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SKEW-PRODUCT DECOMPOSITIONS OF BROWNIAN MOTIONS
E.J. Pauwels* and L.C.G. Rogers

1. INTRODUCTION. Every good probabilist knows examples of skew-product decompositions of
Brownian motions on various manifolds, the most celebrated being the skew-product decomposition of
Brownian motion in R", BM(IR") . The aim of this paper is to show that all such decompositions can be
considered as examples of a common phenomenon: we study this in a general setting, and obtain further
skew-product decompositions of Brownian motions on certain manifolds of matrices, extending the
results of Norris, Rogers and Williams [5].

In all these skew-product decompositions, we observe the following features:

(1.i) the starespace of the diffusion X-isa C™ Riemannian manifold (M.,g) which has the product

form
M =Rx06

where ® and R are connected C'™ manifolds;

(Lii) foreach E=(r6)e M, the tangent space T¢M isnaturally isomorphicto T,R @ T¢@®; the
subspaces T.R and T¢® of TeM are orthogonal with respect 10 g .

Any linear operator V on C*(R) (in particular, any vector field, or second order differential opera-
loron R )has a natural extension to C~(M), which will again be denoted by V , defined by

Vi(re) = Vi) YV fe COM), (nB)e M,

where
fo(r) = F(n0).

Thus foreach r € R there is a Riemannian metric tensor g2 on © defined by
gPW,V)(8) = gWU,V)(1.0)

where U,V are vector fieldson ©.
Evidently the roles of R and © in these definitions can be interchanged mmughoﬁt. If we now

assume that
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(1.iii) There is a Riemannian metric tensor gR on R such that
gt = ¢ v e ©
and also that
(l.iv) the Riemannian volume element on (M,g) is a product measure,
L

then there is a skew-product decomposition of A , the Laplace-Beltrami operator of (M.g);
@ AF(n8) = ARF(r8) +VF(n0) + APf(r0),

where V is (the extension to C *(M) of) some vector field on R , and Af’ (respectively, ARy is the

Laplace-Beltrami operator of (©,g8) (respectively, R.g™.
(L.i) - (L.iv) is quite straightforward, and is dealt with in §2. The
rdinate neighbourhood one takes vector

The proof of (2) under assumptions
probiabilistic aspects of (2) are worth singling out, if in some COO:

fields Vg, ... Vo On R and Uqg(r)s oo Un(r) on © such that

n
AR = Vo + 3 V7,
j=1

m
A8 = Uy + 3 Utr),
=1
which can always be done, then in this coordinate neighbourhood BM(M) is the solution (r 820 10

the SDE

ar, = Vi(rpaBi + ¥ Volr) ot + + V() ot

®
36, = Uj(r)(8) oW} + LU O,

where & denotes Stratonovich differential, and B!, ..B", W', ., W™ areindependent BM(R)'s. The

interpretation (stated rather loosely) is that

4.1) the r-motion is BM(R) withdrift V;

(4.ii) at time t, the 8-motion is Brownian motion on (e, g,?(,)) driven by a white noise independent of r.

Ry may not be complete, and one

which arises in most examples is that the manifold (R, g
ars in the case of the skew-

One problem
sure that the r-motion does not ‘explode in finite time', which appe
y as the possibility that the radial process reaches the degenerate point

ussed in §2.

has to en
product decomposition of BM(R"

0 in finite time. Techniques for handling this problem are disc

This would be the end of the matter if we were content to consider no examples. However, the limi-

tations of what we have done become readily apparent if we consider the eigenvalue/eigenvector decom-

position of Brownian motion on U (n). The eigenvalues of U e U(n) all lie on the unit circle, so U

can be represented (if its ei genvalues are distinct) as
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U=V AV,

where AeR = i i

€ {nxn diagonal complex matrices with distinct cigenvalues), and Ve U (n). Th
re rese - - ® . ' ' ' '
t P . niation is not unique, of course; laying aside the trivial permutations of eigenvalues and ei .
o . . eigenvec-
o on;y Ze made unique by making some arbitrary choice of the eigenvectors, since if i is an

genvector o , 80 is @x, where ol =1. § '

. = 1. So the prod iti

o preduct decomposition of Ufn) should be

© = UmWUon),  Uor) = (Ve U(n): Visdiagonal) .

t['he homogeneous space @ is a much clumsier object than U(n) ; there is no nice global

indeed, .Lhe only tidy way to express © isas U (n)/Ug(n). This leads us to ask the namfa:) C[']am" o
we obtain a diffusion (r,, V;) on R x U(n) such that V; », V, is Brownian motion on l’]que‘s:'lon -
out that r{le a.nswer is "Yes", that the form of the diffusion on R x U (n) is extremely sim 1((:) ‘d e
1car:strucuon is a special case of a general skew-product decomposition. In more detail oo an‘ P
arge class of examples with the additional struchure: enmmsos

(5) i i il
thele isa Lle Sroup G aClmg fraﬂsl“vely on thﬂ ﬂf f'ld tj’le lemannian structire 0’ I\’I s
1 ron 9 a R

(The case of Brownian motion in IR” = (0, oo = §n- =
\(0} has R 1
o (0,20),8 =5"" ,and G = O(n), for exam-

We shall see i isfyi
e .lhat m examples satisfying (5), the conditions (1.iii) and (1.iv) are automaticall
»and there is a Lie subgroup H of G such that ®=G/H . A Riemannian structu th b)::
- ‘ - . re can then
p R x G insuch a way that Brownian motion projects down to Brownian motion on R x @

To finish wi ive i
e ith, we give in §4 some examples of such skew-product decompositions, notably to
e - 3 '
e cigenvalue/eigenvector representation of Brownian motion on various manifolds of matri s
matrices.

at ( 'l) ( By ) old. 0cal coor lIlatcS, e ap ace-Beltrami UPEIatOI can written o

(6) A = (detg)™? Dy (g‘f(detg)‘” D;)
where (¢¥) = g7, D; = d/ax i ii
(g¥) = g7, D; = diox" . Inview of (1.ii) and (1.iii), the matrix representing g has the form

g o

(7) gfj(roe) =
0O (Pn®

where o,B run fr = di
B omit n =dimR, A1 runfrom 110 m = dim © . For a tidier notation, we write

Pap(r) = gha () Pu(n®) = (20).
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Because of (1.iv), we have also that
@ dety(r.®'2 = ¢(r) w(8).

We can now state and prove the fundamental result.

THEOREM 4.  The Laplace-Beltrami operator A of (M,g) has the form
&) Af(r,0) = A%F(r6) + VF(rn0) + ARf(r0),

where V is the vector field on R which has the expression

(10 V= p®Da(logd) Dp

in local coordinates.

Proof. From (6),

A = (detp)y ¢ty {Du(p““(detp)"’ oy Dp)
+ DA (detp)™? wou)}

= (detp) 2 ¢! Do(p™ detp'? ¢ D)

+ ¢y DL oW DY)

(et p)y2 D o(p°® detp'2 Dp) + p™ 6™ Da ¢ Dp
+ ¢y DM by DY)

AR+ V + A%,

We tum now to consider questions concerning the explosion of BM(M) . In the cases which interest

us later, where © is a homogeneous space, the important thing is to decide whether or not the r-motion
explodes, 50 we now concentrate on this.

A few heuristic remarks will help to explain what is being done. The r-motion has generator

G = +@f+V),

so it is a Brownian motionon R with drift V. This calls out for the Cameron-Martin change of measure;

if (r) 20 is the canonical continuous R-valued process, then a few formal calculations show that the dif-

fusion with generator G has density
L
@)oo exp( hr)ds)  on o({r, ius1)
]

with respect to the law of Brownian motion of R, where
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(n h = -5 8%(log¢) - 4 ¢/ D;log ¢ Delog ¢ .

Writing x = ¢2, we can easily show that

(12 h = —2xt ARy,

This explains why the local martingale at (13) is, in fact, a completely natural thing to consider, even
though (as with all real applications of Cameron-Martin) the details are too ugly to be worth uymg, to do

anything rigorous with them. What we shall do is to obtain a condition which in many cases is sufficient
to ensure that the diffusion with generator G does not ‘explode’ to the region where ¢ = 0

With k = ¢'2, the generator of the r-motion can be written

G

1a® + Vv

+ K2(det p) 2 Do (% . detp™ .12 Dp).

Of course, we do not yet know whether the r-motion can be constructed for all time; there are cases where
it cannot. Nonetheless, it certainly can be constructed locally, as follows. Fixing the starting pont
ro € R, we can find compact K, c R with union R and such that X, < int(K,,;),and rge K

and we can construct r up until the time ' ’ v

T, = inf(t:r, ¢ K,},

since K, can be covered with finitely many coordinate neighbourhoods, and r can be constructed in
each, using the local coordinate system. This way, r can be constructed up to the explosion time
€ = sup T, . Assuming this done, we define

]
A = Lot AR () ds Ost<0.
0
We claim that
(13) Y, = x(ro) x(r)™ exp (4) (RS

2 g ’ ( ) H) .
i a It)t,‘(ﬂ martin, ﬂlﬂ n ule sense l.hat ¥ t T 1sa maﬂmgale fOl‘ eaCh n T‘hls fO]l(!w lly
S €as fl‘()lll Ihe

Gy = 3 x2(detp)™2 Dy (p*? det p? (-Djp x))

-+ x2ARx,

If we now assume that for some a € R,
L
(14) =& AR() 2 -a  forall reR,

and if we let
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§ = inf{u: w(r,) <€)

then for ¢t > 0 fixed

1

1 =Yy = EQSe ATa A

EQ@(Se ATy at)i Sg < Tunt)

%

1\

K(ro)el e P(Se < Tpal),

so that

P(S, < T,an) < eex(rg)
and letting n — =,

P(Se < LAt € ee”ix(ro)

so that, if § = lii'% § ¢ , we conclude that
£

(15) PGS <fa) =0.

Thus condition (14) ensures that, if explosion does occur in finite time, it cannot occur in such a way that

x(r) = 0astTC.

To illustrate the use of this criterion, we consider the case of Brownian motion on IR"\ {0} (n 23),

when R = (0,%) with the usual Riemannian metric, and ¢(r) = ri=! . Then x(r) = r2  and
ol aR = F-D@e-3Hrt 20,

so that condition (14) holds, and explosion to zero is impossible. To prove that explosion does not occur

requires a further argument, it appears to be simpler to use ad hoc arguments for each case than to devise

some general criterion. Several examples will be analysed in §4.

3. THE CASE WHERE & IS A HOMOGENEQUS MANIFOLD. Throughout this section we shall

assume that there is 2 Lie group G and a smooth left action
n:Gx0 = ©

of G on © , which is transitive (that is, if 8,

ne 8)) = 62). As alternative notations, we write 1,(6) = y@ = n(y 0). The left action 7 induces

anatural left action | on M defined by
A0 ) = (. nO. ).

Suppose we now assume the following condition:

(16)  The Riemannian struciure of M is invariant under the action M ;
in view of the transitivity of 7, it is immediate that condition (1.iii) is

0, € ©, there there exists y € G such that

then satisfied, but it is even true

SKEW-PRODUCT DECOMPOSITIONS OF BROWNIAN MOTIONS 243

that condition (1.iv) holds, as the following simple result shows.

PROPOSITION 1. Assuming condition (16), the Riemannian volume element ont (M.g) is a product
measure.

Proof. Fix some roe R ,and let p be the Riemannian volume of (8, g8 ). In any chart, p hasa
strictly positive continuous density with respect to Lebesgue measure, and, by (16), 1 is invariant under
n: for fe Cxk(@),ye G,

E{ F@®u@d) = [fon,©nae).
a

If v is any N-invariant measure with a continuus density with respect to Lebesgue measure in any chart,
then the density p = dv/dp is continuous. In fact, p is constant, indeed, forBorel Ac®,ye G,

V(A) = J1,(0) p(®) 1(d®)

[ 14,8 p(ry(8) (a8

vn;'(4)

[ 14y p(®) ey,

from which p = pon, and transitivity of n implies that p is constant. Fixing some non-negative
fe C¥(R) and letting Vol be the Riemannian volume of (M,g), the measure v on © defined by

v(4) = [ £()14(8) Vol @)
has continuous density and is invariant under 7, s0 is a multiple of p:
vid) = [FOYL®) Vol@d = C () ]140) n@e) .

The result follows. ) 0

Thus we can invoke Theorem 1 and conclude that if (1.i), (1.ii) and (16) hold, then BM(M) has a
skew product decomposition. However, this is far from satisfactory: for example, condition (16) is going
1o be difficult to check in general, for it involves knowledge of the Riemannian structure 22 on the
clumsy homogeneous space © , which will often be hard to specify explicitly. The clean way to handle
the problem is to build a process on R x G which has a skew-product decomposition, and then to drop
this process down onto M.

. To begin with, we establish some notation. Fix some 65 € © and let / denote the isotropy group
at 0g:

H = {yeG:y®o=08)].

This is a closed Lie subgroup of G, and G/H can be given a natural C* structure such that the map
B: G/H — © defined by
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BeH) = y*Bo

is a diffeomorphism; see Warner [9], pp. 120-123.
Let N = R xG and define

t:N=RXG 2 M=Rx%x6

by
n((rnx)) = (r, x+6o).
We define the pull-back x"g of the Riemannian structure g of M by

an rg(UV) = g(mU, mV),
where U,V are vector fields on N . Thus n'g is a non-negative-definite bilinear form on the tangent
bundle; it is not a Riemannian structure, because there are non-zero U such that ©.U = 0,
THEOREM 2. Suppose that

(18.0) ©'g is G-invariant;

(18.ii) the decomposition Ty N = TR OT,G of TonN is orthogonal with respect to n'g for

each re R, xe G ;

(18.iii) Ad(H) has compact closure in Glg).
Then the decomposition TyoM = T,R © To© is g-orthogonal, and the Riemannian structure of g of
M is invariant under the action 1| of G .

Moreover, there is a Riemannian structure g¥ on N with the properties

(19.0) gV is G-invariant,

(19.i) TN =2 TR @T,G isanorthogonal decomposition relative to g" 3

(19.iii) the map : (N, g") — (M.g) is a Riemannian submersion with totally geodesic fibres.
Hence, in particular, if X is Brownian motion on. (N, g") then

(20.i) X has a skew-product decomposition;

(20.ii) m(X) is Brownian motionon (M,g).

Proof. Consider a smooth curve o, = (r,, o,) in M. Since there are local smooth sections of G/H in

G , then (at least locally) there is a smooth curve ¥ in G which projects down to ooy = ¥°8p . Let
p, = (r, Y).and for x € G let L, denote left multiplication by x (either asamapon G , or, by slight
abuse of notation, asamapon R xG ). Fixing x € G ,we have the commuting diagram

ophie® B = wxo

R Ir ir

\ ﬁ‘
c Rx® ~—— Rx8
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so that
g (dT; Go, dNx 60) = g(dT; dm po, d; dn pg)
= g(dﬂ: sz éD- dn sz PD)

= 1 gldL, po, dLy Po)

' g (Po, Po) using  (18.0);

I

g(Sg, Gp) -

This establishes condition (16); the Riemannian structure of M is invariant under the action of 7 of G
The proof that the decomposition T gy M = T,R ® T¢® is g-orthogonal is similar.

We turn now to the construction of a suitable Riemannian metric g% on N . Recall (see, for exam-
ple, Poor (7] p.213) that condition (18.iii) is equivalent to

(21) the Lieaigebra g of G admits an Ady-invariant inner product;
let {+,} beonesuch. Denoting the Lie algebraof H by h,let kL be the orthogonal complement of
h withrespectto {=,=}. Nowforeach re R,

TN =T,R ® h* ® h;
we decompose y, y* € T( )N as
Yy = u+v+w, ¥y = u+v+w,
uu' e TR,v,v' e h',w w' e h,anddefine g" on T, N by
(22) ¥ y) = mg v +v) + {w W'} ‘
@23 = mgu) + Wgm V) + (wmw),

the last equality following from (18.). We define gV elsewhere by left translation; for
%y € TeehN,

Vo y) = gLy, diyy").
Thus (19.i) is immediate, and (19.ii) follows from (23).

To check that w is a Riemannian submersion, evidently n is onto (the action 1 is transient), and
fixing v = (r, x™') € N, it is easy to show that y € TN isin kerm. ifand only if di,ye h,and y
isin (kerm.)* ifand onlyif di,y e T,R @ h* . Hence for y, y* € (ker me)*,

8o y) = gNdLy. dLy’)

ngdL,y, dl,y’)  from (22);

Tem ) by (18.0) ;
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= gy, my")

by definition, so m isa Riemannian submersion.

It remains to establish that the fibres of 7 are totally geodesic, that is, the secon
f Elworthy (3] for a resumé of relevant facts about the
second fundemental form; the argument which follows extends the argument of J. Rawnsley which you
will find on p.257 of Elworthy [3]. Take E=(r0)eM,andlet P = = ({E)) be the fibre above §. If
p € P and vector fields U and V defined in a neighbourhood of p such that V(p) is
y+) , the aim is to prove that at p '

d fundamental form

of each fibre vanishes identically. See p.299 o

we now take some
tangential (V(p) € T,P) and U(p) isnormal (U(p) € (T,P

(24) g, V) U) = 0,

where, if V¥ (respectively, V7 ) denotes covariant derivative on N (respectively, P) then
o,(V,V) = (V- ViV @),

Since (VHV) (p) € T,P , (24) is equivalent to

(25) gfviv,uy =0 atp .

translate 6 back to g, so that P = {r} xH,
¢); this simplifies the notation some-

Because of the G-invariance of g" , we may as well left-

and then left-translate by some element of H to ensure that p = (.
what, Now since g™ (VEV, U) = g"(e,(V,V), U), all that matters are the values V(p), U(p) of the

vector fields at p . So we may as well assume that the vector field V is obtained from V(p)e h by
firstly left-translating V(p) around G to give a left-invariant vector field, and then extending this vector
field to R xG in the canonical manner discussed in the introduction. Likewise, if we resolve U(p) as

Up) =uy+uz, u1 € LR, ugeh"-.wecanextcnd 1o to avector field Uz just as for V, and for

u, we take a vector field U, on R which takes value u, atr, and then extend U, 1o a vector field
(still denoted U;)on R xG . The point of doing this is that the well-known expression for the Rieman-

nian connection yields
(26) NV, Uy = 2V NV - U gV
- 2%V, VU,
and by extending V(p), U (p) as described above,
to deal with. Indeed,
2v gNW,, V) - Uy g¥ ) - 28N, (VULD = 0.

each term vanishing (the first because V LU, everywhere,
extension lo R XxG of a vector field on G, U, being

second term because gV(V.V) =
that V(e)e h).

the terms on the right-hand side of (26) become easier

{he last because [V.U/;] = 0, V being the
the extension of a vector field on R, and the

{V(e), V(e)) isconstant, by the way that ¢V was defined, and the fact

is BM(G), where
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Finally, each term of the expression
@n  2ve"UL V) - U g"viv) - 28"V, (VU,D)
:riaor:shes. Only the last needs comment. The point is that, since { », <} is Ady-invariant, the decomposi-
g =htoh
is a reductive decomposition:
Ady(h*) < h*,
as is easy to verify. Hence if h € b, h" € h* then [h,h’] € ', implying that the last term in (27) van-

ishes. You will find the elements of this argument in more detail on pp.218-220 of Poor [7]
This establishes that o,(V,V) = 0 for all
o - VeT,P, peP, and so, by the symmerry of o,

The staterment (20.i) follows from (19.i)-(19.ii) as in Propositi
: k position 1, and (20,ii) is a di icati
of Theorem IX.10E of Elworthy [3]. ) R
¢

f?EM{&RKS.. (i) In the proof we saw that (18.i) implies that the Riemannian metric of M is G-
mva::mnt; in particular, by restricting the action to {r} x @, we see that g€ is a G-invariant Riemannian
metric on © . Now if the action of G on © is effective (thatis, x*0 = 6 forall 8 => x=e¢),itcanbe
shown (Poor [7] p.213) that the existence of a G-invariant Riemannian metric on © implies th,at Ad(H)
Tlas colnrpact closure in G I(g) - thus, (18.0) => (18.iii) if the action of G on © is effective. Thus the
::::gs:!wn of condition (18.iii) is not a very big assumption; (18.i) and (18.ii) on their own are almost

(i) The skew-product decomposition of BM(N) can be expressed (compare (9)) as
(28) AVf(rx) = ARf(nx) + VF(rnx) + ASF(rx) (reR, xeG, fe C”(N))

G : s

Each AY is the Laplace-Belirami operator of a left-invariant Riemannian metric of g€ on G : for this
dec(?mposmon to be really useful, we need to be able to make explicit the construction of Brownian
motion on such a manifold. We describe now how this may be done.

Let us fix r, and drop it from the notation for the time being; thus we are going to construct a
Brownian motion on (G.g%) (= (G,gf)) . Take left-invariant vector fields U, ..., U, on G such that
{U1(e), ..., Un(e)) form an orthonormal basis for g . Defining the structural constants ¢ by

WU:. U] = ck Uy,
and taking independent real Brownian motions B!, ..., B" , the solution to the SDE

29) 9X, = UjX,) 98] + UX,) ot
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n 3
(30) U=-%3%ciUs
i=1

see, for example, Rogers-Williams [8], p.236.

(iii) Do we really need n independent Brownian motions to drive the SDE (28)? After all, we
intend to drop the solution down to the lower dimensional manifold © . To answer this, suppose that
(U (e)y ... Unle)) is an orthonormal basis for hl, take FeC™(®), let ¥ = X8y, and let

f(x) = F(x*8p), x G . then
of X) = oF(Y)

= S U fe0m + UFO X
j=1

- $ufmasi + + T T UUFO0AB B+ UF X)L,

j=1 j=li=l
50, using that fact that
31) dBidpi = 8 dt (=1, wm i=1, .0
we deduce that
m . m
FW) = T U fXaB + (3 T UIFCO + UFOO)
j=1 i=1
@2 = S U fe0dB + SAC 0L,

i=1
But from (28) and (20.ii), ASf (x) = Aff(rx) = ABF (r,x+8;) = A®F (x+8p) , displaying or suppress-
ing the dependence on r as convenient, Thus (32) says
m .
FW) = .z‘ Uif X)dBI + 5 A°F(N)dr,
J!

so that ¥ solves the martingale problem for % A®, and is therefore BM(© ). But the same analysis is

valid if B!, .., B™ arc independent Brownian motions, and B™ +1 _ B*" are any continuous semimar-
tingales such that (31) is valid. In particular, Bm+*l= ... =B" = 0 is possible.

It is easy to see that we can find vector fields U (r,*), ... Uq(r,+) depending smoothly on r such
that {Ui(r.e), ... Up(rie)} is an orthonormal basis for g with inner product g? . with
(U1(re) ..., Un(r,€)) abasis for kL . In terms of these, we can give a leaner version of Theorem 2.

THEOREM 3. Assuming (18.D)-(18.iiD), if (r)z0 is a diffusion on R with generator —;-(A" +V)
independent of the real Brownian motions B!, ... B™  andif £ solves the SDE

(33) & = f.‘, Ujr, &) 0B + U(r, Xp)ot,
i=1
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then ¥, = (r;, & = 8g) is a Brownian motionon R x @ . Here,

69 UG = -7 T gPU0 Wi U D Ui,
Lj=

Proof.  The only thing needing any explanation is the fact that the sum in (34) is only over values of 7,j

at most m . But it is not hard to show from the definition (22) of gN and the G-invariance of ©"g that
o G . "

the restriction of g™ (suppressing the ‘r’ in the notation) to g is Ad,-invariant. This being so, for each

i>m, .

geW;, W, Uh = g0, U)) U))

which must therefore be zero forall j. Finally, for i <m < j,since g = A @ & is a reductive decom
position, we have ]

8w, W, U = o,
again using the form (22) of gV which shows that & is orthogonal to kL ineach g% 0
8
4, SOME EXAMPLES. In this final section, we discuss a number of examples. A few of the most

interesting or typical cases will be treated in detail, but for the remainder we give only a statement of the
skew-product decomposition.

(i) M =5""'. We identify $"7' (or, more strictly, §"~' less the points (0,0, ..., 0,1)
(0,0, ..., 0,-1)) with the product manifold R x@®, where R = (0,m), ® = §" 2, the identification
being ’

(r,86) — (@sinr, cosr).

The :;erfloval of the two poles from §"~! is no real problem; the Brownian motion will never visit either.
If g® isthe usual Riemannian metric of "2, then the metric tensor g on R X @ has the form

1 u
- sin?r ge

hence (recall (8))
o) = sin"2r.
This gives the vector field (recall (10))

V = (n-2)c0tri.
ar
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so that the diffusionon R = (0,m) has generator

1 1 Jd .
G = '2_3;2' + '2_("_2)00”'3_,‘

ion provided nz4,but since we are dealing

we can establish the sufficient criterion (14) for non-explos
daries can be dealt with by the scale

with a one-dimensional diffusion, questions of accessibility of boun
function; we find that there can be no explosion if 723,50 removing the two poles does indeed cause

no problem.

While this is a perfectly satisfactory skew-product decomposition, we can also regard © = §72 as

a homogeneous space on which SO (n—-1) acts transitively. This puts us in the situation of §3, with

G = SO (n—1) and, taking 6o = (1, 0, ... )T , with isotropy group

{(oc) }
H = S e SOn-2) .
0Ss

To check the conditions (18) of Theorem 2, consider a curve

t = (b+ct, Ue"™) = YO

in RxG ,where be (Om), Ue G. A € g ,acurve which maps under T 1o be the curve

¢t — (sin(b +ct) Ue 8o, cos (b +ct) = o(t)

in M ,and

=" g (o, Yo

i

&) 112

Il (c cosb UBg + sinb UABp, ¢ sin b) 112

I

n-1
¢? + sintb 3, (@ky .
j=2

as is easily verified. Thus (18.i) and (18.ii) are salisfied, and H is compact s0 Ad(H) is compact, and
(18.iii) holds. By Theorem 3, if rsolves
dr = dp + w(n-2)cotrdt

and U isaprocessin SO (n - 1) satisfying
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U = UJdA,

where
day; = cosecr dW; 1<j<n-1
daj, = day; 1<jsn-1
da; = 0 otherwise ,

(and B, Wy, .., W,_ i
o ﬂk (_hl - are fndependent BM(IR)s), then n(r,, U) is Brownian motion on $*~! (it is
check that the drift term in (33), given by (34), is zero in this example). -

[0] e (0. )xS . The fonn Of l.he Ske produc[ decommsiﬁﬂn iﬂ M iS oo
WCH known to need comment. The ske w-pmduct dewmposition i.n R x G - (0 °°) X SO(n) iS givcﬂ b
il Y

dr = dB + (n-1)@n)"at
dU = UdA,

where
dayj = r™ dw; 1<jsn
daj; = —day; l<j<n
da; = 0 otherwise .

(iii) In this example, we take M to be the manifold of non-degenerate normal matrices:
M i o . *
{YeginC):YY =YY, alleigenvaluesof Y are distinct ) .
As is easily shown, each Y € M can be expressed in the form
Y = UAU"

whe € U(n) el =| i

re Ue U y AeR =[Aegin C): A is diagonal}. Such ion i

) . - ‘ - . a representation is not unique but
gnoring trivial permutations of columns of U ) U is unique to within ri ght multilication by elements of

H = (Ue U(n): U isdiagonal} .

Thus we are in the situation of § wi = =

3, with G U(n) e G/H ., Wegive M the R emannian structure
L . ) * " gl i i
it inherits as a submanifold of 4 [(H, C) =R CIF Yy isthe curvein R X G l l

Yy = A+ Ue"
wh is di
ere Ae R, I isdiagonal, U € G, A € g, the image of y under r is the curve

o(t) = U e“(A +1I) e Ayt
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Hence

&50) = U{AA-AA+T} U’

and

7 8o Yo) = 16O

= Retr 5(0)" 6(0)
(35) = 2.5_',‘|ai,-|2 =A%+ ;Iy,—lz
i<j

after a few elementary calculations. Thus conditions (18.i) and (18.ii) hold; compacmess of H g?Jarar.n-
tees (18.iii), and we have a skew-product decomposition, By the definition (10) of ¢, we have in this
example that

o) = T1 1A =Aj12.

i<j
. ‘L +oth
(Yes, squared! This is because we are dealing with a real manifold, and, if a;; = o + iByj » the if - term
in the sum is (o3 + B%) 1A — 4,1 2 contributing two factors of 14; — A;1? to the diagonal metric ten-
sor.) Hence if B;, W;; are independent BM(C)s, we find that if

_?\_J
b = A8 F B o

i e i (<
/N P By

dal-j = -da'j‘- (i >j)

daﬁ =0,

then U AU is Brownian motionon M.
We just have to check non-explosion; but AR(log ¢) = 0,50 h defined at (1) is nm1~posm\.u;:1.1 and
NP - ;
condition (14) is satisfied. To prove that the A; cannot explode to infinity in finite time, we observe tha

2hg-A)) . d(B*-BY) + 2dt

lr'-z\rp lf_lp }dl
+ Aha=lg): {p{;k llt—lp|1 .E.:’ '7"1"“1'1"2

d 1 he—2;12

It

2he-Aj).d (BE-B) + 2dt

M =Dy sl dt + 4dr.
+ 204k T (m,-x,,l’ e

p#jk
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Summing now over distinct j and &, the interesting piece is

5 P-4 . O —2p) B =2 . Ay —2Ap)
A=Ay 12 hj—A,12

where £’ denotes the sum over distinct p, j, k. This sum is evidently twice §, where

Pk —Ap) (e - 2)

s =z
1=y 12
. (lp_lj)(lp_lk)
1Ay — A, 12
=3 (lp_lj)(lk_p"p)
A=A, 12
Hence
=4 - (e =2p) (e =2p) - (hp = 2p)
6 = ¥ /) 2! P p N = _ -9,
[ R 12 TRE ne- -2
Thus

Y, dih-2;1* = d(local martingale) + constantdr
J#k

= dM, + cdt,

say. Thus the continuous local martingale M satisfies M, = —¢t forall +; M cannot explode to —eo in
finite time, and therefore cannot explode to + < in finite time either (since M is a time-change of
Brownian motion). Hence the eigenvalue motion cannot explode to + e in finite time, and, since (14)
holds, neither can any pair of eigenvalues collide in finite time.

(ivy M = U(n). In this case, M can be thought of as a submanifold of the manifold of non-
degenerate normal matrices considered in the previous example. It is possible to deduce the skew-product
decomposition for U(n) from that example; it is easier just to mimic the argument given, mutatis
mutandis. Either way, one arrives at the following result. Writing the eigenvalues of U € U(n) as e i
k=1, .., n,and taking independent BM(C)s Wy, B;; , then the solution to

dy, = dWy + + T oot (e-Yp)dt,
p#k

aUu Ud4d,

where

8—!.’2

=
I

cosec -i- ¢y — Yo Wy G<p

= -day > j)



254 E. J. PAUWELS and L. C. G. ROGERS

=0 )

gives a Brownian motion Y on the unitary matrices defined by

Y = UexpGDU”™ .

where T = diag (1) .
™ McKean [4] discus
metric real matrices with distinct eigenvalues] .
R* in which it is an embedded submanifold. If the eigenv

independent BM(IR)s Wi, B;; . the solution to

- gW. + + 1
dy = dWi + 3 (): Mdkk]dz.

ses an example based on work of Dyson [2], in which M = [(pnxn sym-
The manifold M inherits the Riemannian structure of
alues are Ay < -+ <An, then lak'ing

ki

U = UdA,

where
1 , .
dai; = —= d Bi; < j)
N2 -y B

= —daj; i>»n
=0 G=15

gives a Brownian motion Y on M defined by
Y = UAUT,

with A = diag (&) .
Although M isa submanifold of the manifold of no

ce of the factor —;— in the drift serve to warn that some obvi

mal matrices considered as example (iii), let

ous conjectures are not Lrue.

the appearan
(vi) Let

S, = {(nxn positive—definite symmetric matrices)
and let

M = (VeS§, : theeigenvalues of V are distinct} ;

f the manifold considered in the previous example. However, there is another

then M is a submanifold o
from regarding S, asthe homogene-

natural Riemannian structure which can be puton M which comes

ous space Gl(n, RY/O(n) , with the quotient map
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X 1— xx7,
Thus G = G {(n,IR) actson S, , by
x,V) 1— XvxT,

and it is natufal to pul a Riemann‘a" metr -[C on + WI I,]Cll 1§ Invanant ][[[[131’][[ W y
i S . P - " "
I 1 A i ﬁ .
1S acton. One a thls can

(36) SN2 = + o GO ¥(0)

where v isasmoothcurve in §, , v(0) = 7, and to shift the inner product round S, using th i

G (the inner product at / is invariant under the isotropy group O(n), so thisisa oo et 'e' e
pullback of this Riemannian structure to G can be determined by ’takin a o i dcﬁnlm:')“ e
X e G, A egl(nlR)), mappingdownto §, and measuring its speed t.h:e ch"]e“f';dwr) e

d 7
i MY |, = XA + ADXT,
.1
whose length is — tr (A + AT)> . Now, as in the proof of Theorem 2, we can put a metric g G
h- h - -. 0 . on
which is G-invariant, and project down the Brownian motion of (G,g%) to get BM(S,); we first had
choose some Ady-invariant inner product {+,=} on g and here the choice w °

{AB} = wATB

matrices k 15 l-he set 01 SyII'll'lletllC Matrics, alld tlofn the deﬁll ) g s WE see easlly ﬂlal n
" ’ ition (22) Of
thlS case

g%(A.B) = (AB) = rA"B.
Using this Riemannian metric on G , the Brownian motion on (G,g€) is the solution to
(37 0Z = ZaA,

Whem A 1S @ matrix Df mdepelldelll rownian motions the vector ﬁEId 0 v the dIl.ft 1 EﬂSlly
B P .

(38) Y = ZZ7 is Brownian motion on S, ;

1t was 1hls Ch i Wi h was u N Ub I. Dyllkl”
aracterisation Qf BM(S +) th s Sed In INOITIS, RUgel’S aﬂd iulms [5 [1]
alld 0] lha.'[a 6] a]SO analysed BM(S ) (ll'lC € 11 + th t | [
ld nta y we |emark n passm thl j
+ g a S uStlﬁCS th use Of I.he
term Bm“’:ﬂlaﬂ motion’ in NOlTlS. ROgel‘S a.n.d W llllaIl‘lS 5| to descnm Y Lhe Compa.mon prOC&SS
Jg - Z Z 18 not in fa.ct a Bmwnlaﬂ motion mlﬂlwe (+] any Riemallman metric on S )
+

The i illi
paper of Norris, Rogers and Williams [S] also gave a skew-product decomposition for the

€l /
gelanIUG elgellveClOl motion; ﬂlls alSO 1S a con uence OI What we have done m ﬂu p
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R = {nxn diagonal real matrices I, withp < <Y}

e =0Mm,
and identify R X @ with M by the map

(CH) — Hexp@DHT.

ally a diffeomorphism: if H1 AH] = Hy AHY , then HIH, isa

(Although the map isnot 1-1, it is loc
¥ = C+ D H ¢'4) maps o

diagonal orthogonal matrix), Thus the curve
o) = He? e?.l"-i-?.lD e—IA T

which, by the invariance of the Riemannian structure on §* ,has the same speed at t = 0 as

T LT +20 oA T = ().
Using the definition (36) of |1 $(0)11? we obtain
(39) Ho@n? = val+2 % a% sinh® (¥ = 1)
i i<j
emannian structure of

is the i™" diagonal entry of D). Since the Ri
R)), and, from (39),

of O(n) (even under the action of G l(n,
tion of Ty.o M. We deduce the existence of a

after a few calculations (here, d;
R x© is invariant under the action
T,R@Te® is an orthogonal direct sum decomposi

skew-product representation of BM(M): since

o(ry = TI sivh (v =¥

i<j
we obtain the SDE representation

dy, = dWy + 3 & ol (=) dt
jek

and
oH = HJA,
where
day = B G <))
2 sinh (¥; —Y:)
day = —daji >N
da; = 0.

are independent BM(IR)s. Sce Notris,

As usual, the W, and Bj;
y It6 calculus, starting from (38).

tary proof of this using onl

Rogers and Williams [5] for an elemen-
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T

(vii) One may similarly treat the case of

M = [positive—definite Hermitian matrices with distinct eigenvalues}
insisting that the Riemannian structure on M is invariant under the action

XS) |- XSsX° XeGi(nC),SeM)

of GI(n,C) on M.
- ; s o ;
e argument is very similar; if W, B;; are independent BM(C), and if y,U solve

dy, = dW, + ¥ coth(y,—Y;)dt

j#k
aU = UdA,
where

d B;
a; = o Sl . 4
7 V'isinh('yj-y‘-) i<p
B i) > D
=0 G=5,

and writing I" = diag (y;) , then
Y = Uexp@DYU" is Brownian motion on M '

Nole the factor of 2 difference between the drifts of this example and the last!

viii i i i i i

(SO :2 ;‘Ve ,If;mS]T with a pair of very interesting examples: SO(2n) and SO (2n+1). Firstly we stud
: n). The eigenvalues of V e SO (2n) are all of modulus 1 and appear in conj i i

o s conjugate pairs. We shall

M = : j
(Ve SO(2n): the n conjugate pairs of eigenvalues of V are distinct)

We count (1,1) and (-1,-1) as conjugate pairs. Defining

08 = [“’SB “Si“"}

sin® cos®
thenany V e M can be represented as

pey)
Vv==_ . . ST

P(B.)
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where S € S0(@2n),and By, .- 8,) € R ,where

R = {(6y, .., 0, : -82<8 <Bp < <0p <8, <2n—8,1)

ifn>1,and R =R ifn = 1.1f G = SO(2n) and
pay)
H = e :U.;E]R )

plcia)

then M can be identified with R X ©, ® = G/H. Wegive M the Riemannian structure g it inherits

2 2 3 = -
from IR" ; to investigate 7" g , consider the curve

o) = ((B1 + 11y -0 8, + tYa). § e")

for SeG,Aeg and (81, .. 6.)ER. This maps under T 10
p(, + 1)

y() = 8 e eAsT
p(eu + Wn)

for which

y0) = S {AJ - JA + JDYST,

where

p(6y)

p(Ba)
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and
o)
D = .
o(Yn)
defining
0 -y
ofy) =
¥ 0

Notice that DJ = JD . We now calculate

It

T 8(Gp, Gp) = IFO)112

T
tr (AT —JTA +DTIT) (AT -JA +ID)

tr[~2A% + 247TAT + DTD)

I

2205 + ZE-{? + 2"’AJTA],
L

To calculate the last term split A into 2 x 2 blocks;

@2i12j-] 42-12
Cij =
a2i2j-1 az; 2j
50 that

r AIT AF

[

ir 3 ¢ij pE9;) cji p(0:)
4t

~tr ¥¢;; p-9,) cfj p(8y)
Ly

Itis elementary to verify (hat
. yel = +
Ir ¢ p(—ﬁ_,) cij p(6;) = cosB;cos 6_,- tr (c}; cij) + 2sin 6; sin 9_,- det ¢y
ij
so that

T g (G, 8p) =
&(8g,Gp) = 2§{1_wse,.cose,-) tr(cicij) — 2sin B sin 8; det c;;)

+227}
j
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= 4 % (1-cos®;cos 9;) ir(cheij) — 2sin o; sin 0; det cij}
i<j
+2 E'y} .
J
This immediately establishes conditions (18.i) and (18.ii); since H is compact, condition (18.iii) holds as
and to calculate what it is, we need 10

well. Thus by Theorem 2 there is a skew product decomposition,

find ¢ . To this end, observe that if

cij = (gg)

then
atr(chey) + 2Bdetey = (@bcd){al+BL) @becd’,
where
0001
00 -10
L=|p-100]}
1000
and

det(al+pL) = (© =HP
= (cos®;—cos8)‘= @sin 1 @®-8)sin 3@ +0)

if = 1—cos®;cos8;,B = sin ©; sin 6; . Thus

q,(r) = (H sin-%(ﬂ_,-—ﬁ;)sin—%(ﬂ;+8j)T i
i<j

from which we calculate V, and find that the SDE for the ©; is

Ly (coty@-8) * cot 5 (8 + 8} d -

46, = -*J_l'de* &
j#k

As for the eigenvector motion, it can be shown that

35 = §0A

th 5 %2 subblock ¢ satisfies for £ < J

where A isa skew-symmetric matrix-valued process whose ij
3 4
ac; = 8 L(o; +6)) 2 + cosec =(8;—8) i, 1
iy = coset 5§ i+ 9 sec Ui =Y '
dz% dzl -dz}; dZj;

]

SKEW- s

h Z,", Z". Z" ﬂ.nd i
where 7 if if ZIJ are mdependent BM(IR.)S‘ ir ldependent Of Ihﬁ BM([R.) pl‘OCCSS ”‘
k-

Remark.  Notice tha i

: t the

T———— ﬂlgcnv:iilues are repelled from each other, except that there i :
mbers of a conjugate pair. This allows 8, 8, 1o 1 % 15 Jepulaen

be able to do so. 18y 10 lcave (O'T:) , but no other ej will

Finall > th i i y
‘ y e case Of SO (2" +]) 18 ConSldercd; we mel’e]y state Ih(’, results. An Ve S() 2]! +
can bc writien as . ( )

p®1)

RICHY)
/

for some § € SO(2n+ . .
valisc.oE-T] 02 9( 1) and (assuming the eigenvalues distinct, except possibly for a ted
- 1< - < repeal H u
0,-1 <6, <21 -0, . For the motion of the eigenvalues we ﬁI:d thi el.gen
is time

de, = _]—"dlvk-f- ﬂ

1
2 4 [/_gk[colj(ek—ﬁj) + cot%(ek+ej)] + CO‘%BtJ,

which is as it was before, wi i

with also a repulsion fro;n thlh rep“ISlfms between all the eigenvalues except members of a conju i
= e fixed eigenvalue +1. The motion of the ei S—— Jugare pair

now we have additionally genvectors is similar, except that

da = g2 1
Lz = 87 cosec - 0 df;

da = g2 1
LA +1 8 cosec 5 deB:

where the 3 , B* are further independent BM(IR)s.

The special case of
3550, oo nolTMI-SO.(PJ) was proved by other means in Rogers and Williams [8), Th
isation means that the solution of Rogers - , Theorem V.
of ours. gers and Williams runs at twice the speed
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LOCAL STOCHASTIC DIFFERENTIAL GEOMETRY
or

What can you learn about a manifold by watching Brownian motion?
Mark Pinsky!

ABSTRACT, This is a five-year report on progress in the above-~
named area during the period 1982-87, including work by the author,
A. Gray, L. Karp, Ming Liao and others.

CONTENTS

§0 Brownian motion of a manifold

§1 Expansion of the laplacian

§2 Exit time from small balls

§3 Exit place from small balls

§4 Independence of exit time and place

85 Principal eigenvalue of small balls

§6 Exit time from extrimsic balls

§7 Exit time from tubular neighborhoods

§8 Principal eigenvalue of tubular neighborhoods

§0. BROWNIAN MOTION OF A MANIFOLD, This is most conveniently thought of as a
weak limit of a piecewise geodesic process, as follows, We begin with a d-
dimensional Riemannian manifold (Md,g) with geodesics t=+y(t), where y(0)=meM
and y'(0) =¢ eMm, the tangent space at m. The infinitesimal generator of the
geodesic motion is the first order differential operator D, defined as

Df(m,E) = (d/dt)f(y(t).'\f'(t))|t=0. (In geometry textbooks this is referred to

as the "geodesic spray', or "geodesic flow field",) The normalized Laplacian

is defined by either of the formulas

L 2 o> = umm{(es“lnf + 572> - )Y

5=
(The bracket operator refers to the average of the function with respect to
normalized Lebesgue measure on the surface of the unit sphere in the tangent

space.)
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