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1 Introduction.

After credit risk, liquidity risk is probably the next most important risk faced by the finance
industry; and yet the study of liquidity is far less advanced. This may be in part due to the
fact that there is no agreed definition of what liquidity is, even in qualitative terms; everyone
would agree that the effect of illiquidity is to make it difficult or costly to trade large volumes
of the underlying asset in small times, but there are different approaches to modelling this.

One modelling philosophy is that trading large amounts moves the price, and the papers
of [7], [8], [16], [15], [18] are examples of this viewpoint, where the stock price responds in-
stantaneously to the amount of the stock held by a single large trader. Though such models
have a flavour of liquidity, we regard them rather as models of price impact effects. There
is evidence that the actions of a large trader can influence the price of the underlying (see,
for example, [12] and [10] ). A large trader can try to ‘corner the market’. One way to do
this in a commodity market is to take a huge long futures position and at the same time buy
up the underlying commodity. As expiry approaches the investors who are short the futures
contract may find that there is not enough supply to meet their demand and hence the price is
pushed up. One such alleged case of this was the activities of the Hunt brothers in the silver
market in 1979-1980. Their trading caused the price to increase from $9 per ounce to $50 per
ounce. Another way to ‘corner the market’, this time involving shares, is to buy up a large
supply and then lend some to investors who want to go short. When these shares are sold on
the market the agent buys them up and then calls in the short shares. Since the agent has
limited the supply of shares by buying a large amount, this pushes the price up. These types
of manipulation involve taking huge positions in the underlying and documented examples of
this type of activity have shown large price increases followed by a crash.

Though interesting in their own right, such price impact models have drawbacks which
make them unsuitable as models of liquidity. One of these is the ‘free round trip’ phenomenon,
discussed in [18]; if the large agent rapidly sells and then buys back a large amount of stock,
he can force the price instantaneously to drop, and if this round trip is not costly (as is the
case in some studies), then the large agent could make profits by selling down-and-out calls,
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and subsequently knocking them out by a round trip. Another problem with such price impact
models is that they typically present the solution to a hedging problem in feedback form,
exhibiting the hedge as a function of time, and current stock price - but if the initial portfolio
is not at the exactly correct value, it is not clear how it is to be moved to that value. A
more serious problem with such models is that if the actions of one agent may affect the price,
then logically the actions of all agents may affect the price, and the resulting analysis of the
inter-related behaviour of the many agents in the market becomes impossibly cumbersome; see,
for example, [9] for a partial analysis of such a setup. Moreover, a price-impact story does not
explain why small agents should be affected by illiquidity, which they surely are.

Our viewpoint here is that the effect of illiquidity is a cost, but that illiquidity does not
affect the price of the underlying asset. It affects the price at which an agent will trade the
asset, however, reflecting the depth of the limit order book. The faster an agent wants to buy
(sell) the asset, the deeper into the limit order book he will have to go, and higher (lower) will
be the price for the later units of the asset bought (sold). However, once a rapid transaction
is completed, we suppose that the limit order book quickly fills up again, and that the rapid
transaction has no lasting effect on the price of the underlying. What transpires is that the
impact of liquidity modelled in this fashion is like a transaction cost, but not one which is
proportional to the amounts traded, which is the assumption of the traditional proportional
transaction cost model (see [14], [6]). This modelling approach was presented in the preprint
[17]; the references [5] and [19] explore further aspects of the model introduced there. The
preprint of Isaenko [11] proposes a dynamic with some similarities to ours, but the way in
which the illiquidity costs scale with stock price is very different.

The paper of Almgren & Chriss [1] is close in spirit to what we do here. They model both
a temporary and a permanent market impact, while we choose only to model the temporary
effect, for reasons explained above. We consider the trading of only a single asset, but the
objective we consider is more general, in that we aim to hedge any European option. Almgren
& Chriss in effect treat the problem of optimising the quadratic utility of terminal wealth,
working in discrete time with a random-walk asset dynamic.

Another related paper is that of Longstaff [13], who proposes that the holding of stock must
be a finite-variation process with bounded derivative, which may be thought of as a special case
of the model we propose. Models which feature illiquidity costs include [3] and [4]. However,
in both these references transaction costs can be completely avoided by following a continuous
trading strategy of bounded variation. This seems rather unrealistic. The paper of Bakstein &
Howison [2] shares a number of features with ours; one main difference is that it leads to price
impact effects, which we are trying to eliminate.

The layout of the remainder of the paper is as follows. Section 2 explains how the dynamics
that we shall take as fundamental arise from consideration of the order book. Next, Section 3
deals with the hedging of a European-style option in the Black-Scholes world in the presence of
illiquidity costs. The Hamilton-Jacobi-Bellman equation that arises from the associated optimal
control problem can be solved in almost closed form. The numerical solution requires us just
to solve four parabolic PDEs of Black-Scholes type. We then consider approximate solutions
in Section 4; this shows that there is a simple hedging rule which approximates the optimal
rule, and as a by-product we learn the order of magnitude of the losses due to illiquidity. Next
in Section 5 we explore some numerical solutions, comparing the optimal solution with the
approximate solution. Finally, Section 6 concludes.
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2 Modelling illiquidity: motivation.

Let us start with a simple static model for the order book. We imagine that there is some ‘mid
price’ S, and that there is an order book of quotes distributed either side of the mid price S,
with density ρ(x) of quotes at relative1 price x. If an agent wishes to acquire h units of the
asset, he will have to buy up through the order book, to relative price s defined by

h =

∫ s

1

ρ(x) dx,

which will cost

S

∫ s

1

xρ(x) dx.

Having done this trade, the mid-price quickly returns to S, so the book value of what he has
just bought is hS and he will record a loss of

(2.1) S l(h) ≡ S

∫ s

1

xρ(x) dx− hS = S

∫ s

1

(x− 1)ρ(x) dx.

Notice that the same equations hold whether s > 1 or s < 1, so that l ≥ 0, and

dl

dh
=

(s− 1)ρ(s)

ρ(s)
= (s− 1) ≥ −1

is increasing, and therefore the function l is convex, with slope at least −1.

Examples. (i) A natural example would be to take

(2.2) l(x) =
eεx − 1

ε
− x

where ε > 0 is fixed.

(ii) Taking
l(x) = ε |x|

models a proportional transaction cost as in [14], [6].

(iii) We could take

l(x) = 0 (|x| ≤ a)

= ∞ (|x| > a)

to model a situation where any trade up to a certain size would be allowed; this is in effect the
situation in [13].

We extend this to a dynamic setting by firstly supposing that trading takes place in discrete
intervals of time of length ∆t, during each of which there is an order book with density ρ(x)dx∆t

1We assume that the only effect of the value of mid-price on the problem is through proportionality; otherwise,
high-priced assets would be subject to more (or less) liquidity costs than low-priced assets, which is not an effect
we consider realistic.
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at price x relative to the prevailing mid-price St. As before, an agent who wishes to acquire
h∆t units of the asset in that time period will book a loss of Stl(h)∆t.

After such a trade, parts of the order book will have been swept out; as a result, we may
expect that the mid-price will have been moved by the sale/purchase. However, this is a price-
impact effect, and, as we explained earlier, we do not intend to model this, as this would make
the price dynamics not just history-dependent, but also dependent on the past trading decisions
of a potentially large number of agents. One justification for this simplifying assumption is that
the quotes swept out would quickly be replaced if the asset were reasonably liquid, which is the
situation we are most interested in.

Given this description of the effect of liquidity in a ∆t-trading-interval formulation, it is
not hard to see how we are going to model the cost of illiquidity in continuous time. We shall
suppose that the number Ht of units of the risky asset held at time t should be differentiable,
with derivative ht, and the wealth dynamics are summarised as

dwt = rtwtdt+Ht(dSt − rtStdt) − St l(ht)dt(2.3)

dHt = htdt(2.4)

where rt is the riskless rate, and St is the asset price at time t, given exogenously, and not
affected by the trades of any agents. The only part of the dynamics (2.3) which is not entirely
conventional is the final term −Stl(ht)dt representing the cost of illiquidity. Concerning the
function l, we shall make the following assumption:

Assumption A: the function l is convex and non-negative, l(0) = 0.

Remarks. (i) Note that we do not assume that l′ ≥ −1, a restriction which appears natural in
view of the way we derived l from the order book description. This is because we shall presently
wish to work with l(x) = 1

2
εx2 for reasons of tractability.

(ii) Note that we do not claim that there is some weak convergence argument which takes us
from the discrete-time model for the cost of liquidity to (2.3), (2.4) as ∆t ↓ 0; there may well
be, but any such argument is tangential to our purpose. The discussion of this Section is offered
by way of motivation for (2.3), (2.4), which we take as the axiomatic basis of the main part of
the paper. Any reader who is affronted by such informality can simply cover up the whole of
this Section before equations (2.3), (2.4), and take those as the starting point of the paper.

3 An optimal control problem and its solution.

The introduction of illiquidity costs makes the market incomplete, so perfect replication is no
longer possible. In this Section, we shall study the effect of illiquidity on the hedging of a
European-style option when the illiquidity costs are small.

In the Black-Scholes model, the asset dynamics are given by

(3.1) dSt = St(σdWt + µdt),

and the riskless rate rt is assumed equal to a constant. The presence of discounting is an
inessential complication to the notation, so we shall immediately assume that we are working
with discounted asset prices, that is, we shall take r = 0. We shall also assume that µ = 0, for

4



three reaons. Firstly, in the perfectly liquid Black-Scholes world, under the pricing measure,
this is the value we would use; if illiquidity costs were small, we should be close to this situation.
Secondly, if we are to use any value for µ other than the riskless rate r = 0, we would in practice
have to estimate this value, which is notoriously hard to estimate with any accuracy or stability.
Thirdly, the analysis is already hard enough with this assumption. Under these assumptions,
the wealth dynamics become simply

dwt = HtdSt − St l(ht)dt

= d(HtSt) − Stf(ht)dt,(3.2)

dSt = σStdWt,(3.3)

dHt = htdt,(3.4)

where f(h) ≡ h + l(h).
We shall consider the hedging of a European option which expires at time T and pays G(ST )

at that time. The Black-Scholes value of the option at time t < T is q(t, St), where q solves the
Black-Scholes initial-value PDE

(3.5) Lq = 0, q(T, ·) = G(·),

where

(3.6) L ≡ 1

2
σ2S2 ∂

2

∂S2
+
∂

∂t
.

In the absence of illiquidity costs, the unique time-0 price of this option would be q(0, S0), and
given that initial wealth, the option could be perfectly replicated by using the self-financing
portfolio which holds θ(t, St) ≡ qS(t, St) units of the stock at time t.

Once illiquidity costs are introduced, as modelled in Section 2, it is not possible to hold the
Black-Scholes portfolio Ht = θ(t, St) at all times t, since this is a process of infinite variation.
We must therefore choose a portfolio H which optimises some criterion, which must be chosen
to express our two objectives, namely, to finish up close to the payoff G(ST ) of the option,
and not to incur large illiquidity costs on the way. We must also specify what assumption
will be made about the portfolio at time T , which will typically hold non-zero amounts of the
asset. For this, we shall simply suppose that the asset can be sold at spot with no illiquidity
losses; in practice, any money owing on the option would be paid out of cash, and the position
in the asset could be unwound sufficiently slowly that no significant illiquidity costs would be
incurred.

Suppose we hold H0 units of the asset at time 0, and x0 in cash. By following the (dif-
ferentiable adapted) hedging portfolio process (Ht)0≤t≤T , the value at time T of the hedge so
constructed will be

H0S0 + x0 +

∫ T

0

Ht dSt ≡ ξ,

and we will have incurred illiquidity costs

∫ T

0

Stl(ht) dt
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on the way. We therefore propose to minimise the objective

Φ0 = 1

2
E(ξ −G(ST ))2 + E

∫ T

0

Stl(ht) dt

= 1

2
(x0 +H0S0 − q(0, S0))

2 + E

∫ T

0

1

2
(Ht − θ(t, St))

2σ2S2
t dt+ E

∫ T

0

Stl(ht) dt

≡ 1

2
(x0 +H0S0 − q(0, S0))

2 + Φ,(3.7)

which penalises both the illiquidity costs incurred, and the mean-squared hedging error. Other
criteria could be considered; for example, in [17] the utility-indifference price was used. The
criterion we use here has the twin virtues of simplicity and reasonable tractability.

Technical remarks. (i) We require a polynomial bound on the Black-Scholes portfolio θ;
we shall assume that

(3.8) for some γ > 0, C > 0: |θ(t, S)| ≤ C(1 + Sγ) ∀t ∈ [0, T ], S > 0.

Notice that this implies that

(3.9) E

∫ T

0

θ(t, St)
2S2

t dt <∞.

(ii) We likewise have to restrict slightly the class of possible controls, and we shall suppose
always that h ∈ H, where

(3.10) H ≡ {h : E

∫ T

0

H2
uS

2
u du <∞ }.

This simply requires that our attempt at replicating an L2 contingent claim should also be
restricted to lie in L2, a completely natural condition.

Since the values of initial cash x0 and holding of asset H0 will usually be given, our goal is
to minimise the objective Φ. For this, we define the value function

(3.11) V (t, H, S) ≡ inf
h∈H

E

[
∫ T

t

1

2
(Hu−θ(u, Su))

2σ2S2
u du+

∫ T

t

Sul(hu) du

∣

∣

∣

∣

Ht = H,St = S

]

,

and a familiar argument shows that V solves the Hamilton-Jacobi-Bellman (HJB) equation

(3.12) inf
h∈H

[

Vt + hVH + 1

2
σ2S2VSS + 1

2
σ2S2(H − θ(t, S))2 + S l(h)

]

= 0.

Typically, it is impossible to get very far with an HJB equation; we have to content ourselves
with results on existence and uniqueness; or estimates on the solution; or numerical solution.
However, in this case, because of the simple assumed form of the objective, we can get a long
way if we suppose that

(3.13) l(h) = 1

2
εh2.

6



where ε will be thought of as a small parameter2. The minimisation in (3.12) can be carried
out explicitly, by taking

(3.14) h = −VH

εS
,

giving the non-linear second-order PDE

(3.15) LV + 1

2
σ2S2(H − θ)2 − V 2

H

2εS
= 0,

where we shall omit the arguments of θ(t, S) unless there is need to state them explicitly. Now
the assumed quadratic form of the objective and illiquidity loss function leads us to guess that
(3.15) may be solved by a quadratic function

(3.16) V (t, H, S) = a(t, S)H2 + b(t, S)H + c(t, S),

and this guess will turn out to be correct. Substituting this form into (3.15) gives a quadratic
in H , and equating the coefficients to zero gives us three equations for a, b, and c:

La+ 1

2
σ2S2 − 2a2

εS
= 0,(3.17)

Lb− σ2S2θ − 2ab

εS
= 0,(3.18)

Lc+ 1

2
σ2S2θ2 − b2

2εS
= 0.(3.19)

The first equation (3.17) is a non-linear PDE, but given the solution to that, it is then straight-
forward to solve (3.18), then (3.19). We therefore focus on (3.17), and show that it has a unique
non-negative solution satisfying suitable boundedness criteria.

Lemma 1. There is a unique non-negative solution a to (3.17) which satisfies the boundedness
condition

(3.20) sup
S>0, 0≤t≤T

∣

∣

∣

∣

a(t, S)

S2

∣

∣

∣

∣

<∞.

Remark. The point of the bound (4.8) is that any solution of (3.17) which satisfies this bound
will be given by a Feynman-Kac representation:

(3.21) a(t, S) = 1

2
E

[
∫ T

t

exp
{

−
∫ u

t

2a(v, Sv)
dv

εSv

}

σ2S2
u du

∣

∣

∣

∣

St = S

]

.

Proof . We shall construct an approximating sequence of functions which converge to a solution
a, and then we shall establish uniqueness. Given a non-negative function α : [0, T ] × R → R

+,
we define the function Ψ(α) : [0, T ] × R → R

+ by

(3.22) Ψ(α)(t, S) = 1

2
E

[
∫ T

t

exp
{

−
∫ u

t

2α(v, Sv)
dv

εSv

}

σ2S2
u du

∣

∣

∣

∣

St = S

]

.

2Though convex and non-negative, this choice of l does not have derivative bounded below by -1. If ε is very
small, whatever C2 function l we may choose will look locally like this choice, so we expect that the conclusions
we obtain here will apply widely.
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Then it is clear from (3.21) that a solution to (3.17) satisfying the boundedness condition (3.20)
is a function a such that Ψ(a) = a. Notice that Ψ is decreasing: a ≥ ã⇒ Ψ(a) ≤ Ψ(ã).

We define a sequence of approximations a(n) to a solution by the recipe

a(0) ≡ 0, a(n+1) = Ψ(a(n)) (n ≥ 0).

Notice immediately that sup |a(1)(t, S)/S2| is bounded, and that

0 = a(0) ≤ a(2) ≤ a(1).

Hence

a(1) ≥ a(3) ≥ a(2),

a(2) ≤ a(4) ≤ a(3),

and so on: a(2n) ≤ a(2n+2) ≤ a(2n+1), and a(2n+1) ≥ a(2n+3) ≥ a(2n+2) for all n ≥ 0. Thus the
seqence a(2n) increases to a limit a, and the sequence a(2n+1) decreases to a limit ā, and we see
that

a ≤ ā.

In the limit, we have Ψ(a) = ā, and Ψ(ā) = a. Thus a, ā satisfy

Lā+ 1

2
σ2S2 − 2aā

εS
= 0,

La+ 1

2
σ2S2 − 2āa

εS
= 0.

Hence the difference f = ā − a ≥ 0 satisfies the PDE Lf = 0; using the bound (4.8), which
applies to ā, we deduce that f ≡ 0, and so a = ā = a is a solution.

As for uniqueness, if ã is any other nonegative solution to Ψ(ã) = ã, we have

ã = Ψ(ã) ≤ Ψ(0) = Ψ(a(0)) = a(1),

from which we learn that ã = Ψ(ã) ≥ Ψ(a(1)) = a(2). Continuing, we find that ã ≥ a(2n) and
ã ≤ a(2n+1) for any n ≥ 0, so that ã = ā = a.

�

We summarise the preceding results as follows.

Theorem 1. Assuming (3.8), the value function V for the problem min Φ is of the form (3.16),
where a, b, and c are the unique solutions to (3.17), (3.18), (3.19) satisfying bounds of the form
(3.8).

Proof . Notice that

V (t, Ht, St) ≤ σ2E

[
∫ T

t

(H2
u + θ(u, Su)

2)S2
u du

∣

∣ Ft

]

≤ σ2E

[
∫ T

0

(H2
u + θ(u, Su)

2)S2
u du

∣

∣ Ft

]
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and so for any H for which E
∫ T

0
H2

uS
2
u du < ∞, the process V (t, Ht, St) is dominated by a

uniformly-integrable martingale.
In view of the bound (3.8) on θ, the Feynman-Kac representation of the solution to the PDE

(3.18) is well defined (the integrals converge), and the solution b again satisfies a bound of the
form (3.8). The same conclusion holds for c. Thus solving the PDEs (3.17), (3.18), (3.19), gives
us a function V defined by (3.16) which solves the PDE (3.15). From this, whatever control h
is used, the process

Yt ≡
∫ t

0

1

2
(Hu − θ(u, Su))

2σ2S2
u du+

∫ t

0

Sul(hu) du+ V (t, Ht, St)

is expressed (by Itô’s formula) as a local martingale plus a non-decreasing process. Using a
stopping time τ ≤ T which reduces the local martingale, we learn that

V (0, H0, S0) ≤ E

[
∫ τ

0

1

2
(Hu − θ(u, Su))

2σ2S2
u du+

∫ τ

0

Sul(hu) du+ V (τ,Hτ , Sτ )

]

Now we let τ ↑ T ; the integrals converge monotonically, and the final term V (τ,Hτ , Sτ ) tends
to 0 almost surely, and in view of the uniformly-integrable bound, also in L1.

�

Remarks. (i) Notice that the PDE for a does not depend on the derivative to be hedged; the
only effect of this is on b and c. This is perhaps not so surprising, because a controls the loss if
H is very large; if H is very large, the most important thing is to get H back to somewhere near
the Black-Scholes hedge, and it does not matter very much whether the Black-Scholes hedge is
4 or -65.

(ii) Our analysis tells us little about the magnitude of the value function, but we shall see in
the next section that (roughly speaking) the magnitude of V is O(

√
ε).

4 Approximating the optimal solution.

The route we take here is to suppose that the illiquidity losses are small, and find an approxi-
mation to the optimal hedging policy. We still suppose that l(h) = 1

2
εh2.

For small ε, the terms in LV in the HJB equation (3.15) will be small, but the middle term
in (3.15) will not be small, so the only way that the whole expression can be zero is if

VH√
εS

+ σS(H − θ).

In view of (3.14) this leads us to consider the following candidate for a good control:

(4.1) h̄ ≡ −σ
√

S

ε
(H − θ).

Remarks. (i) Observe that this control h̄, a choice for the rate of change of the holding H of
the asset, has natural properties: it will pull H toward the Black-Scholes hedge θ, and will pull
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more strongly as ε gets smaller. For large S, it is more important to get the hedging number
of units of asset correct, since this corresponds to a larger sum invested in the asset. Thus we
find that h̄ pulls H harder to θ for large S, but not proportional to S.
(ii) We are going to estimate the value of using h = h̄, and show that this is small in a sense
to be made precise in Theorem 2. This analysis gives an estimate of the liquidity costs (and
the mishedging costs) incurred, so it gives a value for the ‘liquidity premium’ to be charged for
selling this option written on a slightly illiquid asset.

Let v denote the value of using the policy h̄: this solves the PDE

(4.2) Lv − σS(H − θ)√
εS

vH + σ2S2(H − θ)2 = 0, v(T, ·, ·) = 0.

There is the probabilistic (Feynman-Kac) representation of the solution as

(4.3) v(t, H, S) = E
[

∫ T

t

σ2S2
u(Hu − θ(u, Su))

2 du
∣

∣ Ht = H,St = S
]

,

where the expectation (4.3) is calculated under the assumed dynamics (3.2), (3.4), taking h = h̄.
The Ornstein-Uhlenbeck dynamics of H under control h̄ imply a solution of the form

(4.4) v(t, H, S) = a(t, S)(H − θ(t, S))2 + b(t, S)(H − θ(t, S)) + c(t, S)

for functions a, b, and c to be determined. Some routine calculations lead to the following
equations for the three unknowns:

0 = La− 2σ

√

S

ε
a+ σ2S2,(4.5)

0 = Lb− σ

√

S

ε
b+ 2σ2S(a− SaS)θS,(4.6)

0 = Lc+ σ2SθS(b− SbS) + σ2S2aθ2
S.(4.7)

Theorem 2. Assume that θS and θSS are uniformly bounded. Then the functions a, b and c
determining v through (4.4) satisfy the bounds

a(t, S) ≤ kε2(z + z3/2);(4.8)

|b(t, S)| ≤ kε3(z + z2);(4.9)

c(t, S) ≤ kε4z5/2(1 + z + ε(z3/2 + z2))(4.10)

for some positive constant k, where z ≡ S/ε.

Remarks. (i) Notice a consequence of the bounds of Theorem 2: for fixed S > 0, and fixed
H ,

V (t, H, S) ≤ v(t, H, S) ≤
√
εκ(t, S),

so we have roughly speaking that V (t, H, S) = O(
√
ε).

(ii) The assumption of uniform bounds on θS and θSS is quite likely far too strong, but it is
sufficient for the required result.

The proof of Theorem 2 involves various estimations which are relegated to the Appendix.
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5 Numerical solution

In this section, we discuss the numerical solution to the problem, and present some results. Our
test problem is the hedging of a standard European call with strike 1; not all the boundedness
hypotheses which we imposed to prove our results hold for this example, but this does not stop
us computing the solution. The numerical results we obtain are consistent with the theory,
suggesting that the hypotheses may be relaxed somewhat.

We firstly solve the original problem (3.15) using the form (3.16) of the solution. This
requires us to solve the three coupled PDEs (3.17), (3.18), (3.19). For this, we worked with the
variable y = logS, and solved a finite-difference scheme by Crank-Nicolson. The computations
were quick and accurate. The second form of the problem which we solved numerically was
that studied in Section 4, where the good policy (4.1) is used, and the value function for that
policy is found. While the analysis of Section 4 used the form

v(t, H, S) = a(t, S)(H − θ(t, S))2 + b(t, S)(H − θ(t, S)) + c(t, S)

for the solution, which was necessary to establish bounds on the solution, what we did numer-
ically was to take the solution in the equivalent form

v(t, H, S) = a(t, S)H2 + b(t, S)H + c(t, S)

and solve for that instead. The equations we obtain are slightly different, but this time all are
linear, and so may be solved easily:

0 = La− 2σ

√

S

ε
a+ σ2S2,(5.1)

0 = Lb− σ

√

S

ε
(b− 2aθ) − 2σ2s2θ,(5.2)

0 = Lc+ σ

√

S

ε
θb+ σ2S2θ2.(5.3)

The next question is what values we should take for the parameters of the problem. We suppose
that σ = 0.25, but for ε the value we take should reflect realistic levels of liquidity. We asked a
quant with experience of trading equities by how much he would expect the buying price to rise
if one attempted to purchase 1% of the stock of a major company in one day, and his reply was
“A ‘dawn raid’ of 10% or so of the shares will probably propel the market 15% higher. I would
say 1.5% for a quiet 1% purchase.”3 From this, we deduce the value ε = 0.006. Figure 1 shows
the optimal solution, and the approximate optimal solution, displaying for each the difference
between the best hedge (defined to be the value of H which minimises the value function) and
the Black-Scholes hedge; and also displaying the value function taking H = θ(t, S), scaled by
10/

√
ε to keep things O(1). We see that qualitatively there is little difference between the

optimal solution and the approximate optimal solution from Section 4. Notice that deep in or
out of the money, the value function evaluated at the Black-Scholes hedge is very small, as one
would expect, since at these levels the hedge is correctly set, at either 0 or 1 units of the stock,
and there is little chance that it will need to be changed by very much. Near the money, we

3Interestingly, the scaling expressed in this reply matches the conclusions of our model.
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expect more changes to be required, and we see that the minimised cost of liquidity is higher.
The illiquid hedges are seen to be greater than the Black-Scholes hedge, probably because of
convexity of the payoff.

6 Conclusions.

This paper has presented a model for the effects of illiquidity, and explored some of its con-
sequences for the hedging of European-style options. We emphasised the distinction between
price-impact effects and illiquidity effects, an important distinction that is sometimes blurred
in the literature. Focussing on illiquidity allows us to suppose that hedging decisions do not
affect price, and therefore allow us to analyse the effect of illiquidity on a small agent who is
required to hedge an option. We pose an optimization problem for this agent, which can be
solved in almost closed form, requiring the numerical solution of three parabolic PDEs, one of
them non-linear. A near-optimal solution provides a good approximation, and useful bounds
on the cost of illiquidity, which we deduce is O(

√
ε).

12



A Appendix.

Proof of Theorem 2. Throughout the proof, k will denote a positive constant whose (rela-
tively unimportant) value changes from place to place.

The first step is to change to the variable z ≡ S/ε in equations (4.5), (4.6), (4.7), trans-
forming them to

0 = Lα− 2σ
√
z α + σ2ε2z2,(A.1)

0 = Lβ − σ
√
zβ + 2σ2εz(α− zαz)θS,(A.2)

0 = Lγ + σ2εzθS(β − zβz) + σ2ε2z2αθ2
S.(A.3)

Here, we write α(t, z) = a(t, S), β(t, z) = b(t, S), γ(t, z) = c(t, S), and by slight abuse of
notation we set

L ≡ 1

2
σ2z2 ∂

2

∂z2
+
∂

∂t
.

Remarkably, there is an explicit solution to (A.1):

(A.4) α(0)(t, z) = α(0)(z) = ε2

(

3σ2

32
z +

σ

2
z3/2

)

,

though this does not satisfy the boundary condition α(T, ·) = 0. The solution to (4.5) which
does satisfy the boundary condition is expressed as

α(t, S) = α(0)(S) − ᾱ(t, S),

where ᾱ solves
Lᾱ− 2σ

√
z ᾱ = 0, ᾱ(T, z) = α(0)(z).

The function ᾱ therefore has the Feynman-Kac representation as

(A.5) ᾱ(t, z) = E
[

exp(−At,T ) a(0)(zT )
∣

∣ Ht = H, zt = z
]

.

where we define

(A.6) At ≡
∫ t

0

2σ
√
zu du, At,s ≡ As − At.

Elementary estimation of (A.5) using (A.4) gives us the uniform bound (4.8).
We therefore know that a is small, in the precise sense given by (4.8). The next step is to

show that β is also comparably small, and for this we again use the Feynman-Kac representation
of the solution to (4.6)

(A.7) β(t, S) = E
[

∫ T

t

exp(− 1

2
At,u) q(u, zu) du

∣

∣ Ht = H, zt = z
]

,

where

(A.8) q(u, z) ≡ 2σ2εz(α− zαz)(u, z) θS(u, S).
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From (A.5) we deduce that

zᾱz = Et

[

e−At,T
{

zT α
(0)
z (zT ) − 1

2
At,T α

(0)(zT )
} ]

,

and hence using the boundedness of θ we have a bound

|q(u, z)| ≤ kε3z(z + z3/2)

for some constant k > 0. We may therefore majorise β by the solution to the equation

(A.9) Lg − σ
√
zg + kε3z(z + z3/2) = 0,

together with the boundary condition g(T, ·) = 0. Now one solution to (A.9) can be found
explicitly:

g(0)(t, z) = kε3σ−1

(

3σ

8
(1 + σ)z + (1 + σ)z3/2 + z2

)

.

The solution to (A.9) with the required boundary condition is related to g(0) as α is related to
α(0); we deduce similarly the bounds

|β(t, z)| ≤ g(t, z) ≤ kε3(z + z2).

Our last task is to show that γ is small in some suitable sense, and in view of Feynman-Kac
representation of γ as

(A.10) γ(t, z) = E
[

∫ T

t

exp(− 1

2
At,u) ψ(u, zu) du

∣

∣ Ht = H, zt = z
]

,

where

(A.11) ψ(u, z) = σ2εzθS(β − zβz) + σ2ε2z2αθ2
S,

the task is equivalently to show that ψ is suitably small. We already have bounds on α and β,
but we need bounds on zbz . For this, notice that

L(zβz) = z
∂

∂z

(

Lβ
)

and so

L(β − zβz) = z2 ∂

∂z

(

−1

z
Lβ

)

= z2 ∂

∂S

(

− σ√
z
β + 2σ2ε(α− zαz) θS

)

= σ
√
z (β − zβz) −

σ

2

√
z β + 2σ2ε2z2(α− zαz) θSS − 2σ2εz3αzθS.

Rearranging this gives a PDE for (β − zβz):

L(β − zβz) − σ
√
z (β − zβz) = −σ

2

√
z β + 2σ2ε2z2(α− zαz) θSS − 2σ2εz3αzzθS .
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We need a bound on αzz, which is derived from the Feynman-Kac representation of α; we
deduce that

|z2αzz| ≤ ε2(z + z3/2),

and hence

|β − zβz| ≤ k{ε3z3/2(1 + z) + ε4(z7/2 + z3)}
≤ kε3z3/2[1 + z + ε(z3/2 + z2)].

Using again the Feynman-Kac representation of the solution to (A.3), we deduce that

|γ| ≤ kε4z5/2[1 + z + ε(z3/2 + z2)] + kε4z3(1 +
√
z)

≤ kε4z5/2(1 + z + ε(z3/2 + z2))

as required.
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