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1 Introduction

Standard microeconomic theory is usually based on the assumption that agents are all
rational and thus focuses only on efficient markets and rational expectations equilibria.
This assumption is supported by the hypothesis that if there are some agents who are
irrational or inferior at forecasting the future, they will eventually be driven out of the
market. The hypothesis is the so-called Market Selection Hypothesis, originally proposed
by Alchian (1950) and Friedman (1953). If this evolutionary mechanism is true, any asset
price in actual financial markets is eventually determined by rational investors with accu-
rate forecasting and converges to its fundamentals based only on their trading behavior.

Rigorous theoretical analysis with mathematical modeling was first started by De Long
et al. (1991) and Blume and Easley (1992). Rather surprisingly, they obtain a negative
answer to the hypothesis, finding that agents with inferior forecasting ability can survive
and become dominant in the market. For instance, De Long et al. (1991) show that
agents with optimistic beliefs can survive in the market because they choose portfolio
with a higher growth rate and dominate as a result. However, these papers employ a
partial equilibrium analysis and take only one particular risky asset market into account,
not examining how other markets evolve over time. For example, it is assumed in Blume
and Easley (1992) that agents can borrow without restriction in the money market with
no impact on the interest rate.

In a general equilibrium framework, several papers investigate the issue in the case of
complete markets. When the preferences of agents are convex, an analysis on complete
markets is rather tractable since the equilibrium solution is characterized by the central
planner’s problem, maximizing a linear combination of agents’ individual utility functions.
This method can be applied to the case of diverse subjective beliefs (see, for example,
Brown and Rogers, 2010). Sandroni (2000) and Blume and Easley (2006) study the case
where aggregated endowment is bounded away from zero and infinity and show that only
agents with beliefs closest to the true probability measure can survive in a consumption
market in the long run. The closeness of beliefs is measured by the relative entropy
with respect to the true probability measure. This result gives a positive answer to the
hypothesis. Yan (2008) considers a complete market with a log Brownian endowment
process, and derives a similar survival index to Sandroni (2000). The paper also indicates
that if heterogeneity lies only in agents’ beliefs, the market selection holds and agents
with inaccurate beliefs are finally driven out of a consumption market.

Kogan et al. (2006) study this issue from another point of view. They consider a
setting where two agents with different beliefs consume only at a terminal time T , and
study the possible equilibria of this situation. One finding is that for log agents, the
presence of an incorrectly-informed agent can have (at intermediate times) a big impact
on the equilibrium price of the asset, even though at that intermediate time the wealth of
the incorrectly-informed agent is very small.1 However, their results rely heavily on the
assumption that an agent’s utility comes only from consumption at the horizon time, and
hence their observations cannot simply be compared to the ones in Sandroni (2000) and
Blume and Easley (2006).

More recently, Kogan et al. (2009) consider a setting in which agents consume contin-
uously in time, and they derive necessary and sufficient conditions for agents to survive.
One of their results is that an agent with inaccurate beliefs becomes extinct in the long-
run and has no price impact if his relative risk aversion is bounded or the aggregate

1On the other hand, Fedyck and Walden (2009) argue that market selection is rather efficient in theory
and it takes about fifty years for an irrational investors to be wiped out of the U.S. stock market.
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endowment is bounded. They also consider the price system in the long run. They define
a notion of no price impact of an irrational agent and show (under certain conditions) that
there is no price impact if the likelihood ratio of irrational agents’ subjective probability
measures go to zero.

In this paper, we consider an infinite-horizon complete market model where agents
consume continuously as in Kogan et al. (2009). To focus on the effect of different beliefs,
it is assumed in the main part that heterogeneity lies only in their subjective beliefs.
More precisely, the agents have identical von Neumann-Morgenstern preferences, except
for their subjective probability measures.

We first identify two types of elimination from the market: starvation and going
broke. We say that an agentstarves if his consumption, expressed as a fraction of the total
output, tends to zero in the long run. We say that an agent goes broke if his wealth as a
proportion of the total wealth of the market tends to zero in the long run. As we will see
later, and as Kogan et al. (2009) emphasize , these two notions are completely different.
The classical Market Selection Hypothesis concerns itself with starvation of ill-informed
agents; our results show that the Market Selection Hypothesis does not hold without
additional assumptions, but that if relative risk aversion is bounded and bounded away
from zero, then the Market Selection Hypothesis is equivalent to convergence to zero of
the ill-informed agent’s likelihood-ratio martingale. In contrast, we give an example2 to
show that whether an agent goes broke cannot be characterized solely by conditions on
beliefs; the nature of the output process matters here.

One of our main results is an example with two agents, one of whom starves, and the
other of whom goes broke! This example also shows that the price of the market portfolio
can differ for ever from the price in a reference economy where all agents know and agree
on the true probability measure. This is despite the fact that the incorrectly-informed
agent has no price impact according to the definition of Kogan et al. (2009), which we
therefore conclude is not capturing the effect of interest.

To examine properly the impact of beliefs on prices, we introduce the notion of asymp-
totically equivalent pricing. This notion corrects the definition of no price impact proposed
by Kogan et al. (2009) and characterizes the effect of different beliefs on the price system
in the long run. Our main result on asymptotically equivalent pricing is that this notion
is equivalent to certain natural conditions on the state-price densities, similar to those of
Kogan et al. (2009), but required to hold uniformly over future time.

The rest of the paper is organized as follows. Section 2 sets up our market model and
presents some basic results for equilibrium consumption allocation and asset pricing. In
Section 3, we consider what determines starvation and then characterize the impact of
diverse beliefs on the consumption allocation. Section 4 presents a two-agent example
where changing the output process changes which agent goes broke. Section 5 constructs
the two-agent example where one agent starves and the other goes broke; this also proves
that it can happen that an agent may starve and yet have lasting price impact. Section 6
presents the notion of asymptotically equivalent pricing, and develops its main properties.
Some concluding remarks are given in Section 7.

2This example has constant relative risk aversion preferences, in contrast to the example of Section
3.2 of Kogan et al. (2009).
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2 The Modelling Situation

We study a pure-exchange continuous-time economy with one productive asset which
produces a continuous stream of one perishable consumption good. Future uncertainty
is described by the filtered probability space (Ω,F , {Ft},P). Here P denotes a reference
probability measure, which might be the ‘real-world’ measure, but does not have to be.
We present the basic situation here for J agents, though once we move on to consider
examples we will just take J = 2 for simplicity.

We suppose that agent i (i = 1, . . . , J) has von Neumann-Morgenstern preferences
over consumption streams c represented by

U i(c) ≡Ei

[∫ ∞
0

e−ρitui(ct)dt

]
(2.1)

=E
[∫ ∞

0

Λi
te
−ρitui(ct)dt

]
(2.2)

where Ei is an expectation operator with respect to Pi, which describes the subjective
belief of agent i. We write Λi for the Radon-Nikodym derivative process

Λi
t ≡

dPi

dP

∣∣∣∣
Ft

, (2.3)

which allows us to re-express the expectation (2.1) in terms of an expectation (2.2) with
respect to the reference measure P. The agents’ felicity functions ui will be assumed to be
strictly concave, C1, and to satisfy the Inada conditions. The familiar argument presented
in Breeden (1979), suitably modified (see, for example, Brown and Rogers, 2010) to handle
the change of measure, shows that agent i will at time t value a contingent claim Ys to
be received at time s > t at marginal price

Yt =
1

ζ it
E[ζ isYs|Ft] (2.4)

where the state-price density process ζ i is given by

ζ it = Λi
te
−ρitu′i(c

i
t). (2.5)

This allows the consumption ci of agent i to be expressed in terms of the state-price
density ci as

cit = Ii(e
ρitζ it/Λ

i
t), (2.6)

where Ij is the inverse of marginal utility uj. We shall assume either a complete market
setting, or else a central planner equilibrium, so that all agent have the same state-price
density, up to positive multiples:

cit = Ii(e
ρitαiζt/Λ

i
t), (2.7)

for some positive constants αi and common process ζ.
The single productive asset in this economy outputs a continuous stream of consump-

tion good at rate δtdt, where the adapted process δ is assumed to be strictly positive.
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The state-price density process ζ is determined by market clearing : at all times, the to-
tal consumption rate of all agents equals the rate at which consumption good is being
produced, so

δt =
∑
j

cjt =
∑
j

Ij(e
ρjtαjζt/Λ

j
t). (2.8)

Once the constants αj are fixed, this uniquely determines the state-price density process
ζ.

One of the concepts of elimination from the market which interests us is elimination
from the consumption market.

Definition 1. We say that agent j starves if

lim
t→∞

cjt
δt

= 0. (2.9)

The constants αj appearing in (2.8) are related to the initial wealth of the individual
agents. Again by a familiar argument, the time-t wealth of agent j is given by the
expression

wjt ≡
1

ζt
Et

[∫ ∞
t

ζsc
j
sds

]
(2.10)

and in principle (though usually only by numerical means in practice) the dependence
between the αj and the initial wealth distribution (wj0)j=1,...,J can be inverted.

The wealth of all agents is denoted by w̄t ≡
∑J

j=1w
j
t , and is related to the output

process δ by the analogue of (2.10):

w̄t =
1

ζt
Et

[∫ ∞
t

ζsδsds

]
. (2.11)

Another concept of elimination is elimination from the asset market.

Definition 2. We say that agent j goes broke if

lim
t→∞

wjt
w̄t
≡ lim

t→∞

Et

[∫∞
t
ζsc

j
sds
]

Et

[∫∞
t
ζsδsds

] = 0.

Various questions naturally arise:

1. If agent j starves, does he necessarily go broke?

2. If agent j goes broke, does he necessarily starve?

3. Can we characterize situations in which an agent will starve?

4. Can we characterize situations in which an agent will go broke?

The answers to the first two are both ‘No’, as we shall see. For the third, once we have
ruled out starvation arising from differences in preferences or initial wealth, we shall in
the next section explain how starvation relates to market selection and inferior beliefs.
The answer to the fourth question is less clear-cut; preferences and beliefs on their own
are not sufficient to decide when an agent will go broke – the nature of the output process
δ must also be taken into account.
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3 Starvation

From now on, we focus on the situation where there are just two agents: J = 2. This
does not restrict generality, but is sufficient to illustrate the principles at work. To begin
with, we see the possible reasons why an agent may starve, and narrow the possible causes
down to differences in belief. We then see when the Market Selection Hypothesis holds.

Example: starvation arising from different ρ. Suppose that u1 = u2, Λ1 =
Λ2 ≡ 1, and ρ1 > ρ2. If the felicity function is CRRA, agent i’s consumption at t is given
by cit = e−ρit/RI(νjζt). Then3 c1t/c

2
t = κ exp(−(ρ1 − ρ2)t/R)→ 0 as t→∞ and the more

impatient agent starves because of his impatience. Henceforth we set ρ1 = ρ2 = ρ to
eliminate this possibility. �

Example: starvation arising from different u. Suppose that Λ1 = Λ2 ≡ 1, and
ρ1 = ρ2 = ρ, but that the two agents have CRRA preferences with coefficients R1 > R2

of relative risk aversion. Then

c1t
c2t

=
(ν1e

−ρtζt)
−1/R1

(ν2e−ρtζt)−1/R2
∝ (e−ρtζt)

1
R2
− 1

R1 .

Notice from the market clearing condition that δt =
∑

j(νje
−ρtζt)

−1/Rj . If δt → ∞ as
t → ∞, then e−ρtζt must converge to zero and so agent 1 starves in this case. On the
other hand, if δt → 0, then similarly agent 2 starves. To eliminate this as a possible cause
of starvation, we henceforth assume that u1 = u2. �

Example: starvation arising from different initial wealth. Even allowing
that both agents have identical preferences and identical beliefs, it may still happen that
one of them starves. Informally, this is because the coefficient of relative risk aversion
may approach zero, and an agent who starts ahead gets ever further ahead.

To explain in more detail, the ratio of the two consumption processes is

c1t
c2t

=
I(eρtα1ζt)

I(eρtα2ζt)
.

Suppose that there exists xn ↓ 0 such that for some p < 1

lim
n

I(xn)

I(pxn)
= 0. (3.1)

Then by taking α2 = p, α1 = 1, and giving ourselves a state-price density ζ such that
eρtζt ↓ 0 through the values (xn) we see that agent 1 starves, even though his beliefs,
utility, and rate of time preference are exactly the same as agent 2. What happens is that
agent 2 starts ahead, and agent 1 just falls ever further behind. �

What this example shows is that in order to eliminate starvation due to different initial
allocations, we have to insist that for each p ∈ (0, 1)

sup
x>0

I(px)

I(x)
<∞. (3.2)

An obviously equivalent condition is that

sup
x>0

I(x)

I(2x)
<∞. (3.3)

3Here κ denotes an unimportant constant.
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Writing f(x) ≡ log I(ex), this condition is equivalent to the existence of some K < 1 such
that

0 ≤ f(x− 1)− f(x) ≤ K ∀x ∈ R. (3.4)

Thus f cannot fall to −∞ faster than linearly as x ↑ ∞, nor can it rise to ∞ faster than
linearly as x ↓ −∞.

A related condition is that there exists some ε > 0 such that

ε ≥ f(x− 1)− f(x) ∀x ∈ R. (3.5)

This condition says that as x ↑ ∞, f must decrease at least linearly, and that as x ↓ −∞
the growth of f must be at least linear. Thus conditions (3.4) and (3.5) are complements
of each other. Notice that for u which is constant relative risk aversion, the function f is
exactly linear, so both conditions (3.4) and (3.5) hold. If we suppose that u is C2, these
conditions are related to conditions on the relative risk aversion of u. Defining the relative
risk aversion of u in the usual way,

R(x) ≡ − xu′′(x)

u′(x)
(3.6)

it is easy to see that f ′(x) = −1/R(I(ex)). Hence condition (3.4) is implied by the
statement that R is bounded away from 0, and condition (3.5) is implied by the statement
that R is bounded.

The conditions (3.4) and (3.5) are the conditions we need on the utility in order that
the Market Selection Hypothesis should hold. The following result confirms the intuition
of the Market Selection Hypothesis once the suitable conditions4 have been imposed.

Theorem 1 (Market Selection Hypothesis). Consider the case where the two agents are
identical except for their beliefs.

(i) Suppose that agent 2 has inferior beliefs:

lim
t→∞

Λ2
t

Λ1
t

= 0 a.s., (3.7)

and suppose that condition (3.5) holds. Then agent 2 starves.

(ii) Suppose that condition (3.4) holds and that agent 2 starves. Then agent 2 has
inferior beliefs (3.7).

Proof. Write xj ≡ log(eρtαjζt/Λ
j
t), so that

cjt = I(exp(xjt)) = exp(f(xjt)).

The hypothesis (3.7) of the first statement is that x2
t − x1

t → ∞. Since condition (3.5)
implies that f(x− n)− f(x) ≥ nε for all positive integer n, the result follows.

The argument for the second statement is similar. Condition (3.4) implies that for all
positive integer n the bound

f(x)− f(x− n) > −nK (3.8)

4For CRRA utility u, the required conditions hold, and we have that starvation is equivalent to inferior
beliefs.
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holds uniformly in x. If agent 2 starves, then

f(x2
t )− f(x2

t −∆t) ≡ f(x2
t )− f(x1

t )→ −∞

where ∆t ≡ x2
t − x1

t . This is only consistent with (3.8) if ∆t →∞, which is equivalent to
the inferior beliefs statement (3.7).

Corollary 1. If conditions (3.4) and (3.5) both hold, then

Agent 2 starves⇔ lim
t→∞

Λ2
t

Λ1
t

= 0 a.s.

4 Going broke.

While Theorem 1 tells us quite precisely in terms of agents’ beliefs when one of the agents
will starve, the story for going broke is not so clear cut. The reason is that going broke is
not decided by beliefs alone, but depends in an essential way on what the output process
δ is, as we shall demonstrate by constructing an example.

For the example, we will suppose that the two agents are identical except for their
beliefs, each having CRRA felicity with coefficient R 6= 1 of relative risk aversion. The
results (2.7), (2.8) of Section 2 apply here to give us

δt = ζ
−1/R
t e−ρt/R

∑
j

(Λj
t/αj)

1/R,

cjt = πjt δt,

πkt =
(Λk

t /αk)
1/R∑

j(Λ
j
t/αj)

1/R
.

The pricing identity (2.10) gives us that

wit = ζ−1
t Et

[∫ ∞
t

ζsδsπ
i
s ds

]
= ζ−1

t Et

[∫ ∞
t

e−ρsδ1−R
s

{∑
j

(Λj
t/αj)

1/R
}R
πis ds

]
= ζ−1

t Et

[∫ ∞
t

e−ρsδ1−R
s

{∑
j

(Λj
t/αj)

1/R
}R−1

(Λi
s/αi)

1/R ds

]
≡ ζ−1

t Et

[∫ ∞
t

e−ρsλs(Λ
i
s/αi)

1/R ds

]
(4.1)

where the process λ is defined to be

λs = δ1−R
s

{∑
j

(Λj
t/αj)

1/R
}R−1

.

We therefore have that the ratio of the two agents’ wealths is given by

w1
t

w2
t

=

λ−1
t Et

[∫∞
t

e−ρsλs(Λ
1
s/α1)

1/R ds

]
λ−1
t Et

[∫∞
t

e−ρsλs(Λ2
s/α2)1/R ds

] . (4.2)
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If we ensure that the process λ is a positive martingale, then we may interpret it as a
change-of-measure martingale, and the numerator and denominator in (4.2) are (up to

irrelevant positive constants) expectations of the future discounted value of Λ
1/R
s . We will

specify the choice of output process δ equivalently by choice of the positive martingale λ,
in terms of which the properties claimed will be more evident.

Example 1. In the example, we shall construct two agents with beliefs given by the
likelihood-ratio martingales Λ1, Λ2 and two candidates δ1 and δ2 for the output process
such that if the output process is δ1, then agent 2 goes broke, and if the output process is
δ2 then agent 1 goes broke. What this proves is that whether an agent goes broke is not
determined by the beliefs of the agents alone, but depends also on the properties of the
output process. The example is constructed using a continuous-time Markov chain with

countable statespace I = Z ∪ iN ⊂ C. We describe the statespace as consisting of three
ladders, the positive ladder Z+, the negative ladder −Z+ and the imaginary ladder iZ+.
The possible transitions of the chain are from points in Z to their nearest neighbours,
from 0 to i, and from a point ik ∈ iN to i(k+ 1), or to ±k. If the chain is in state 0, then
the only possible transition is to i, at rate 1. We shall assume that X0 =; the process
starts at the origin.

In the reference measure, the jump rates are given for k > 0 by

qik,k = qik,−ik = 2−k,

qik,i(k+1) = 1,

qk,k−1 = q−k,−k+1 = 2,

qk,k+1 = q−k,−k−1 = 1.

It is not hard to see that in the reference measure, the Markov chain may make a number
of entries to the positive ladder and the negative ladder, but will eventually enter the
imaginary ladder and climb it to infinity.

According to agent 1’s beliefs, however, the chain behaves quite differently. Agent 1
thinks that the transition rates are for k > 0

qik,k = 2k

qik,i(k+1) = qik,−k = 1

qk,k+1 = q−k,−k+1 = 2

qk,k−1 = q−k,−k−1 = 1

with q0i = 1 as before. According to agent 1’s beliefs, the process may make a number
of entries to the imaginary and negative ladders, but will in the end enter the positive
ladder and climb it to infinity without ever again visiting the other ladders.

Agent 2’s beliefs are defined by taking the mirror image in the imaginary axis of agent
1’s transition rates - so for agent 2, ultimate escape to infinity along the negative ladder
is certain.

The likelihood-ratio martingales Λi
t have a particular form, being representable as

exp(

∫ t

0

ϕ(Xs) ds)
∏
s≤t

α(Xs−, Xs)

where the function ϕ arises because of the possible differences in the mean residence
times in states, and the α terms are contributed by the jumps (α(k, k) = 1 ∀k); see, for
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example, Rogers and Williams (2000), IV.22. However, for both agents, the mean times
in all states coincide, so the ratio Λ1

t/Λ
2
t is made up entirely of the jump contributions:

Λ1
t

Λ2
t

=
∏
s≤t

γ(Xs−, Xs) (4.3)

where γ = α1/α2.
From the expression (4.3) it would appear that in order to evaluate the likelihood ratio

Lt ≡ Λ1
t/Λ

2
t at any time, it will be necessary to keep track of the entire history of jumps

of the chain. However, the construction has been designed to simplify the expression: Lt
is a function of Xt only! To understand how this can be, notice that the likelihood-ratio
stays equal to 1 until the first time that X jumps off the imaginary ladder. Suppose that
this first jump is to position k on the positive ladder. At that moment, the numerator
in L gains a factor of 2k, while the denominator gets a factor of 1, so L changes to 2k.
Thereafter, the process performs asymmetric random walk on Z+. If at some later time it
reaches 0 again, having performed a total of m steps right and j steps left, then m+k = j,
and the likelihood ratio is now

L =
2k × 2m × 1j

1× 1m × 2j
= 1. (4.4)

Thus every time that the process is on the imaginary ladder, the value of L will be 1. If
the process has jumped off the imaginary ladder to the positive ladder at position k, and
then made a total of m steps right and j steps left, to arrive at position n = k + m− j,
then exactly the same calculation (4.4) shows that the likelihood-ratio L is now 2n. The
conclusion is that the likelihood ratio is simply

Lt = 2Re(Xt). (4.5)

To finish the construction, we propose to take λj to be the change-of-measure mar-
tingale which converts the reference probability into agent j’s probability. To fix ideas,
suppose we first consider using λ = λ1 in (4.2). We aim to show that as t → ∞ this
ratio tends to∞. We have already remarked that in the reference probability the Markov
chain will eventually ascend the imaginary ladder for ever, so we only need to understand
what the wealth ratio looks like when Xt = iK for very large K. However, the wealth
ratio is the ratio of two expectations, of

∫∞
t
e−ρs(Λj

s)
1/R ds, taken in agent 1’s probability.

According to this probability, it is overwhelmingly likely that the process will jump almost
immediately to K, since the jump rates out of iK are 1 to −K, 1 to i(K + 1) and 2K

to K. When the process does jump to K, the value of the integrand in the numerator is
(Λ1)1/R = 2K/R whereas the value of the integrand in the denominator is just 1. Thus
the expectation in the numerator is overwhelmingly bigger than that in the denominator.
Of course, further analysis is needed to prove the required result conclusively, but this is
a technical matter we leave to the reader; it is now entirely obvious that the wealth ratio
w1/w2 tends to infinity. Switching to λ = λ2, the conclusion is reversed by symmetry:
w1
t /w

2
t → 0 as t→∞. �

5 A Remarkable Example

In this Section, we construct an example with some quite surprising properties, and then
we develop it to provide another example with even more astonishing properties. We
begin with the basic example.
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Example 2. To start with, we construct a two-agent example with the following surpris-
ing properties:

(i) Both agents have same constant relative risk aversion felicities;

(ii) Agent 1 knows the correct probability law: Λ1
t ≡ 1;

(iii) Agent 1 consumes at constant rate 1;

(iv) Agent 2 starves;

(v) With positive probability, agent 2 does not go broke.

Given the properties we seek, the modelling effort is entirely to do with the construc-
tion of agent 2’s likelihood-ratio martingale. Since agent 1’s beliefs are the correct beliefs,
we shall simplify notation through this section by writing Λt in place of Λ2

t . We shall
assume the agents are both CRRA with relative risk-aversion coefficient R, and suppose
that a consumption allocation is given by c1t ≡ 1 and c2t = (Λt)

1/R. Then the allocation
constitutes an equilibrium since

e−ρtu′(c1t )

u′(c10)
=

e−ρtu′(c2t )Λt

u′(c20)
.

In this case, the state-price density with respect to P is given by

ζt = e−ρt (5.1)

and thus we have

w1
t = 1/ρ

for any t. On the other hand, agent 2’s wealth at t is given by

w2
t = Et

[∫ ∞
t

e−ρ(s−t)(Λs)
1/Rds

]
(5.2)

As a first example, we construct a positive martingale Λ such that c2t → 0 and yet w2
t 6→ 0

almost surely.
The positive martingale Λ will drift downwards until a random time τ , at which time

a single upward jump occurs. As we see later, τ may be infinite with positive probability.
If τ <∞, then Λ does not change after τ until inf{k ∈ Z+ : k > τ}, after which it starts
to evolve as dΛ = ΛdW , where W is a Wiener process.

For the construction of our example, we take an = 2−n, n = 0, 1, . . . and suppose that
while an+1 < Λt < an and before the jump happened, Λ evolves deterministically as

Λ̇t = −2−n−1 ≡ bn,

so that if there is no jump, it takes unit time to cross an to an+1.
The size of the upward jump in Λ varies depending on which interval it is in; denote

the size of the upward jump while an+1 < Λt < an by ξn and assume that the jump occurs
with intensity νn. Then, from the martingale condition, the following equation must hold:

νnξn = bn.

10



Assuming that τ > n, from (5.2) we see that agent 2’s wealth at time n satisfies the
following inequality:

w2
n ≥En

[∫ n+1

n

e−ρ(s−n)Λ1/R
s ds

]
≥ En

[
1{τ≤n+1}

∫ n+1

n

e−ρ(s−n)Λ1/R
s ds

]
≥En

[
1{τ≤n+1}

∫ n+1

τ

e−ρ(s−n)(an+1 + ξn)1/Rds

]
=(an+1 + ξn)1/R

∫ 1

0

νne−νnt

(∫ 1

t

e−ρsds

)
dt

=(an+1 + ξn)1/R

∫ 1

0

νne−νnt
(
e−ρt − e−ρ

)
dt

=
(an+1 + ξn)1/R

ρ

[
νn

νn + ρ
(1− e−(ρ+νn))− e−ρ + e−ρ−νn

]
=

(an+1 + ξn)1/R

ρ(ρ+ νn)
e−ρ
[
νn(eρ − 1)− ρ(1− e−νn)

]
.

If νn → 0, we have e−νn ∼ 1− νn and thus

w2
n ≥

(an+1 + ξn)1/R

ρ(ρ+ νn)
e−ρ(eρ − 1− ρ)νn. (5.3)

Now take ξn = 2n, R = 1/2, νn = bn/ξn = 2−2n−1. Then we have that the right-hand
side of (5.3) converges to

e−ρ(eρ − 1− ρ)

2ρ2
> 0

as n → ∞. Note from the construction of our example that c2t → 0 almost surely but
wit 6→ 0 on the event {τ =∞} ≡ ∩n{τ > n}. It is also easily verified that P{τ =∞} > 0.
This implies that agent 2 starves almost surely while he does not go broke with a strictly
positive probability. �

Example 3. We now develop Example 2 to produce an example with quite amazing
properties:

(i) Both agents have same constant relative risk aversion felicities;

(ii) Agent 1 knows the correct probability law: Λ1
t ≡ 1;

(iii) Agent 1 consumes at constant rate 1;

(iv) Agent 2 starves;

(v) Agent 1 goes broke.

As before, we consider a setting where c1t ≡ 1 and c2t = (Λt)
1/R, so that the con-

sumption allocation constitutes an equilibrium and agent 2’s wealth is given by (5.2). In
addition, we choose ρ > 1, which is simply a relatively unimportant condition on the
scaling of time. Let R = 1/2 and the constant A be given by

A ≡ 2R2

2ρR2 +R− 1
≥ 1

ρ
.

11



Recall that we write an = 2−n, n ∈ Z+. The martingale Λ will take values in {an :
n ≥ 0} ∪ (1,∞). While in (1,∞) it evolves as

dΛt = ΛtdWt. (5.4)

Once it enters S ≡ {an : n ≥ 0} it evolves by discrete jumps until such time as it re-enters
(1,∞), when the evolution (5.4) resumes. To explain the motion while in S, we specify
that when Λ reaches some point ak ∈ S, it remains there for unit time, and then jumps,
either to ξn with probability pn or to an+1 with probability 1− pn. Here the (pn) and (ξn)
are to be determined later (see (5.6), (5.9)).

If Λ starts at an, we define the wealth value

zn = Ean

[∫ ∞
0

e−ρsΛ2
s ds

]
≡ E

[∫ ∞
0

e−ρsΛ2
s ds

∣∣∣∣Λ0 = an

]
We intend to choose the (pn) and (ξn) so that

zn = A(n+ 1). (5.5)

One condition we will have to ensure is the martingale condition:

an = pnξn + (1− pn)an+1. (5.6)

Next we develop an expression for zn by splitting at time 1, when the process makes its
first jump:

zn =Ean

[∫ 1

0

e−ρsΛ2
sds

]
+ e−ρEan

[∫ ∞
1

e−ρsΛ2
sds

]
=

1− e−ρ

ρ
a2
n + e−ρ{pnh(ξn) + (1− pn)zn+1}. (5.7)

Here, the function h in (5.7) is defined by

h(ξ) = Eξ

[∫ ∞
0

e−ρsΛ2
sds

]
= Eξ

[∫ H1

0

e−ρsΛ2
sds+ e−ρH1z0

]
with stopping time H1 ≡ inf{t ≥ 0 : Λt = 1}. Some routine calculations show that with
the special choice z0 ≡ A, we have

h(ξ) = Aξ1/R = Aξ2 (5.8)

for ξ ≥ 1. Suppose we abbreviate

B ≡ 1− e−ρ

ρA
< 1− e−ρ < 1.

Then the two conditions which pn, ξn must satisfy are the martingale condition (5.6) and
(from (5.5))

n+ 1 = Ba2
n + e−ρ{pnξ2

n + (1− pn)(n+ 2)}. (5.9)

Rearrangement gives

eρ(n+ 1−Ba2
n) =

(an − (1− pn)an+1)
2

pn
+ (1− pn)(n+ 2).

12



Note that the left-hand side of the above equation is positive; the right-hand side diverges
to positive infinity if pn → 0; and the right-hand side is a2

n when pn = 1. Thus for there
to exist a root pn, we need

eρ(n+ 1−Ba2
n) > a2

n, (5.10)

equivalently, n+ 1 > (B + e−ρ)a2
n, which is ensured by the assumption that 1 > B + e−ρ.

Now clearly the pn must converge to zero as n→∞. Indeed we have

pn ∼ {(eρ − 1)n}−1(an − an+1)
2 ∼ 2−2(n+1)

n
(5.11)

so the pn get small geometrically fast and the ξn get big of order of n2n.
Since

∑
n pn < ∞, there is, starting from a0, a positive probability that there will

never an upward jump, implying that Λt → 0 on this event. But if there is an upward
jump, Λ will diffuse back down to a0 with probability one and the story starts again.
Eventually, Λt will head off to 0, and so c2t → 0 almost surely.

On the other hand, in (0, 1], eventually the wealth values pass sequentially through the
values z0, z1 and so on. From (5.8), zn diverges to infinity as n→∞, we have w2

t →∞,
even though w1

t ≡ 1/ρ for ever.

Remarks. Notice that we could approximate this discontinuous likelihood ratio martin-
gale with a continuous one and get the same qualitative conclusions; the discontinuous
paths are not essential.

Example 4. This example is identical to Example 3, but is used to produce a strong
answer to a quite different question, relating to the difference between prices in this
equilibrium, and the equilibrium in a benchmark economy where all agents know the true
probability measure.

In such a benchmark economy, suppose that all agents have the same subjective belief
P. Then the equilibrium solution is characterized by coefficients αj such that

α1e
−ρ1tu′1(c

1
t ) = · · · = αJe−ρJ tu′J(cJt ), (5.12)

where the αj must be set so as to clear the market and match the initial wealths of the
individual agents. Denote the state-price density in this economy by ζ?(α), which in
general depends on the coefficients αj. Kogan et al. (2009) define the notion of no price
impact in the following manner.

Definition 3 (Kogan et al., 2009). Suppose that Λj
t 6= 1. Agent j is said to have no price

impact if there exist positive coefficients α?i such that for T ≥ 0,

lim
t→∞

ζt+T/ζt
ζ?t+T (α?)/ζ?t (α?)

= 1 a.s. (5.13)

We shall show that Example 3 provides an example where

(i) Agent 2 starves and has no price impact;

(ii) If pt is the time-t price of the future output, and p∗t is the same quantity for the
benchmark economy, then almost surely

pt
p∗t
→∞ (t→∞) (5.14)
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We confirm that agent 2 in Example 3 has no price impact according to Definition 3 as
follows. In the example, the state-price density in the reference economy is independent
of (αj) and is given by

ζ?t+T
ζ?t

= e−ρT
(
δt+T
δt

)−R
. (5.15)

Since δt = 1 + (Λ2
t )

1/R and Λ2
t → 0 almost surely, then (5.13) holds for any T .

The price of the market portfolio at time t in the original economy, denoted by pt, is
given by

pt =Et

[∫ ∞
t

e−ρ(t−s)δsds

]
= Et

[∫ ∞
t

e−ρ(t−s)(c1s + c2s)ds

]
= w1

t + w2
t .

On the other hand, in the benchmark economy where both agents have the same beliefs,
Λt ≡ 1, the state-price density ζ?s is given by (5.15) and thus we have

p∗t =
1

ζ?t
Et

[∫ ∞
t

ζ?s δsds

]
=

1

δ−Rt
Et

[∫ ∞
t

e−ρ(t−s)δ1−R
s ds

]
≤ ρ

δ−Rt

(
Et

[∫ ∞
t

ρe−ρ(t−s)δsds

])1−R

=
ρ−R(w1

t + w2
t )

1−R

δ−Rt
,

where the inequality follows from Jensen’s inequality and the fact that ζs/ζt = e−ρ(s−t).
Hence, the ratio of the two prices is

pt
p∗t
≥ w1

t + w2
t

(w1
t + w2

t )
1−R/[1 + I(1/Λt)]−R

∼ (w1
t + w2

t )
R →∞

almost surely as t goes to infinity. This observation shows that the prices of the market
portfolio in the two cases differs for ever in our example, even though agent 2 with an
inaccurate belief becomes extinct in the consumption market. �

From this result, two important findings are obtained. First, Definition 3 is not suf-
ficient to capture the effect of beliefs on pricing and it can be that the price differs from
the one in the homogeneous case even though the state-price densities are asymptotically
equivalent. Second, starvation does not imply no long-run impact on prices: agents with
inaccurate beliefs can have an influence on prices for ever.

Remarks. In Sandroni (2000) and Blume and Easley (2006), aggregate output is assumed
to be bounded away from zero and infinity. In their setting, the price of any asset converges
to the one in a reference economy since the dominated convergence theorem can be applied.
However, in a general economy with diffusion processes, or even in a log-normal economy,
this strong condition of boundedness on the output will not hold.
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6 Price Impact and Asymptotically Equivalent Pric-

ing

The example of Section 4 shows that Definition 3 does not appropriately capture the effect
of different beliefs on prices. We will now introduce a notion of asymptotically equivalent
pricing (AEP) which correctly embodies the features we seek to describe.

To set the scene, consider a situation where at any time t > 0 a future cashflow (cs)s≥t
is priced according to the recipe (2.10):

πt(c) =
1

ζt
Et

[∫ ∞
t

ζscsds

]
(6.1)

where ζ is a strictly positive adapted process. We are thus thinking of a family (πt)t≥0 of
pricing operators,

πt : Ct ≡ {(ct)s≥t : c non-negative, adapted} → L+
0 (Ft)

mapping non-negative adapted future cashflows to Ft-measurable random variables. We
restrict to non-negative cashflows to allow for the possibility that a pricing operator might
assign an infinite value to a cashflow. If we change the process ζ to another strictly positive
adapted process ζ̃, we will arrive at a different family (π̃t)t≥0 of pricing operators; when
do we consider these two families to be asymptotically the same?

Definition 4. Families (πt)t≥0 and (π̃t)t≥0 are said to be asymptotically equivalent if there
exists some stopping time t0 such that

(i) for all t ≥ t0,

At ≡ {c ≥ 0;πt(c) <∞} = Ãt ≡ {c ≥ 0; π̃t(c) <∞}, (6.2)

(ii)

sup
c∈At,c≤1

πt(c)

π̃t(c)
→ 1, sup

c∈At,c≤1

π̃t(c)

πt(c)
→ 1 (t→ 1). (6.3)

Remarks. The first condition of the definition says that the two families of pricing
operators should eventually agree on what future cashflows should be assigned a finite
value – surely a minimal requirement! The second says that for all such cashflows which
are also bounded, the ratio of the two prices should converge to one, uniformly in the
bounded cashflow process.

Theorem 2. Families (πt)t≥0 and (π̃t)t≥0 of pricing operators generated by state-price
density processes ζ and ζ̃ respectively are asymptotically equivalent if and only if there
exists positive adapted processes α and β and a stopping time t0 such that

(i) for all t ≥ t0,

αt ≤
ζt,s

ζ̃t,s
≡ ζs/ζt

ζ̃s/ζ̃t
≤ βt ∀s ≥ t; (6.4)

(ii)

αt
βt
→ 1 (t→∞). (6.5)
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The proof makes use of the following little result.

Lemma 1. Suppose that Q � P are two probability measures, and Z = dQ/dP is the
density of Q with respect to P. If the support of Z is unbounded, that is, P(Z > t) > 0
for all t, then there is a random variable X whose P-expectation is finite, but whose
Q-expectation is infinite.

Proof. Suppose that F (t) ≡ P(Z ≤ t) is the distribution function of Z. We shall
construct a random variable X = ϕ(Z) with the desired properties, where ϕ is increasing
and differentiable, ϕ(0) = 0. To do this, we define

G(z) ≡
∫ z

0

t F (dt),

which is another distribution function in view of the fact that E(Z) = 1. Now define
Ḡ(t) ≡ 1−G(t), and

ϕ′(t) =
1

(1 + t)Ḡ(t)
,

and notice that∫ ∞
0

zϕ(z) F (dz) =

∫ ∞
0

ϕ(z) G(dz) =

∫ ∞
0

ϕ′(t)Ḡ(t) dt =

∫ ∞
0

dt

1 + t
=∞.

However, Ḡ(z) =
∫∞
z
x F (dx) ≥ zF̄ (z), and so∫ ∞

1

ϕ(z) F (dz) =

∫ ∞
1

ϕ′(t)F̄ (t) dt =

∫ ∞
1

F̄ (t)

(1 + t)Ḡ(t)
dt ≤

∫ ∞
1

dt

(1 + t)t
<∞. (6.6)

�
Proof of Theorem 2. If conditions (i) and (ii) of the Theorem hold, then it is clear
that for all t ≥ t0 the sets At and Ãt of finite-price consumption streams coincide; hence
condition (i) of the definition of asymptotic price equivalence holds. Next, since clearly
αt ≤ 1 ≤ βt, we know that αt → 1 and βt → 1 as t → ∞. Thus for any ε > 0, for
all large enough t we have 1 − ε ≤ αt ≤ βt ≤ 1 + ε, and so the ratio of the two prices
πt(c) = πt(c) for any c ∈ At must lie in the interval (αt, βt) ⊂ (1− ε, 1+ ε), and we deduce
that condition (ii) of the definition of asymptotic price equivalence holds.

Now we deal with the converse assertion, that asymptotic price equivalence implies
(6.4) and (6.5). Suppose that t ≥ t0. Then we can define two conditional probabilities m
and m̃ on Ω× [t,∞) with the optional σ-field by setting

m(Y ) ∝ Et

[∫ ∞
t

ζt,se
−(s−t)

1 + ζt,s + ζ̃t,s
Ys ds

]

for any bounded non-negative optional process Y , where m̃ is defined analogously by
interchanging the rôles of ζ̃ and ζ. Now according to Lemma 1, unless the Radon-Nikodym
derivative of m̃ with respect to m is essentially bounded then there exists an optional
process Y whose m-expectation is infinite and m̃-expectation is finite (or vice versa).
However, according to the assumption (6.2) of asymptotic equivalence, this cannot happen
for t ≥ t0, and so the first property (6.4) is established.
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To prove that the second property (6.5) must also hold, we argue by contradiction,
constructing a particular cashflow process which gets valued significantly differently by
the two families of pricing operators. Firstly, by considering

β̄t ≡ essinf

{
b : Et

[∫ ∞
t

1{ζt,s/ζ̃t,s>b}
ζt,se

−(s−t)

1 + ζt,s + ζ̃t,s
ds

]
= 0

}
and the analogously-defined quantity ᾱt by the essential supremum, we see that it will be
sufficient to prove that β̄t/ᾱt → 1. Now suppose that β̄t = 1 + 2λ > 0 for a fixed t, and
set b = 1 + λ. Then we consider the cashflow process

cs = 1{ζt,s/ζ̃t,s>b}
e−(s−t)

1 + ζt,s + ζ̃t,s

which is bounded and in At. Moreover, πt(c) > 0 since b < β̄t. Hence

πt(c) = Et

[∫ ∞
t

ζt,scs ds

]
≥ bEt

[∫ ∞
t

ζ̃t,scs ds

]
= bπ̃t(c)

Thus

π̃t(c)

πt(c)
≤ 1

b
=

1

1 + λ
(6.7)

However, according to (6.3), the ratio π̃t(c) = πt(c) tends to 1, and so the hypothesis
that β̄t = 1 + 2λ > 1 must eventually fail. Thus β̄t → 1 almost surely as t → ∞. A
symmetrical argument gives that ᾱt → 1 almost surely as t→∞. �

Remarks. The condition (6.4) is similar to Kogan et al. (2009)’s definition of no price
impact, but the key difference is our requirement that the convergence of ζt,s/ζ̃t,s to 1
should be uniform in s.

7 Conclusions

This paper has made several contributions to the Market Selection Hypothesis. We have
begun by isolating two different notions that correspond to different ways in which an
agent might be thought to be eliminated from the market, either by starving, or by going
broke. Starvation may arise from a number of different causes, only one of which is
differences in beliefs. Once we have eliminated all other possible causes of starvation, we
are able to show that (under boundedness conditions on relative risk aversion) starvation
is equivalent to inferior beliefs. On the other hand, we show through an example with two
CRRA agents that going broke depends in general on the output process of the economy
as well as on the beliefs of the agents.

Our next contribution is to build an example with two CRRA agents where the second
agent (with the inferior beliefs) starves - in accordance with out first result - and yet the
first agent (with the correct beliefs) goes broke. This example also shows that an agent
may starve, may have no price impact in the sense of Kogan et al. (2009), and yet his
presence in the economy profoundly alters prices for all time. Our final contribution is
to unravel this conundrum; the notion of no-price-impact of Kogan et al. (2009) is not
correct, and we present a similar concept which we prove does indeed capture the desired
effect. Our concept of asymptotically equivalent pricing can be characterized in terms of
the state-price density quite simply.
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