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Among the models proposed for the spot rate of interest, Gaussian models are

probably the most widely used; they have the great virtue that many of the prices

of bonds and derivatives can be easily computed in closed form. One drawback

is that the spot rate process r, being Gaussian, may occasionally take negative

values, though it is often claimed that if the probability of negative values is

small, then there is no need to worry. It turns out that in many cases this is true,

but there are some derivatives whose prices are very sensitive to the possibility of

negative rates. One example is a knockout bond, which is a bond which becomes

worthless if ever the interest rate drops below zero. Since we do not really believe

that interest rates can go negative, we can expect that Gaussian models will give

prices at odds with intuition. But there are other, more subtle, examples, such

as bonds of long maturity. The discrepancies which arise for these are happening

because the bond price is of the form E exp(−X) for some Gaussian variable

X and, although it may be very unlikely that X should be negative, when it

is, we are exponentiating −X, and the contribution to the expectation can be

overwhelming. For such derivatives, the prices which the Gaussian models predict

can be absurd, yet we have no idea what the true price should be. This is because

we have not clearly decided what should be the true interest rate model (which
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for convenience we approximate by a Gaussian). Until we address this, Gaussian

models can continue to spring nasty surprises on us. In this article, we explore

the problem, and suggest possible remedies.

To investigate this, we shall take the simplest model, the model of Vasicek [8], in

which the spot rate process (rt)t≥0 solves a stochastic differential equation driven

by a Brownian motion (Wt)t≥0

drt = σdWt + β(µ− rt)dt, (1)

where µ, β and σ are positive constants. 1

Firstly, let’s look at the prices of zero-strike caps and floors; if the zero-strike

floor has a significantly positive price, this is a sign of trouble. In Table 1, you

find the prices for zero-strike caps/floors for two different scenarios: in Scenario

A, σ = 0.01, µ = 0.05, β = 0.125 and r0 = 0.02, while in Scenario B, σ = 0.025,

µ = 0.10, β = 0.125 and r0 = 0.05. The prices are calculated assuming a sum

borrowed of $ 1000.

Table 1

A B

10 years 20 years 10 years 20 years

Cap 275.83 529.04 492.59 773.28

Floor 0.86 1.42 4.56 8.53

These are fairly typical values of parameters (see, for example, [7]). The prices

of the floors are not very large, though they are a lot bigger in Scenario B, the

high interest/high volatility scenario, accounting for about 1% of the cap price.

1As Hull & White [5] observed, a time-dependent version of the Vasicek model is analytically

almost as nice, as are multi-dimensional generalisations.
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We get a fuller picture of what is going on by plotting the diagnostic surface of

the quantity floor/(cap+floor) - which is always between 0 and 1 - against the

values of σ and 1/β. The surface is shown in Figure 1. Regions where the height

of the surface is near zero are regions where the price of the floor is negligible

compared to the price of the cap. As the volatility σ rises or the strength of the

mean reversion drops, the errors evidently rise, as one would expect. Contours

of the diagnostic surface are plotted in Figure 2, to give quantitative information

on the sizes of the effects.

Another comparison we could make is to price a knockout bond within the Vasicek

framework; this is a bond which pays the agreed sum ($1000 in this case) at

maturity, unless the spot rate has fallen below zero at some time during the

life of the bond. In reality, we would not expect to get this bond much more

cheaply than the ordinary bond without the knockout feature. Table 2 shows

what happens.

Table 2

A B

10 years 20 years 10 years 20 years

Vasicek price 725.03 472.37 511.97 235.25

Knockout price 576.79 334.47 325.46 100.75

The price reduction is certainly noticeable! As before, we display the diagnostic

surface (Figure 3) of the ratio (Vasicek - knockout)/Vasicek plotted above the (σ,

1/β) plane. The error surface has a similar shape to the surface in Figure 1, but

rises far more steeply. The contour plot of the surface is displayed in Figure 4.

Now of course this derivative is going to highlight problems of negative interest

rates starkly, and one reaction might be that one would simply charge the client

the full (Vasicek) price for the knockout bond. But if a client came asking for
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a knockout bond with a knockout at 0.5%, he would expect some reduction on

the Vasicek price, and the Gaussian framework has no answer. To resolve this,

we should have in mind some ‘true’ model which can give sensible answers for

such pricing questions. In order that the Gaussian calculations (which are very

tractable) should still be a good approximation for ‘true’ bond and cap prices, we

would want the spot rate process to behave very much like the Vasicek process

when away from zero. Near zero, we could (for example) let the volatility drop to

0 to prevent the process going negative, or we could reflect the Vasicek process

off zero. It would in practice be difficult to decide from data which model might

be best among such alternatives, since there is no relevant data available; and

slightly different behaviour near zero could make very big differences to knockout

bond prices. We have to accept that although the Gaussian models behave badly

on such questions, there are no clearly superior alternatives; maybe all one can

do is refuse to deal in such derivatives!

But there is another area where Gaussian models can go astray, namely the

pricing of long bonds. The essence of the problem is visible in a simple example,

based on Brownian motion, W .

We know that Wt − 1
4
t tends to −∞ as t → ∞, almost surely. It follows that

exp(Wt − 1
4
t) tends to 0 as t → ∞. We can even compute the probability that

Wt − 1
4
t is positive, 2 so for large t the probability of a positive value can be as

small as we please. And yet E exp(Wt − 1
4
t) = et/4 which grows exponentially!!

Table 3 illustrates the point dramatically.

2This is Φ̄(
√

t/4), which goes down faster than e−t/32. Here, Φ̄(·) is the tail of the standard

Normal (0, 1) distribution
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Table 3

t P (Wt − 1
4
t > 0) E exp(Wt − 1

4
t)

25 0.106 518

50 0.039 268337

100 0.006 7.20× 1010

200 2 ×10−4 5.18× 1021

400 6× 10−7 2.69× 1043

Why is this happening? As mentioned previously, the trouble is that, although it

may be very unlikely that Wt−t/4 should be positive, when it is, we exponentiate

it, and so we collect a huge contribution to the expectation.

Something very similar may happen with Gaussian interest rate processes. As t

increases, the limiting distribution is N(µ, σ2/2β), so by choosing the mean µ to

be a reasonable number of standard deviations (say, 5) away from zero, we can

ensure that the probability (in the limit, in the risk-neutral probability) of the

spot rate r being negative is extremely small. Nevertheless, the long rate 3 in

this example is µ−σ2/2β2; so even if we were to take µ = 5σ/
√

2β, five standard

deviations away from zero, there is absolutely no guarantee even that the long

rate is non-negative! Thus we could have the prices of pure discount bonds of

large enough maturity actually exceeding 1!

Table 4 below shows the Vasicek prices of bonds of up to 50 years maturities,

for a range of parameter values. For large volatilities, we see that the bond price

does not have to decrease with maturity, and can even exceed 1! As in Scenario

A, we have µ = 0.05 and β = 0.125, but we have taken r0 = 0.05 this time.

3The long rate is defined as limt→∞−t−1 log P (0, t)
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Table 4

Maturity (years)

10 20 30 40 50

σ

0.01 0.7798 0.6109 0.4805 0.3790 0.2993

0.02 0.7830 0.6243 0.5059 0.4143 0.3414

0.03 0.7882 0.6472 0.5512 0.4807 0.4250

0.04 0.7957 0.6808 0.6215 0.5918 0.5776

0.05 0.8053 0.7265 0.7253 0.7733 0.8569

0.06 0.8172 0.7865 0.8758 1.0723 1.3878

Now volatilities of 4% for a situation where µ = 0.05 are unrealistically high, but

if something obviously stupid has happened in the last two rows of the Table 4,

has something less obviously stupid happened in the earlier rows?

To understand this more deeply, we could calculate the bond prices assuming

that the spot rate is given by the Vasicek process (1) reflected at zero. This

will certainly be a non-negative process, and if the effects of possible negative

values of r are not important, then the bond prices with a reflected Vasicek spot

rate should not be much smaller than the Vasicek bond price (they always will

be smaller). The reflected Vasicek process is a much more reasonable model for

the spot rate. Another sensible alternative is to take the modulus of the Vasicek

process; see Rogers [6]. Some specimen bond prices are shown in Table 5.
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Table 5

A B

10 years 20 years 10 years 20 years

Vasicek price 725.03 472.37 511.97 235.25

Reflected Vasicek price 720.79 465.03 495.39 210.86

As with zero-strike floors, the discrepancy is more noticeable in Scenario B, where

the difference in price on the 20-year bond is about 10 % .

You can see the effect as a function of (σ, 1/β) in the picture Figure 5 of the

diagnostic surface, and the corresponding contour plot Figure 6.

As Dybvig & Marshall [1] have recently pointed out, there can be opportunities

for profit in the pricing and mispricing of long bonds. For example, if we consider

Scenario B here, with µ = 0.10, σ = 0.025 and taking r0 = 0.02, the Vasicek price

of a 50-year bond is 0.027307, and the reflecting-Vasicek price of a 25-year bond

is 0.157282. Now the reflecting-Vasicek price of a 25-year bond assuming that

r0 = 0.0 is 0.164086, and this is the most expensive that a 25-year bond could

be for the reflecting-Vasicek model. Put these facts together, and you find that

if the reflecting Vasicek model is correct, you could buy today a 25-year bond

which would deliver 0.164086 in 25 years’ time, which would then certainly allow

you to buy a 25-year bond which would deliver 1 after another 25 years, and the

cost today of this strategy would be 0.157282× 0.164086 = 0.0258077, less than

the price of the 50-year bond in the Vasicek model!

The problems we have identified with the Vasicek model become more involved if

one is dealing with time-dependent Gaussian models, or multifactor models. The

simple diagnostic plots which we have used here to give a picture of the possible

errors have no natural analogue, so we are forced to consider other methods. For

a multifactor Gaussian model, the notion of a reflected Gaussian process also
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seems less natural, so at this stage probably taking the modulus of the Gaussian

process and using that as the spot rate process is the best one can do simply.

There are effective bounds for the error in bond prices when using the modulus of

the Gaussian process (see Rogers [6]), and these are reasonably easy to compute.

This then seems to be the best point of view to take, both theoretically and

practically; (a) we have adopted a model with non-negative interest rates, so

none of the lognormal explosions can occur; (b) we can compute derivative prices

on the assumption that r is Gaussian; (c) we can frequently find effective bounds

on the error committed by replacing the mod-Gaussian process (which we believe

in) with the Gaussian process (which is easy to work with).

Conclusions. We have seen that in the Vasicek model of interest rates the

possibility of negative rates can result in substantial mispricing, which gets

worse as the volatility or maturity increases. Such problems are not unique

to the Vasicek model; any Gaussian model (for example, the models of Hull

& White [5], Ho & Lee [4], and Heath, Jarrow & Morton [3] when used with

deterministic σ(·, ·)) and more generally any model which allows negative spot

rates (for example, Fong & Vasicek [2]) may suffer from these problems. Such

models should ideally only be used in conjunction with checks on the magnitude

of possible errors.
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