, ν, z) = exp(−1/2z)z1/2+νU(1/2 + ν − µ, 1 + 2ν, z).

The Kummer functions are defined by

M(a, b, z) :=

∞
∑

n=0

(a)nzn

(b)nn!
,

where(a)n = a(a + 1)(a + 2) . . . (a + n − 1), (a)0 = 1 and

U(a, b, z) :=
π

sin(πb)

(

M(a, b, z)

Γ(1 + a − b)Γ(b)
− z1−b M(1 + a − b, 2 − b, z)

Γ(a)Γ(2 − b)

)

.

Thereforeg is given by

g(z,a1, a2, µ) = C1M

(

− µ

a2
,
a1

2
,
a2z

2

)

(a2

2

)(a1

4
)
+ C2U

(

− µ

a2
,
a1

2
,
a2z

2

)

(a2

2

)(a1

4
)
. (10)

Definition 4.1. We refer to the model for the asset price defined by (7), (8) and(10) as the
stochastic volatility model (SV2). Moreover we require thatµ < 0 anda1 > 2, a2 > 0 in the
following.

With this choice ofg we have found a martingale:
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4.1 Model Description 4 SECOND ALTERNATIVE TO SABR

Lemma 4.2. Suppose the diffusionsz andσ satisfy (8) andg is given by (10). Then the process
St = σtg(zt) is a martingale and solves the SDE

dSt = St

(

g′(zt)

g(zt)
2
√

ztdWt + ηdBt

)

.

A proof is given in the appendix.
Then the prices of European put and call option can again be derived in closed form by

conditioning.

Theorem 4.3(SV2 Model). SupposeSt = σtg(zt), where the diffusionsz andσ satisfy (8) and
g is given by (10). Letr denote the interest rate and̃St := ertSt is the underlying asset price
process. Then the time–0–price of a European put optionP SV 2 and of a European call option
CSV 2 with expiryT and strike priceK is given by

P SV 2(S0, T, K, r, a1, a2, z0, µ, η) = E
[

(e−rT K − ST )+
]

=

∫ ∞

0

h̃1(z)pT (z)dz (11)

and

CSV 2(S0, T, K, r, a1, a2, z0, µ, η) = E
[

(ST − e−rT K)+
]

=

∫ ∞

0

h̃2(z)pT (z)dz, (12)

where

h̃1(z) := e−rT KΦ(−d̃2) − σ0g(z)eµT Φ
(

−d̃1

)

,

h̃2(z) := σ0g(z)eµT Φ
(

d̃1

)

− e−rT KΦ(d̃2).

Here

d̃1 =
1

η
√

T

(

log

(

σ0g(z)eµT

K

)

+

(

r +
η2

2

)

T

)

d̃2 = d̃1 − η
√

T

andΦ(·) is the cumulative distribution function of the standard normal distribution andpT (z) :=
p(z0, zT ) is the probability density function of the non–centralχ2 distribution as specified in
Lemma (3.4).

Again the proof is given in the appendix.

Remark 4.4. In this stochastic volatility model the option price is effectively an average of
Black Scholes prices. Recall that in the classical Black Scholes model, where the stock priceS

is given bySt = S0 exp
((

r − η2

2

)

t + ηWt

)

, the put price is given by

P BS(S0) := e−rT KΦ(−dBS
2 ) − S0Φ

(

−dBS
1

)

,
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4.2 Empirical Results 5 SUMMARY

where

dBS
1 :=

1

η
√

T

(

log

(

S0

K

)

+

(

r +
η2

2

)

T

)

,

dBS
2 := dBS

1 − η
√

T .

Therefore if we substituteS0 in this formula by the random variableσ0e
µT g(z) wherez is a

non–centralχ2 distributed random variable we find thath̃1(z) = P BS(σ0e
µT g(z)). Moreover

P SV 2(S0, T, K, r, a1, a2, z0, µ, η) = E
[

P BS(σ0e
µT g(z))

]

.

Remark 4.5. The new stochastic volatility model SV2 contains 7 model parameters:a1, a2, z0,
µ, η, C1, C2. Againσ0 can be derived fromσ0 = S0

g(z0)
.

Remark 4.6. This modelling approach can be modified by replacing the CIR process by an
Ornstein–Uhlenbeck process. The corresponding functiong(·) can then still be expressed in
terms of the Kummer functions. For this extension it is possible to allow for correlation between
the Brownian motion driving the geometric Brownian motion and the Brownian motion driving
the OU process. European option prices can still be obtainedin closed form.

4.2 Empirical Results

We now fit the second stochastic volatility model SV2 to the same example considered already
in the previous section. We consider a European put option with three months expiry. Figure
2 shows the implied volatilities and the fitted option pricescompared to the observations and
the SABR model. We find that the both the SV2 and the SABR model fit the put prices well.
However, the SABR model still seems to fit the implied volatility smile better.

5 Summary

The aim of the paper was to construct a stochastic volatilitywhich is close in spirit to the
popular SABR model but does not rely on approximation techniques. Moreover we focused
on the analytical and numerical tractability when choosingthe dynamics and relationship of
the stochastic processes involved. We obtained two stochastic volatility model which satisfy
these criteria. In the first model the discounted asset priceis modelled as a product of two
independent processes: a geometric Brownian motion and a power of a CIR process. In the
second, which generalises the first, we express the discounted asset price as a product of two
independent processes: a geometric Brownian motion and a confluent hypergeometric function
of a CIR process. For both models we derive analytic expressions for prices of European put
and call options which is rarely possibly in other stochastic volatility models. The prices can be
expressed as integrals of elementary functions and can therefore be computed very efficiently.
The models fit well to FX option prices, and quite well to FX option implied volatilities.
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(b) European Put Prices

Model Optimal parameters
SABR β = 0.99 η = 1.0052314 σ0 = 0.1078418 ρ = 0.147685

a1 = 3.977 a2 = 0.849 µ = −0.0000439 η = 0.1079SV2
z0 = 0.04305 C1 = 3.68 C2 = 3.81

Figure 2: Comparing the fit of the SV2 model to the fit of the SABRmodel.

A Proofs

Proof of Lemma 3.3.First, we show thatS is a local martingale, using Itô calculus, and finally
we argue a bound onS to show thatS is a martingale.
Applying Itô ’s formula to the functionsx 7→ x

2

γ andx 7→ x
1

γ we get

dσ
2

γ =
2

γ
σ

2

γ
−1dσ +

1

2

2

γ

(

2

γ
− 1

)

σ
2

γ
−2σ2η2dt

= σ
2

γ

(

2 − γ

γ2
η2dt +

2η

γ
dB

)

,

dz
1

γ =
1

γ
z

1

γ
−1dz +

1

2

1

γ

(

1

γ
− 1

)

z
1

γ
−24zdt

=
z

1

γ

γ

((

a1

z
− a2 +

2(1 − γ)

γz

)

dt +
2√
z
dW

)

.

(13)

Using the product rule and the independence of the Brownian motionsB andW gives

dS = d
(

σ
2

γ z
1

γ

)

= σ
2

γ dz
1

γ + z
1

γ dσ
2

γ

= σ
2

γ z
1

γ
1

γ

((

a1

z
− a2 +

2(1 − γ)

γz

)

dt +
2√
z
dW +

2 − γ

γ
η2dt + 2ηdB

)

= S
1

γ

((

a1

z
− a2 +

2(1 − γ)

γz
+

2 − γ

γ
η2

)

dt +
2√
z
dW + 2ηdB

)

.
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Plugging in the definition ofa1 anda2 we get

dS = S
2

γ

(

1√
z
dW + ηdB

)

= S
2

γ

√

1

z
+ η2dW̃ ,

whereW̃ is a Brownian motion.
Sinceσ is a geometric Brownian motion, it is easy to see thatsup0≤t≤T σt ∈ Lp for any

p > 1, and similarlysup0≤t≤T zt ∈ Lp for any p > 1, sincesup0≤t≤T zt is bounded in law
by the supremum of the squared Euclidean norm of an OU processin high enough dimension.
ThereforeS is a martingale.

Proof of Theorem 3.5.We only show the expression for the put price (5) since (6) is similar.
From Lemma 3.3 we know thatS is a martingale. Hence the put price is the expectation in (5).
Since the processesz andσ are independent we can compute the expectation by conditioning
as follows.

P SV 1(S0, T, K, r, η, z0, γ) = E
[

(e−rT K − ST )+
]

= E

[

(e−rT K − σ
2

γ

T z
1

γ

T )+

]

= E

[

E

[

(e−rT K − σ
2

γ

T z
1

γ

T )+
∣

∣zT = z

]]

= E [h1(z)] =

∫ ∞

0

h1(z)pT (z)dz,

where

h1(z) = E

[

(e−rT K − σ
2

γ

T z
1

γ

T )+
∣

∣zT = z

]

=

∫ ∞

−∞

(

e−rT K − σ
2

γ

0 z
1

γ exp

((

2 − γ

γ2
η2 − 2η2

γ2

)

T +
2η

γ

√
Tx

))+ exp(−x2

2
)√

2π
dx

=

∫ a

−∞
e−rT K

exp(−x2

2
)√

2π
dx − σ

2

γ

0 z
1

γ e−
η2T

γ

∫ a

−∞
exp

(

−1

2

(

x2 − 4η
√

T

γ
x

))

dx√
2π

= Ke−rT Φ(a) − σ
2

γ

0 z
1

γ e−
η2T

γ e
2η2T

γ2 Φ

(

a − 2η
√

T

γ

)

= Ke−rT Φ(a) − σ
2

γ

0 z
1

γ e
η2T

γ ( 2

γ
−1)Φ

(

a − 2η
√

T

γ

)

,

wherea :=
γ

2η
√

T



log





e−rT K

σ
2

γ

0 z
1

γ



 +
η2T

γ



. Then withd2 = −a andd1 = −a + 2η
√

T
γ

the

result follows.

Proof of Lemma 4.2.We shall have need of the following result, which can be seen as an ap-
plication of Theorem 1.3.5 in Stroock & Varadhan (1979), though we present a direct proof
here.
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Proposition A.1. Suppose thatI is a non-empty open interval, and thatσ, b, b̃ : I → R are
locally Lipschitz inI, σ > 0 throughoutI. Let P (respectively,P̃ ) be the law on path space
C(R+, I) under which the canonical processX solves the SDE

dXt = σ(Xt)dWt + b(Xt)dt, X0 = x0 (14)

respectively,
dXt = σ(Xt)dWt + b̃(Xt)dt, X0 = x0 (15)

for some fixedx0 ∈ I. If τ ≡ inf{t : Xt /∈ I}, and Z is the ‘change-of-measure’ local
martingale

dZt = Ztf(Xt)dWt (16)

wheref(x) ≡ σ(x)−1(b̃(x) − b(x)), thenZ is a true martingale if and only if

P̃ (τ = ∞) = 1. (17)

Proof. First suppose that (17) holds. Take compact intervalsKn ⊂ I, increasing toI, and let
τn = inf{t : Xt /∈ Kn}. ThenZn

t ≡ Zt∧τn
is a martingale for eachn, because

dZn
t = Zn

t f(Xt)I{t≤τn}dWt

and the drift in the change-of-measure is bounded. Under theprobabilityP n given by

dP n

dP

∣

∣

∣

∣

Ft

= Zn
t

the processX solves the SDE

dXt = σ(Xt)dWt + b̃(Xt)I{t≤τn}dt + b(Xt)I{t>τn}dt.

Notice that for anyT ∈ R
+

1 = E[Zn
T ] = E[Zn

τn
: τn ≤ T ] + E[Zn

T : τn > T ]

= E[Zn
τn

: τn ≤ T ] + P̃ (τn > T )

= E[Zτn
: τn ≤ T ] + P̃ (τn > T ).

By hypothesis,̃P (τn > T ) → 1 asn → ∞, and therefore

E[ZT ] = E[ZT : τn ≤ T ] + E[ZT : τn > T ]

= E[ZT : τn ≤ T ] + E[Zn
T : τn > T ]

= E[ZT : τn ≤ T ] + P̃ (τn > T )

→ 1

Conversely, ifZ is a martingale, then the laws̃P andP are equivalent on eachFt, so the event
{supn τn ≤ t} has probability zero under bothP andP̃ .
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For a diffusion (14) onI = (0,∞), it is well known (see, for example Rogers & Williams
(2000), Chapter V) that 0 is inaccessible if and only ifs(0+) = −∞ and+∞ is inaccessible if
and only ifs(∞) = ∞, wheres is the scale function defined up to irrelevant affine transforma-
tions by

s′(x) = exp
{

−
∫ x 2b(z)

σ(z)2
dz
}

.

Routine calculations prove that0 and∞ are inaccessible for the diffusionz satisfying (8)
provideda1 ≥ 2 anda2 > 0; for this diffusion,

σ(x) = 2
√

x, b(x) = a1 − a2x, s′(x) = x−a1/2e
a2

2
x. (18)

It remains only to analyse the scale function of the drift-transformed version of the diffusion,
for which

σ(x) = 2
√

x, b̃(x) = a1 − a2x +
4xg′(x)

g(x)
, s̃′(x) = s′(x)/ (g(x))2 . (19)

This will require the asymptotics of the Kummer functions at0 and∞.
We use the first order approximation of the Kummer functions.According to (Abramowitz & Stegun,

1964, Chapter 13) forz > 0 andz → ∞

M(a, b, z) =
Γ(b)

Γ(a)
ezza−b

(

1 + O(|z|−1)
)

, U(a, b, z) = z−a
(

1 + O(|z|−1)
)

.

Hence, for largez we can write

g(z, a1, a2, µ) =
(a2

2

)

a1

4

(

C1M

(

− µ

a2
,
a1

2
,
a2z

2

)

+ C2U

(

− µ

a2
,
a1

2
,
a2z

2

))

= O(ea2z/2z
− µ

a2
− a1

2 ) (20)

From the equations (18), (19) and (20), we see that
∫ ∞

s̃′(x) dx = +∞.

All that remains is to show that
∫

0+
s̃′(x) dx = +∞, and for this we need the asymptotics near

zero ofg.
For smallz, the Kummer functions can be approximated, see (Abramowitz& Stegun, 1964,

Chapter 13). For|z| → 0, M(a, b, 0) = 1. For U(·, ·, ·) there are several approximation
dependent on the value of the second parameter, see (Abramowitz & Stegun, 1964, Chapter
13, formulae 13.5.6 - 13.5.11). Also the order of the approximation varies. Since we require
a1 > 2, we get for smallz

U

(

− µ

a2

,
a1

2
,
a2

2
z

)

=
Γ
(

a1

2
− 1
)

Γ
(

− µ
a2

)

(a2

2
z
)1− a1

2

+











O
(

|z|
a1

2
−2
)

: a1 > 4,

O
(

log
∣

∣

a2

2
z
∣

∣

)

: a1 = 4,
O(1) : 2 < a1 < 4.

(21)
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Whichever of these obtains, we see immediately that

g(z) = O(z1− a1

2 ). (22)

asz → 0. Combining (18), (19) and (22), we see that
∫

0+

s̃′(x) dx = +∞,

and the proof is complete by applying Proposition A.1.

Proof of Theorem 4.3.From Lemma 4.2 we know thatS is a martingale. Hence the option
prices are indeed the expectations in (11) and (12). These expectations can again be computed
by conditioning underz.

P SV 2(S0, T, K, r, a1, a2, z0, µ, η) = E
[

(e−rT K − ST )+
]

= E
[

E
[

(e−rT K − σT g(zT ))+
∣

∣zT = z
]]

= E

[

h̃1(z)
]

=

∫ ∞

0

h̃1(z)p(z)dz

and

h̃1(z) := E
[

(e−rT K − ST )+
∣

∣zT = z
]

= E
[

(e−rT K − σT g(zT ))+
∣

∣zT = z
]

=

∫ ∞

−∞

(

e−rT K − σ0g(z)eµT exp

(−η2T

2
+ η

√
Tx

))+
e−

x2

3

√
2π

dx.

We compute the integration boundary

0 ≤ e−rT K − σ0g(z)eµT exp

(−η2T

2
+ η

√
Tx

)

⇐⇒ x ≤ 1

η
√

T

(

log

(

K

σ0g(z)eµT

)

−
(

r − η2

2

)

T

)

=: ã.

Hence

h̃1(z) =

∫ ã

−∞

(

e−rT K − σ0g(z)eµT exp

(−η2T

2
+ η

√
Tx

))

exp(−0.5x2)√
2π

dx

= e−rT KΦ(ã) − σ0g(z)eµT Φ(ã − η
√

T ).

Then setting̃d2 := −ã andd̃1 := −a + η
√

T yields the result.

Acknowledgement

The second named author acknowledges support by the Engineering and Physical Sciences
Research Council (UK) and by Deutsche Bank (London) under grant EPSRC CASE 05/004.

16



REFERENCES REFERENCES

References

Abramowitz, M. & Stegun, I. A. (1964).Handbook of mathematical functions with formulas,
graphs, and mathematical tables, vol. 55 of National Bureau of Standards Applied Mathe-
matics Series. U.S. Government Printing Office, Washington, D.C.

Andersen, L. & Piterbarg, V. (2007). Moment explosions in stochastic volatility models.Fi-
nance and Stochastics11, 29–50.

Benaim, S. (2007). Regular variation and smile asymptotics. PhD dissertation, University of
Cambridge, Cambridge.

Bisesti, L., Castagna, A. & Mercurio, F. (2005). Consistentpricing and hedging of an FX op-
tions book.Kyoto Economic Review74, 65–83.

Cox, J. (1996). Notes on option pricing I: Constant elasticity of variance diffusions.Journal of
Portfolio Management22, 15–17.

Cox, J. C., Ingersoll, J. E., Jr. & Ross, S. A. (1985). A theoryof the term structure of interest
rates.Econometrica53, 385–407.

Delbaen, F. & Shirakawa, H. (2002). A note on option pricing for the constant elasticity of
variance model.Asia-Pacific Financial Markets9, 85–99.

Dupire, B. (1992). Arbitrage pricing with stochastic volatility. Proceedings of AFFI Conference,
Paris, June 1992.

Glasserman, P. (2004).Monte Carlo Methods in Financial Engineering. Applications of Math-
ematics, Springer, New York, NY.
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