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Abstract

In this paper, we take the model of Hobson & Rogers (1998) for the movement of an asset,
and we fit it to data. The model of Hobson & Rogers is a stochastic volatility model, where
the volatility depends on the offset of the current log-price from its exponentially-weighted
historical value. As such, the model is complete, and there are unique preference-independent
prices. In the datasets we study, there is very clear evidence that the volatility does indeed
vary with offset; we use PDE methods, and simulation methods, to fit the model to data,
and find that the fit is generally better than the Heston model.



Introduction

The striking work of (BLACK and SCHOLES 1973) and the simultaneous opening of

the Chicago Board Option Exchange in 1973 started a new era for financial mathe-

matics. The Black-Scholes formula is still widely used among traders to price vanilla

options, at least as a metric for the risk implied by actual quotes. However, espe-

cially after the market crash of 1987 and the advent of powerful computers and new

mathematical technologies, many efforts have been devoted to develop new models

and to study their pricing implications.

As a matter of fact, volatility of the underlying stock is not constant (see e.g.

(BLATTBERG and GONEDES 1974)), and implied volatility varies across strikes.

In a famous paper (RUBINSTEIN 1985) proved that short maturity out of the money

calls are priced higher relative to other calls than Black and Scholes would predict,

and that strike price biases are statistically significant and can reverse over time.

The specification of volatility as a stochastic process is extremely natural, since

it can explain a number of different empirical findings, such as distributional proper-

ties of the underlying or the presence of transaction costs. For example the observed

correlation between volatility and asset prices can be explained by ‘level dependent’

volatility models like the Constant Elasticity of Variance (CEV)1 model of (COX

and ROSS 1976). Stochastic volatility can also arise endogenously: (PLATEN and

SCHWEIZER 1998) obtain it through an equilibrium argument, modelling the be-

haviour of market participants.

Fully stochastic volatility models (introduced in 1987 by (HULL and WHITE

1987), (SCOTT 1987), and (WIGGINS 1987)) are again motivated by the idea that

a sensible specification of the volatility process can offer generality and analytical

tractability. Sadly it is often the case that using ‘plausible’ parameters, like the

negative correlation between volatility and prices observed in practice, it is difficult

to match actual option prices. In their empirical study (BAKSHI, CAO, and CHEN

1Although widely used as an alternative to the standard log-Brownian model, it is not hard to see that if the

exponent is less than 1 then the CEV stock price will hit zero in finite time almost surely; in some applications

it may be hard to justify this property.
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1997) find indeed that structural parameters obtained via calibration are significantly

different from their historical time-series estimated counterparts.

In this sense the fact that the literature is increasingly concerned with the con-

sistency of models both cross-sectionally and intertemporally is not surprising. The

study in Section 2 is intended to support the volatility structure of our model before

the investigation of its option pricing implications.

Generalized Autoregressive Conditional Heteroskedastic (GARCH) processes are

in a limit sense the discrete time counterpart of stochastic volatility models (see

(CORRADI 2000)). Under assumptions on the utility of the investor, (DUAN 1995)

derives unique option prices. Nonetheless without the familiar (complete) continuous

time framework it is impossible to define an exact replicating strategy.

Usually, a pricing model has to balance theoretical generality and consistency of

the volatility structure against the ability to estimate its parameters efficiently and

precisely. In the first sense the literature achieved some encouraging results, raising

new important issues and developing different approaches (see (BATES 2003) and

(GHYSELS, HARVEY, and RENAULT 1996) for an insightful review). Recently

(FOUQUE, PAPANICOLAU, and SIRCAR 2000) proposed an efficient and robust

(almost specification free) method for the modeling, analysis and stable estimation

of important groupings of market parameters, exploiting the fast mean reversion of

volatility. Their key idea is to compute a simple correction of Black-Scholes model

which reflects the effect of stochastic volatility on derivative prices.

The paper is organized as follows: in Section 1 we present the model, underlying

the particular case used in the numerical procedures. In Section 2 we propose a

simple empirical analysis to support our main modelling assumption. In Section 3

we explain both the finite difference and the Monte Carlo methods used to calibrate

the model. In Section 4 we perform a limited but instructive comparison between

some well known pricing models. In Section 5 we discuss the use of asymptotic

expansion for our model. Finally in Section 6 we conclude the paper and we suggest

some remaining research issues.
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1 The Hobson-Rogers model

(HOBSON and ROGERS 1998) (henceforth HR) specify local volatility in terms of

weighted moments of past returns. Let us denote with Zt = log(e−rtPt) the log-

discounted price process, and define the offset function of order m as

S
(m)
t = λ

∫

∞

0
e−λu(Zt − Zt−u)

mdu, (1)

where the parameter λ describes the weight of historic observations. Stock prices

are driven by the stochastic differential equation

dZt = σ
(

t, Zt, S
(1)
t , . . . , S

(n)
t

)

dBt + µ
(

t, Zt, S
(1)
t , . . . , S

(n)
t

)

dt

for some smooth functions σ(·) > 0 and µ(·).
Since σ(·) can eventually depend on Pt, the model includes as a subclass the case

when the volatility rate is a deterministic function of the underlying. Furthermore

the hypotheses preserve completeness, allowing for preference independent option

pricing. This last feature constitutes an advantage over fully stochastic volatility

processes, where arbitrage considerations are not sufficient to identify ‘risk premia’

uniquely.

In the following, we will assume the instantaneous volatility is a function of the

first order offset St = S
(1)
T only, since we want to obtain a tractable PDE and to

solve it with reliable precision. HR showed that even in this case the model has

the potential to explain volatility smiles and skews, and our simulation studies seem

to suggest that including higher order offset functions does not improve the results

significantly.

Using equation (1) we readily decompose St as the deviation of the current price

from an exponentially weighted average of past records

St = Zt − λ

∫

∞

0
e−λuZt−udu. (2)

The latter says that λ determines the horizon of the ‘moving time window’ of the

integral on the right. For bigger values of this parameter, St is more dependent on

the recent past, while small values almost identify the offset increments with price
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changes. Obviously in this case a level dependent volatility assumption would be

numerically more convenient.

To build the basic model used in the numerical procedures, consider the risk

neutral measure P̃ and the P̃-Brownian motion B̃t. Let e
−rtPt be a P̃-martingale

solving dP̃t = σP̃tdB̃t, so that by Itô’s formula

dZt = σdB̃t − 1

2
σ2dt. (3)

With the substitution u = t − s equation (2) gives

St = Zt − λe−λt
∫ t

−∞

eλsZsds,

and we can easily compute the differential of St

dSt = dZt − λStdt. (4)

HR find a general formula for the differential of higher order offsets and prove that
(

Zt, S
(1)
t , . . . , S

(n)
t

)

forms a Markov process.

Finally take U = Z − S and denote with f(t, Ut, Zt) the price at time t < T of a

contingent claim worth

f(T,UT , ZT ) = q(ZT ) (5)

at maturity T . Using standard arguments we derive HR PDE

0 = ft + λ(Z − U)fU − 1

2
σ(Z − U)2(fZZ − fZ), (6)

with boundary condition (5).

2 Does volatility depend on the offset?

Volatility changes over time: the explanation of its movements represent a key issue

in finance theory, and various modelling attempts have been proposed in literature

(see for instance (SCHWERT 1989)).

The dependence between volatility and past returns is intuitively appealing. In

their conclusions (DUMAS, FLEMING, and WHALEY 1998) suggest to relate the

volatility surface to past changes in the index level, while pratictioners commonly
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use exponentially weighted moving averages to forecast volatility. Moreover, this

hypothesis introduces an effect of volatility clustering. It is in fact clear from Equa-

tion (1) that, depending on the values of λ, large changes in the price will cause

the offset to substantially modify for a certain period. Many other characteristics

of the volatility dynamics are naturally explained, including the local persistence

and state dependent volatility of volatility recently observed by (CHERNOV, GAL-

LANT, GHYSELS, and TAUCHEN 2003).

We carry out a simple analysis using SP500 index settlement prices collected

from the CME, with sample period between Jan 1993 and Dec 2002. Consider the

approximation for the offset process S given by

Ŝt =
M
∑

i=0

wi

W
(Zt − Zt−i), (7)

where the weights are wi = e−λi∆t and W is their sum. As a corresponding estimate

of volatility take

σ̂t =

√

√

√

√k

M
∑

i=1

wi

W
(Zt−i+1 − Zt−i − µ̂t)2, (8)

where µ̂t is the weighted mean of log returns between time t − M and time t, and

k = W 2/
∑

(

W 2

n − w2i

)

is a correction to make σ̂2t unbiased. All estimates are

computed on a daily basis, and we consider a calendar of 242 trading days implying

a unit of time ∆ = 1/242.

We fixed the lookback as M = 2000 using overlapping data2, that is we dynam-

ically compute an estimate based on 2000 historical observations for each trading

day. Note that thanks to their particular construction (7) and (8) are based on the

same amount of past information.

[ Figure 1 about here ]

The six plots in Figure 1 show the relationship between our estimate (7) of the

offset and (8) of the volatility for various values of λ. Each subplot includes the

curve obtained regressing the volatility σ̂t over a second order polynomial in the

offset a + bŜ + cŜ2. The resulting minimum squared error parameters are reported

2This huge M is to ensure that both Ŝt and σ̂t are computed with a sufficient number of data even in the case

where λ is small.
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in Table 1, together with their 95% confidence intervals and the corresponding λ

values.

[ Table 1 about here ]

Nonetheless a simple parabola is unlikely to capture the relation between offset

and volatility. Extensive numerical studies prove that a very effective specification

for the volatility function is given by

σ(s) =
1 + as+ bs2

c+ ds+ es2
, (9)

combining the flexibility of rational polynomials with a reasonable number of pa-

rameters. The alternative

σ(s) =
√

a+ bs2 ∧ N , (10)

originally proposed in HR and discussed in Section 4, turned out to be particularly

effective because it largely reduced efforts involved in the optimization problem.

This qualitative study provides empirical evidence in favour of our conjectures

and help us in the selection of a proper volatility function.

3 Empirical Methodology

The parameters of HR models can be estimated using different strategies. The

likelihood function cannot be computed, but calibration could be based on statisti-

cally respectable procedures thanks to the developements of econometric literature

during the last decade. (ANDERSEN, CHUNG, and RENSEN 1999) make an exten-

sive investigation of the EMM technique and provide a source of related literature.

(TOMPKINS 2001) applies a similar method to estimate the parameters of a class

of Heston related models, and finds that the inclusion of a stochastic volatility pro-

cess consistent with the objective process alone does not explain volatility smiles.

(CHERNOV, GALLANT, GHYSELS, and TAUCHEN 2003) compare many diverse

specifications on a long daily Dow Jones industrial average index return series and

suggest that the choice between models should be based upon practical criteria.

These approaches benefit from the existence of a proper statistical theory, but

some drawbacks remain. The choice of the score generator or of the key attributes is
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often critical and influences the precision in terms of standard errors. The presence

of local optima, common to every optimization problem, has to be tackled when

maximizing the quasi-likelihood. Moreover, (ROGERS and SATCHELL 2000) show

why linking distributional properties of real world and risk neutral measures should

be considered carefully.

Calibration has been widely considered in the literature. (SCOTT 1987) uses

Monte Carlo simulation to estimate his stochastic volatility model, optimizing over

the sum of squared errors between the model and actual prices. He finds that his

model outperforms Black and Scholes, but tends to overprice out of the money op-

tions, and he suggests to use a larger sample. The so called ‘indirect inference’

techniques obtained varying success. (JACKWERTH and RUBINSTEIN 1996) de-

rive underlying asset risk neutral probability distributions implied by index option

and underlying asset prices. Their results show robustness over alternative optimiza-

tion specifications and stability of implied levels of skewness and kurtosis over time.

Furthermore they outperform Black and Scholes lognormality assumption in the ex-

planation of rare events. More recently (DUMAS, FLEMING, and WHALEY 1998)

calibrate a model with deterministic volatility function and find that its predictive

performance is no better than ad-hoc smoothings of Black and Scholes.

We used two different approaches to calibrate our model. The solution of PDE

(6) is supposed to be fast and accurate when it converges, but the idea of simulating

SDEs (3) and (4) is also attractive since the model is driven by one single source of

uncertainty.

3.1 Finite difference methods

The application of finite difference methods to option pricing goes back at least to

(SCHWARTZ 1977) and (BRENNAN and SCHWARTZ 1978), and later (COURTADON

1982) and (HULL and WHITE 1990). A recent textbook treatment of the subject

is given by (TAVELLA and RANDALL 2000).

The main idea of finite difference methods is to convert a PDE into a set of

difference equations and to solve them iteratively.

In order to obtain a numerical solution of the PDE (6) by finite differencing we
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need first of all to build a grid containing a discrete set of points for each variable.

We determined the range for the logprice and the offset according to the laws of the

solutions of the corresponding SDEs, thus linking the grid size to the parameters

used for each solution. Then we fixed a reasonable number of steps in each direction

testing our results in the Black and Scholes and other known settings.

More advanced techniques use combinations of explicit and implicit finite differ-

ence methods. While the hopscotch method alternates between them, the θ-method

uses a weighted combination of explicit and implicit approximations. The typical

final system has the form

A(θ)fi = B(θ)fi+1, i = 0, . . . , T −∆t, (11)

where A and B are typically huge sparse matrices depending on both the weight θ

and the problem’s parameters. We choose the well known Crank-Nicholson method,

that uses the uniform weight θ = 1
2 . This scheme is stable and high-order accurate.

As with any implicit method, the linear system (11) has to be built and solved. In

this task it is essential to take full advantage of the structure of the matrices A and

B, using routines for sparse linear systems such as the freely distributed UMFPACK

4.0 in order to avoid the direct computation of A’s inverse.

Another important problem is how to compute the value of the derivatives on

those points where we are forced to cut the range of our variables for computational

needs; in other words we must provide some numerical boundaries for the edges of

our finite grid.

Various easy approaches are possible, such as forcing the exercise of the derivative,

or killing or reflecting the diffusion outside the edges. Unfortunately, this is not

sufficiently precise especially in a two dimensional scenario.

The undetermined coefficient method approximates the value of a partial derivatives

at a point using a weighted sum of the solution values on the nearest grid points, for

example

fz(t, St, Zt) = af(t, St, Zt +∆Z) + bf(t, St, Zt + 2∆Z) + cf(t, St, Zt + 3∆Z),

where fz(·) is the partial derivative of f with respect to Z and ∆Z is the Z increment
for our grid. We can now expand f(·) in Taylor series and match the two sides of
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the equation, determining the unknown coefficients through a linear system. This is

more difficult for the mixed derivative fsz(·), where we used a multivariate Taylor
expansion with fifteen terms (and coefficients to determine): in this case we used

some software to manipulate symbolic algebra.

3.2 Monte Carlo simulations

Since their first appearance in (BOYLE 1977), Monte Carlo techniques proved to be a

very flexible tool in financial applications. (BOYLE, BROADIE, and GLASSERMAN

1997) discuss some of them and describe a number of useful variance reduction tech-

niques studying their efficiency. For complete and detailed references, see (KLOEDEN

and PLATEN 1999) and (GLASSERMAN 2003).

The price of a derivative security is the expected value under the risk neutral

P̃ of its discounted payoff. The Monte Carlo method lends itself naturally to this

evaluation. The main principle is to generate sample paths of the underlying assets

over the time interval of interest, compute the discounted payoff of the derivative

according to its definition and take the average over the sample paths. By the strong

law of large numbers this estimate converges to the true price, and we easily obtain

an estimate of its error from the central limit theorem.

In order to obtain a remarkable precision we used Richardson extrapolation, Mil-

stein’s method to improve the strong order of convergence, the antithetic variable

technique and the control variate technique, using Black and Scholes price as a con-

trol variate.

Monte Carlo techniques are not very precise for calibration, for example changing

the initial random seed prices can vary significantly. Nonetheless thanks to this ap-

proach we were able to answer a number of questions. First of all, we realized that in

the data sets we considered higher order offset inclusion is not needed. Furthermore

Monte Carlo prices provide a rough comparison to PDE prices, and the simulated

paths help to fix the size of the finite difference schemes grids. In the following, all

reported prices are obtained via finite differencing.
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3.3 Cost function specification

The objective to be minimized was the sum over the different strikes of the relative

errors. We do this because it represents a measure of the success of an investment.

Formally, let θ be the vector of parameters of the volatility function (9) together

with λ, and denote by Θ its parametric space. Let fHR(t,Ki, Zt, Ŝt, θ) be the HR

price when the strike is Ki for i = 1, 2, . . . , N and the estimate Ŝt is computed via

(7), and let v(t,Ki, Zt) be the actual price. We want to find

min
θ ∈ Θ

N
∑

i=1

|v(t,Ki, Zt)− fHR(t,Ki, Zt, Ŝt, θ)|
v(t,Ki, Zt)

,

or the minimum of the logarithm of the sum when we expect some percentage errors

to be particularly big. We used many different routines to solve this global optimiza-

tion problem, but we obtained the best results with CFSQP, a set of C functions

based on Sequential Quadratic Programming. Actually, each evaluation of the cost

function takes about 0.1 seconds on a PENTIUM 3.6 Ghz Linux machine both for

the finite difference and the Monte Carlo approaches, while the whole optimization

needs between one and five minutes.

4 Comparisons with different models

Testing alternative models is a challenging task, requiring careful procedural choices

to build a reliable empirical methodology. The purpose of the present section is to

gain a rough idea of the empirical performances of some well known pricing models

in the limited scenario of a cross-section of option prices. Let us briefly introduce

the proposed alternatives.

Constant Elasticity of Variance The CEV model defines volatility as a deter-

ministic function of the stock price, trying to capture the leverage effect observed by

(BLACK 1976). The stock price follows the diffusion

dPt = µPtdt+ δP
β/2
t dBt,

so that for β < 2 the volatility σ(St, t) = δP
(β−2)/2
t is inversely related with prices,

while if β = 2 we recover the Black and Scholes case.
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(SCHRODER 1989) expresses the CEV pricing formula in simple terms of the non-

central chi-square distribution3, and the optimization over the two parameters re-

quires little effort too.

Heston model In (HESTON 1993) model the spot asset is assumed to be governed

by the diffusion

dPt = µPtdt+ σtPtdB
(1)
t

and the volatility is an Ornstein-Uhlenbeck process. This can be written as the

square-root process

dνt = κ (φ − νt) dt+ ςσtdB
(2)
t ,

where νt = σ2t . The model allows correlation ρ between B
(1)
t and B

(2)
t , and it is

possible to obtain a close form solution for vanilla options via Fourier inversion (see

(DUFFIE 2001) for a detailed exposition of the transform analysis approach). This

involves just the computation of a non trivial integral, but a further assumption that

gives the price of volatility risk has to be made to price contingent claims.

We performed the optimization over six parameters: λ specifies the risk premium,

κ∗ = κ+λ the mean reversion, φ∗ = κφ/(κ+λ) the long run variance, ν0 the starting

(current) variance, ρ the correlation and ς the volatility of the volatility.

[ Table 2 about here ]

Table 2 shows the optimization results on a cross section of option prices for

Black and Scholes, CEV, Heston, and HR models for both volatility functions (9)

(label HR1) and (10) (label HR2). The second column shows the market prices

of a European put option on SP500 index on the 20th of March 2003, with strikes

specified in the first column and maturity September 2003. As an annual interest rate

we considered the corresponding T-bill r = 0.0135 available from Federal Reserve

Statistical Releases. We choose a quite long time to maturity4 remembering that

smile effect decreases with it (see e.g. (DERMAN and KANI 1994)), thus simplyfing

the task of pricing on such a broad range of moneyness values. On the right of each

estimated price we report the percentage relative error between parentheses, while

3in order to avoid difficulties we used a robust interpolation technique, see the reference for details.
4
τ = 0.5289256 considering one year of 242 trading days.
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the last row shows the mean of the absolute percentage relative error across the

strikes for each model.

We see that the Black and Scholes model can be reasonably good on a small

number of strikes around the current stock value, but completely fails to fit a large

cross section of option prices. On the other hand, considering the small number

of parameters used, the CEV model performs far better and it is easy to calibrate.

Sadly, theoretically it is not able to explain the change over time in the direction of the

implied volatility skews observed by (RUBINSTEIN 1985). Both the Heston model

and the HR model provide an excellent fit at the cost of an increased computational

burden. However, for this dataset the simple specification HR2 provides the best fit

using the simple volatility specification (10) and just three parameters.

The model performance was tested against a variety of other datasets, consider-

ing different underlying assets, multiple maturities and the behaviour of parameters

through time. Without entering into the econometric details, in general HR per-

formances are comparable with if not superior to other commonly used stochastic

volatility models.

5 Why no asymptotics?

We have seen how the price f(t, U, Z) at time t of a European derivative solves a

PDE, which we can compute numerically, but this is a time-consuming business, and

the model would be much easier to use if there were some simple asymptotics. The

natural form to look for would be to express the derivative price as the Black-Scholes

price plus some (smaller order) correction, since the Black-Scholes price is what we

could obtain if the volatility were constant. But to obtain an asymptotic, we need

to identify some small parameter and expand in that.

One possibility would be to take λ−1 to be the small parameter, but this has

certain drawbacks. It is true that if λ−1 were small then the offset would typically

be small, and so the volatility would be close to σ(0); but then in times that are O(1)

the diffusion S will quickly settle down to its invariant distribution, and the price will

lose dependence on the initial value of the offset, becoming in effect a Black-Scholes
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price with an averaged variance. Moreover, as Figure 1 shows, the volatility does

not appear to be close to a constant (at least in the real-world measure).

Another possibility would be to keep λ fixed, but instead to take the volatility of

the form σ(εS) for small ε; this way, the initial value of the offset could continue to

influence prices for some time, but the correction will itself solve a PDE, which is no

easier than the PDE for calculating the price.

But however one tries to develop an asymptotic, Figure 1 ruins the attempt;

offsets are not generally small, and volatility is not approximately constant, so no

asymptotic based on assuming either of these properties can succeed.

The paper of (HUBALEK, TEICHMANN, and TOMPKINS 2004) obtains an

asymptotic for a model where σ(s) = σ0(
√
εs) for some small ε; again in view of

Figure 1 it seems unlikely that any such asymptotic will explain the data well, and

few results of fitting this model are reported in their work.

6 Conclusions

This study has tested the model of HR at two levels. Firstly, we have investigated

whether there is any apparent dependence of volatility on offset; fitting quadratic

functions of offset to volatility data shows a conclusive dependence. Secondly, we

have attempted to fit some simple functional forms to the dependence of volatility

on offset, using options data on the SP500. The quality of fit is excellent, generally

twice as good as the popular Heston model, and within the bid-ask spread. The

numerics involved are somewhat more complicated than (for example) pricing in the

Heston model using transform methods; nevertheless, given that one has available

good finite-difference code for sparse linear systems, the development time is not

great, and the run times for solving the PDE are of the order of 0.1s. In addition

to the good fit, the model has two advantages at a theoretical level: it is complete

(so no arbitrary choices of market price of risk are needed); and option prices do not

depend solely on spot, strike and expiry, so that different skew/smile profiles may

be generated for the same spot, depending on the value of the offset. This means in

particular that it may be possible to avoid time-dependent implied-volatility surfaces
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as a way to explain observed prices. Further work is needed to evaluate this model

in this respect, but we conclude from the present study that its performance is good

enough already to justify it.
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Figure 1: Offset vs volatility, SP500 index 1993-2002.
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λ Term Bounds PE λ Term Bounds PE

a 1.4062 1.5078 1.4570 a 1.2636 1.4329 1.3483
10.0 b -10.4201 -8.4427 -9.4314 60.0 b -5.6929 1.0993 -2.2968

c 33.0946 53.5770 43.3358 c 326.2475 463.6645 394.9560

a 1.3570 1.4824 1.4197 a 1.2360 1.4177 1.3269
20.0 b -11.4611 -7.9622 -9.7116 80.0 b -4.2323 3.7437 -0.2443

c 83.8240 129.0635 106.4437 c 449.9151 630.4401 540.1776

a 1.2643 1.4128 1.3386 a 1.2167 1.4097 1.3132
40.0 b -9.5973 -4.3470 -6.9722 100.0 b -2.9359 6.1401 1.6021

c 249.9483 339.9986 294.9734 c 559.4291 782.6407 671.0349

Table 1: SP500 index 1993-2002 regressions. Bounds are the 95% confidence intervals for the
point estimates PE, all numbers are multiplied by 1.0E4.

19



Strike MK BS CEV Heston HR1 HR2

700 13.20 10.59 (-19.8) 13.83 (4.8) 13.56 (2.7) 13.36 (1.2) 13.82 (4.7)
725 17.45 14.96 (-14.3) 16.61 (-4.8) 17.17 (-1.6) 16.97 (-2.8) 17.36 (-0.5)
750 21.70 20.49 (-5.6) 20.47 (-5.7) 21.54 (-0.7) 21.44 (-1.2) 21.70 (0.0)
775 27.00 27.29 (1.1) 25.64 (-5.0) 26.81 (-0.7) 26.88 (-0.4) 26.98 (-0.1)
800 33.40 35.43 (6.1) 32.32 (-3.2) 33.16 (-0.7) 33.42 (0.1) 33.37 (-0.1)
825 41.00 44.97 (9.7) 40.69 (-0.8) 40.74 (-0.6) 41.22 (0.5) 41.03 (0.1)
850 50.10 55.92 (11.6) 50.83 (1.5) 49.79 (-0.6) 50.46 (0.7) 50.13 (0.1)
875 60.80 68.28 (12.3) 62.79 (3.3) 60.52 (-0.4) 61.01 (0.3) 60.82 (0.0)
900 73.40 82.01 (11.7) 76.53 (4.3) 73.11 (-0.3) 73.58 (0.2) 73.22 (-0.2)
925 87.70 97.04 (10.7) 91.97 (4.9) 87.61 (-0.1) 87.59 (-0.1) 87.41 (-0.3)
950 103.4 113.30 (9.6) 108.98 (5.4) 103.95 (0.5) 103.40 (-0.0) 103.36 (-0.0)
975 121.0 130.69 (8.0) 127.39 (5.3) 121.91 (0.7) 120.85 (-0.1) 121.01 (0.0)
995 136.2 145.36 (6.7) 143.03 (5.0) 137.27 (0.7) 135.96 (-0.1) 136.22 (0.0)
1025 160.5 168.48 (5.0) 167.77 (4.5) 161.65 (0.7) 160.33 (-0.1) 160.67 (0.1)
1050 182.0 188.66 (3.7) 183.37 (4.0) 182.93 (0.5) 182.00 (-0.0) 182.27 (0.1)
1075 204.5 209.58 (2.5) 211.70 (3.5) 204.91 (0.2) 204.65 (-0.1) 204.74 (0.1)
1100 227.8 231.12 (1.5) 234.63 (3.0) 227.43 (-0.2) 228.08 (-0.1) 227.87 (0.0)
1125 251.6 253.22 (0.6) 258.02 (2.5) 250.38 (-0.5) 252.04 (0.2) 251.50 (-0.0)
1150 275.7 275.79 (0.0) 281.77 (2.2) 273.68 (-0.7) 276.34 (0.2) 275.50 (-0.1)
1175 300.2 298.75 (-0.4) 305.80 (1.9) 297.25 (-1.0) 300.84 (0.2) 299.77 (-0.1)

(7.05) (3.78) (0.66) (0.43) (0.33)

Table 2: SP500 P0 = 875.67, r = 0.0135, τ = 0.5
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