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Abstract. In earlier studies, the estimation of the volatility of a stock using information
on the daily opening, closing, high and low prices has been developed; the additional
information in the high and low prices can be incorporated to produce unbiased (or
near-unbiased) estimators with substantially lower variance than the simple open-close
estimator. This paper tackles the more difficult task of estimating the correlation of
two stocks based on the daily opening, closing, high and low prices of each. If we could
assume that we saw the high and low values of some linear combination of the two log
prices, then we could use the univariate results via polarisation, but this is not data that
is available. The actual problem is more challenging; we present an unbiased estimator
which halves the variance.

1 Introduction

There is no doubt that volatility is a central concept in the theory and application
of quantitative finance. In our simplest models, we treat volatility as a constant of
the Black-Scholes paradigm, but we quickly discover that the resulting option-pricing
formula does not fit reality very well, so we consider variants of the basic model, for
example, models where the volatility is allowed to be stochastic in some way1. It is
not our purpose here to survey this huge field; the reader may consult (Ghysels et al.,
1996), (Shephard, 2005) for a survey of (some of) what is known on stochastic volatility.

∗We thank Nick Brown of BNP Paribas for posing the question which led to this work.
1The enormous literature on GARCH models aims to address similar issues, but cannot be viewed

as a variant of Black-Scholes, being as it is a firmly discrete-time theory.
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Having chosen a particular model for volatility, the question of estimating it now arises;
again, there is no shortage of papers which propose methods of doing just this; see
the survey (Broto and Ruiz, 2004) for further references. How this estimation is to
be done depends on the nature of the data available, and the model to be estimated.
For example, if high-frequency data is available, then we may attempt to estimate
volatility through the realised variance of the path. There are several reasons why this
is not necessarily a good idea. First, as (Alizadeh et al., 2002) argue, microstructure
effects such as bid-ask bounce can significantly bias the estimator upward, though this
problem can be to a large extent obviated by a more ingenious choice of estimator; see,
for example, (Barndorff-Nielsen and Shephard, 2004), (Zhang et al., 2005). Second, we
should expect that the estimates made will not show much intertemporal stability (in
view of the well-known profile of intra-day trading activity). Indeed, the recent work of
(Barndorff-Nielsen et al., 2006) confirms this, showing estimates of volatility which vary
very substantially from day to day. Third, we have to handle a huge amount of data;
while this is not in itself a problem, it is reasonable to ask whether the effort, human and
computer, is worth the goal, and, indeed whether the additional effort will actually help
towards the goal. Much depends on the intended use, but if we want to price options, or
make forecasts, a few months into the future, then we should be using calibration data
sampled on a comparable time-scale, and we require estimates of volatility; studies of
high-frequency realized volatility are not so much estimating volatility as measuring it.

In this study we shall suppose we are interested in estimating volatility and covariances
for the purposes of derivative pricing and hedging, and forecasting. For the reasons just
outlined, we propose to restrict our attention to daily price data, for lack of convinc-
ing evidence that high-frequency observation helps to this goal. We shall also discuss
only the estimation of constant volatilities and covariances; if nothing can be done in
this simple situation, then nothing can be done. The strand of the literature that we
develop in this paper is that of range-based estimation of volatility. The idea of using
information on the daily high and low prices, as well as the opening and closing prices,
goes back a long way, to (Parkinson, 1980) and (Garman and Klass, 1980) at least, with
further contributions by (Beckers, 1983), (Ball and Torous, 1984), (Rogers and Satchell,
1991), (Kunitomo, 1992), (Yang and Zhang, 2000), (Alizadeh et al., 2002) among others.
However, it is only comparatively recently that attention has been given to range-based
estimation of covariance between different assets; see, for example, (Brunetti and Lild-
holdt, 2002), (Brandt and Diebold, 2006).

The covariance of assets is important for the computation of the prices of derivatives
written on many underlyings, such as basket options; the obvious method of estimation
(treating the daily log returns as IID multivariate gaussian variables) produces an un-
biased estimator of the covariance matrix. The question we address in this paper is,
“Can information on daily high and low prices be used to make better (that is, lower

2



mean-squared error) unbiased estimates of the covariance matrix?” The studies (Brandt
and Diebold, 2006), (Brunetti and Lildholdt, 2002) work with foreign exchange data,
where the availability of data on the cross rates means that one is able to observe highs
and lows of linear combinations of the log asset prices, allowing one to reduce to existing
univariate methodology by polarization. However, such an approach would be impossi-
ble if assets were equities, say, since we do not have information on the highs and lows
of linear combinations of the log asset prices (unless full tick data is available, but this
would be a very different question). For such situations, a completely new approach is
required; this is what we undertake in this paper.

In Section 2, we shall without loss of generality restrict to the situation of two correlated
log-Brownian assets, whose rates of growth we shall assume are both zero2. We aim to
construct an unbiased estimator which is a quadratic function of the high, low and closing
(log-)price of the two assets, and which has smallest MSE. For correlation ρ = −1, 0, 1
the various moments we require are known in closed form, but for other values of ρ
not all were known3. What we do is to search among linear combinations of quadratic
functions of the variables (subject to the constraint that the estimator has no bias if
ρ = −1, 0, 1) for the estimator that has the smallest MSE when ρ = 0. This produces a
new estimator whose variance is half that of the obvious estimator based just on closing
prices. We present simulation evidence that this advantage appears to be preserved
for other values of ρ, and is partly robust to departures from Gaussian returns. The
form of the estimator is moreover insensitive to errors produced by discrete sampling of
the underlying Brownian motions, a problem encountered with some other range-based
estimators.

2 Estimating covariance.

We suppose that the log price processes Xi(t), i = 1, . . . , n are correlated Brownian
motions:

E[ Xi(s)Xj(t) ] = σij min{s, t}

for all i, j. Write

Hj ≡ max
0≤t≤1

Xj(t), Lj ≡ min
0≤t≤1

Xj(t), Sj = Xj(1)

for the high, low and final log price over a fixed time interval which we lose no generality
in supposing to be [0, 1]. We shall also restrict attention to just two assets, assets 1 and

2This assumption, used by various authors, is quite innocent if the data is being sample daily, as
the growth rate is negligible in comparison with the fluctuations.

3The recent paper (Rogers and Shepp, 2006) fills in the missing answers.
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2, again without loss of generality. Moreover, the individual log price processes may
be scaled by σ

−1/2

ii to become standard Brownian motions, with σij now the correlation
between assets i and j. For simplicity, we assume until further notice that this has been
done.

The goal now is to make an unbiased estimator of σ12 by forming linear combinations
of the nine possible cross-terms, ZHH = H1H2, ZHL = H1L2, ZLH = L1H2, ZLL =
L1L2, ZHS = H1S2, ZLS = L1S2, ZSH = S1H2, ZSL = S1L2, ZSS = S1S2.

Now the means of these variables are known for the cases of ρ = −1, 0, 1, and the recent
paper (Rogers and Shepp, 2006) establishes that

EZHH = f(ρ) ≡ cos α

∫ ∞

0

dν
cosh να

sinh νπ/2
tanh νγ, (1)

where ρ = sin α, α ∈ (−π/2, π/2), and 2γ = α+π/2. Table 2 summarises the situation,
where we have used the abbreviation b = 2 log 2 − 1 ≃ 0.386294.

ρ = −1 ρ = 0 ρ = 1 ρ
EZHH b 2/π 1 f(ρ)
EZHL −1 −2/π −b −f(−ρ)
EZLH −1 −2/π −b −f(−ρ)
EZLL b 2/π 1 f(ρ)
EZHS −1/2 0 1/2 ρ/2
EZLS −1/2 0 1/2 ρ/2
EZSH −1/2 0 1/2 ρ/2
EZSL −1/2 0 1/2 ρ/2
EZSS −1 0 1 ρ

Table 1: Means of the components of Z

The means of the five cross terms below the line in the table are exactly linear in ρ,
whereas the means of the first four are not. The function f is well approximated by
a quadratic; the difference between f and the quadratic approximation (which is exact
at ρ = −1, 0, 1) is never more than 0.65%. Nevertheless, as we shall see, the departure
from quadratic does matter, and we shall have to account carefully for it.

Our objective now is to make up a linear combination ρ̂ of these nine variables with the
properties:

(i) Eρ[ ρ̂ ] = ρ for ρ = −1, 0, 1;

(ii) when ρ = 0, the variance of ρ̂ is minimal.
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In view of the near-linearity of f , we can expect that if property (i) holds, then the
estimator ρ̂ should be nearly unbiased for all ρ.

In order to find a minimum-variance linear combination, we need to know the covariance
of Z ≡ (ZHH , ZHL, ZLH, ZLL, ZHS, ZLS, ZSH, ZSL, ZSS) when ρ = 0. In this case, the
two Brownian motions are independent, and the entries of the covariance matrix can be
computed from the entries of Table 2. For example, E0[ZHHZSL] = E1[ZHS].E1[ZHL] =
−b/2. Routine but tedious calculations lead to the covariance matrix:

V =





























1 −b −b b2 1/2 −b/2 1/2 −b/2 1/4
−b 1 b2 −b 1/2 −b/2 −b/2 1/2 1/4
−b b2 1 −b −b/2 1/2 1/2 −b/2 1/4
b2 −b −b 1 −b/2 1/2 −b/2 1/2 1/4

1/2 1/2 −b/2 −b/2 1 −b 1/4 1/4 1/2
−b/2 −b/2 1/2 1/2 −b 1 1/4 1/4 1/2
1/2 −b/2 1/2 −b/2 1/4 1/4 1 −b 1/2
−b/2 1/2 −b/2 1/2 1/4 1/4 −b 1 1/2
1/4 1/4 1/4 1/4 1/2 1/2 1/2 1/2 1





























(2)

Writing

m = (1,−b,−b, 1, 1/2, 1/2, 1/2, 1/2, 1)T

y = (1,−1,−1, 1, 0, 0, 0, 0, 0)T ,

our objective now is to choose a 9-vector w of weights to minimise w · V w subject to
the constraints that w · y = 0, and that w ·m = 1. This simple optimisation problem is
easily solved: we find that the solution takes the form

w = αV −1m + βV −1y, (3)

where α, β are determined by
(

m · V −1m m · V −1y
y · V −1m y · V −1y

) (

α
β

)

=

(

1
0

)

(4)

At this point, we passed the calculations to Maple in order to calculate the weights.
The end result was that we obtained an estimator for ρ as follows:

ρ̂ =
1

2
S1S2 +

1

2(1 − 2b)
(H1 + L1 − S1)(H2 + L2 − S2). (5)

When ρ = 0, the variance of this estimator is 1

2
, in contrast to the variance of the obvious

estimator S1S2, which has variance 1.
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Remarks (i) It is clear that if we are trying to form an estimate of the covariance
matrix of more than two Brownian motions, estimating each entry by way of (5), then
the matrix will be rank 2 and non-negative definite.

(ii) One problem identified in the earlier literature with estimators based on high and low
values is that when we observe the Brownian motions discretely we tend to substantially
underestimate the supremum and overestimate the infimum. A correction is known to
deal with this (see (Broadie et al., 1997)), but we see that as we only ever need to
calculate H + L, the discretisation errors cancel out on average!

(iii) If we compute the mean of ρ̂ we find

ϕ(ρ) ≡ Eρ[ ρ̂ ]

=
1

2
ρ +

1

2(1 − 2b)
Eρ

[

(H1 + L1)(H2 + L2) − S1(H2 + L2) − S2(H1 + L1) + S1S2

]

=
1

2
ρ +

1

2(1 − 2b)

[

2f(ρ) − 2f(−ρ) − ρ
]

.

Now if we simply replace the function f by its quadratic approximation, this expression
collapses to ρ. In other words, replacing f by its quadratic approximation prevents us
from understanding and correcting for the bias in the estimator ρ̂.

What we propose to do therefore is this. We suppose that we see data from a run of N
days, and on day i, we compute the value ri (say) of ρ̂. We then form the mean r̄ of the
ri, and use as our estimator of ρ

ρ̂RZ ≡ ϕ−1(r̄). (6)

Though the function ϕ is not available in closed form, there is no difficulty in handling
it numerically.

3 Simulation study.

We carried out a simulation study of the estimators. For each ρ = −0.9,−0.8, . . . , 0.9,
we generated 20000 paths4 of correlated standard Brownian motions, with 500 steps on
each path, and for each path we computed and stored the values of ρ̂0 ≡ S1S2, and ρ̂RZ .
The results are reported in Table 3. We give the sample means and standard deviations
of the two estimators for each value of ρ, and we also present the ratio of the sample
variance of ρ̂0 over the sample variance of ρ̂RZ . We see that this ratio is always at least 2,
with the smallest value coming around ρ = 0, where theory predicts the value 2 exactly.

4.. of duration 1 ..
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ρ ρ̂0 SD(ρ̂0) ρ̂RZ SD(ρ̂RZ) variance ratio
- 0.9 - 0.9069 1.367 - 0.9082 0.8831 2.3950
- 0.8 - 0.7930 1.290 - 0.7950 0.8396 2.3600
- 0.7 - 0.7067 1.239 - 0.7005 0.8079 2.3505
- 0.6 - 0.5880 1.157 - 0.5872 0.7678 2.2719
- 0.5 - 0.5064 1.137 - 0.5045 0.7680 2.1917
- 0.4 - 0.4030 1.075 - 0.3962 0.7377 2.1252
- 0.3 - 0.2971 1.060 - 0.2981 0.7178 2.1812
- 0.2 - 0.2075 1.019 - 0.1957 0.7056 2.0835
- 0.1 - 0.0970 1.003 - 0.1004 0.7101 1.9961
0.0 - 0.0038 0.999 - 0.0011 0.7021 2.0285
0.1 0.0992 1.010 0.0943 0.7151 1.9942
0.2 0.2083 1.014 0.2086 0.7111 2.0331
0.3 0.3051 1.042 0.3028 0.7187 2.1032
0.4 0.4089 1.096 0.4037 0.7370 2.2128
0.5 0.5013 1.124 0.5055 0.7649 2.1611
0.6 0.5967 1.159 0.6032 0.7812 2.1994
0.7 0.6913 1.190 0.6946 0.7941 2.2468
0.8 0.8062 1.309 0.7979 0.8441 2.4057
0.9 0.9012 1.344 0.9042 0.8671 2.4038

Table 2: Simulation results for Brownian motion

7



We see that both estimators are close to the true values across the entire range of
ρ-values chosen, but that ρ̂RZ has at most half the variance of the simple estimator ρ̂0.

To check the robustness of the estimator to model assumptions, we repeated the simu-
lation study using a Variance-Gamma (VG) process instead of Brownian motion, once
again with 20000 paths sampled at 500 points in time. The results are reported in Table
3. Probably the most striking feature is the fact that now the estimator ρ̂RZ is very
substantially biased, even for moderately small values of ρ. We conclude that the use
of this estimator is not advisable if we are not satisfied that the underlying process is
Brownian motion. Observe that the bias is always in the direction of underestimating
the magnitude of the correlation.

ρ ρ̂0 SD(ρ̂0) ρ̂RZ SD(ρ̂RZ) variance ratio
- 0.9 - 0.8969 2.0253 - 0.6847 1.1751 2.9705
- 0.8 - 0.8094 1.9726 - 0.6112 1.1094 3.1619
- 0.7 - 0.6681 1.6592 - 0.525 0.9746 2.8982
- 0.6 - 0.6054 1.565 - 0.4683 0.9070 2.9771
- 0.5 - 0.5041 1.4674 - 0.3944 0.8512 2.972
- 0.4 - 0.3928 1.228 - 0.3133 0.7264 2.8579
- 0.3 - 0.3017 1.1538 - 0.2409 0.6792 2.8863
- 0.2 - 0.2000 1.0383 - 0.1637 0.6063 2.9331
- 0.1 - 0.0854 1.0075 - 0.0779 0.5759 3.0607
0. - 0.0069 0.9940 - 0.0029 0.5445 3.3326
0.1 0.0967 0.9975 0.0827 0.5694 3.0695
0.2 0.2057 1.0642 0.1660 0.6150 2.9949
0.3 0.3068 1.1338 0.2470 0.6761 2.8119
0.4 0.3891 1.2734 0.3101 0.7514 2.8722
0.5 0.4883 1.4006 0.3870 0.8192 2.9233
0.6 0.5999 1.549 0.4701 0.9150 2.8658
0.7 0.7253 1.8293 0.5515 1.0414 3.0855
0.8 0.8042 1.9081 0.6118 1.0988 3.0155
0.9 0.8941 2.0951 0.6807 1.2121 2.988

Table 3: Simulation results for VG process

As a further check of robustness, we performed the same simulation using now a Brow-
nian motion with drift 0.1. The results are reported in Table 4. This time, the bias of
ρ̂RZ is small, but the variance advantage persists.
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ρ ρ̂0 SD(ρ̂0) ρ̂RZ SD(ρ̂RZ) variance ratio
- 0.9 - 0.8960 1.3634 - 0.8898 0.8560 2.5372
- 0.8 - 0.7842 1.2769 - 0.7878 0.8267 2.3857
- 0.7 - 0.6874 1.2068 - 0.6917 0.7910 2.3277
- 0.6 - 0.5817 1.1604 - 0.5840 0.7659 2.2953
- 0.5 - 0.4851 1.1123 - 0.4895 0.7482 2.21
- 0.4 - 0.3953 1.099 - 0.3961 0.7481 2.1582
- 0.3 - 0.2868 1.0469 - 0.2855 0.7196 2.1167
- 0.2 - 0.1851 1.0327 - 0.1929 0.7229 2.0407
- 0.1 - 0.0871 1.0087 - 0.0935 0.7120 2.0074
0. 0.0143 0.9994 0.0047 0.7050 2.0093
0.1 0.1104 1.0095 0.1091 0.7082 2.0319
0.2 0.2130 1.0575 0.208 0.7196 2.1598
0.3 0.3076 1.0599 0.3005 0.7216 2.1572
0.4 0.4088 1.0831 0.4045 0.7359 2.166
0.5 0.5118 1.135 0.5062 0.7602 2.2291
0.6 0.6241 1.2004 0.6108 0.7827 2.3523
0.7 0.7157 1.2345 0.6987 0.7981 2.3928
0.8 0.8153 1.3177 0.8015 0.8371 2.4777
0.9 0.9199 1.3979 0.9114 0.8937 2.4465

Table 4: Simulation results for Brownian motion with drift 0.1
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Estimated correlation matrix using ρ̂0

BA GSK GM PG
BA 1.0000 0.3354 0.3294 0.3201
GSK 1.0000 0.2987 0.3464
GM 1.0000 0.2102
PG 1.0000

Estimated correlation matrix using ρ̂RZ

BA 1.0000 0.2948 0.2925 0.2562
GSK 1.0000 0.2208 0.3327
GM 1.0000 0.2086
PG 1.0000

Table 5: Point estimates of correlation

Ratio of sample variance of ρ̂RZ

to sample variance of ρ̂0 (in %)

BA GSK GM PG
BA 92.43 55.49 45.49 60.88
GSK 54.74 45.90 55.09
GM 78.02 48.12
PG 54.97

Table 6: Ratio of sample variances

4 Empirical study

In this Section, we examine a small data set of stock prices on four stocks, Boeing (BA),
Glaxo Smith Kline (GSK), General Motors (GM) and Proctor & Gamble (PG). The
prices were from the NYSE, for the period 4th February 2002 up to 12th July 2006,
a period of 1118 trading days. The data was from Yahoo Finance. The results are
presented in Tables 5 and 6, and in Figure 1. Table 5 presents the point estimates
(sample means) of the correlation computed firstly by the simple open-close estimator,
and secondly by the estimator ρ̂RZ . Table 6 gives the ratio of the sample variances of the
two estimators, the sample variance of ρ̂RZ being expressed as a percentage of the sample
variance of ρ̂0. We can see that the point estimators of the correlation are reasonably
close, but in places noticeably different; however, inspection of Figure 1 shows that the
differences are well within sampling error.

The sample variance of ρ̂RZ is substantially less than the sample variance of the simple
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estimator ρ̂0, so we see that for this data, the theoretical advantage of ρ̂RZ , namely its
lower mean-square error, appears to hold.
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Figure 1: Estimates of rho. Estimated values given by solid lines (circle for simple
estimator, diamond for ρ̂RZ), and the 95% confidence intervals are given by the dashed
lines. The pairs in Figure 1 are listed in the order BA:GSK, BA:GM, GSK:GM, BA:PG,
GSK:PG, GM:PG.
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5 Conclusions.

We have presented a new estimator for the correlation of asset prices, based on the
information contained in daily high, low, open and close prices. In contrast to other
studies, we have not supposed that the high and low prices of some linear combination
of the log prices is available. While this supposition may be reasonable if the assets
were currencies (when the cross rates would provide the required information), it would
only be possible in the context of equity if high-frequency data were available. We
have found a minimum-variance unbiased estimator quadratic in the variables, and have
investigated its properties. Simulation experiments showed that the estimator behaved
as expected for log-Brownian data, but that the performance on simulated variance-
gamma data was poor. A small-scale study of prices of equity in major US firms showed
that the two estimators agreed to within sampling error, and that the sample variance
of the new estimator was considerably less. As with range-based estimation of volatility,
we conclude that range-based estimation of correlation lacks dependable and decisive
advantages over the simpler estimators based only on the open-close prices.

It seems nevertheles that it is always worth computing the new estimator, if only as
a comparison with the simple open-close estimator. Widely different numerical values
may indicate a departure from log-normality that requires further investigation.
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