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Abstract

This paper describes a Bayesian solution to the equity premium puzzle, that is, the inability
of standard intertemporal economic models to account for the magnitude of the observed excess
return earned by a risky security over the return on T-bills. We follow convention and assume
a single representative agent, but the main difference is that we suppose that the agent is not
certain about the parameters of the dividend process, modelling this uncertainty by a prior
distribution, and making inferences in a Bayesian fashion. The price of the stock is still the
NPV of future dividends, but the agent is now averaging not only over the possible future
paths of the dividend process, but also over the parameters that govern its dynamics. We then
use particle filtering to work out the posterior distribution of the parameters of the problem,
and find a striking conclusion; coefficients of relative risk aversion lie in the interval (1,2) with
high probability - in other words, there is no equity premium puzzle.

JEL Classification: G10, G12.
Keywords: asset pricing, equity risk premium, risk-free rate premium, Bayesian

approach.

Introduction.

The average annual return (i.e. inflation-adjusted) on the US stock market for the past 110
years has been about 7.9%, whereas in the same period the real return on a relatively riskless
Treasury bill was roughly 1%. The difference between these two returns (i.e. 6.9%) is known
as the equity premium. If standard intertemporal economic theory is consistent with our usual
conception of risk according to which, on average, stocks should return more than bonds, it
has been shown by Mehra and Prescott (Mehra and Prescott, 1985) to fail to capture the

1We thank participants at the Cambridge-Princeton workshop, September 2005, and seminar participants in
Sheffield and Cambridge, for their comments and support. We thank particularly Bill Janeway, Hashem Pesaran,
Jose Scheinkman, Chris Sims and Seth Stafford.
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magnitude of the equity premium. The observed 6.9 % premium was indeed much greater
than could be explained by neoclassical representative agent paradigms2 as a simple premium
for bearing risk. The large equity premium and the low risk-free rate gave rise to the so-called
“equity and risk-free rate puzzles”.

In their original analysis, Mehra and Prescott take a discrete-time model with a CRRA rep-
resentative agent and a consumption growth rate assumed to be controlled by a two-state
Markov chain. They show that the difference in the covariances of these returns with con-
sumption growth is only large enough to explain the difference in the average returns if the
typical investor is implausibly averse to risk. This is the equity premium puzzle: stocks are
not sufficiently riskier than Treasury bills to explain the spread in their returns. As for the
risk-free rate puzzle (Weil, 1989), it simply indicates that we do not know why people save
even when bond returns are low3.

The equity premium puzzle is exhibited by Mehra and Prescott (Mehra and Prescott, 1985) in
the simple case of lognormal growth rates of dividends4, where a simple closed-form solution
is available for the equity premium, as the product of the coefficient of relative risk-aversion
and the variance of the growth rate of consumption. But the latter variance is estimated to
be 0.00125, which explains why unless the coefficient of relative of risk-aversion is taken to be
implausibly large5, a high equity premium is impossible.

Over the last fifteen years, a huge literature has grown, presenting various attempts to explain
the equity premium puzzle; excellent surveys are provided by Kocherlakota (Kocherlakota,
1996) and Mehra & Prescott (Mehra and Prescott, 2003). Without pretending to be an ex-
haustive list, different approaches to the problem have included: changing the law of the

2See among others (Lucas, 1978), (Breeden, 1979). A key idea underlying such models is that consumption
today and consumption in some future period are treated as different goods, whose relative prices are equal to
people’s willingness to substitute between these goods. In this type of model, a security’s risk can be measured
using the covariance of its return with per capita consumption. Representative agent models, which incorporate the
Lucas-Breeden paradigm for explaining asset-return differentials, have played a crucial role in our understanding and
intuition of modern macroeconomics and the inability of such models to fit financial market data on stock returns
has posed therefore a great challenge to the entire economics community.

3Although Treasury bills offer only a low rate of return, individuals defer consumption (i.e. save) at a sufficiently
fast rate to generate average per capita consumption growth of around 2% per year.

4Dividends are assumed equal to consumption, by market clearing. This assumption is relaxed in various subse-
quent papers.

5Fischer Black proposed that a coefficient of risk-aversion taken to be equal to 55 would solve the puzzle; empirical
studies (see among others (Arrow, 1971; Friend and Blume, 1975; Kydland and Prescott, 1982), however, provide
evidence for such a coefficient being no more than 10.
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dividends6, changing the preference structure7, introducing incomplete markets8, introducing
hidden variables9, introducing market segmentation10, survivorship bias11, borrowing con-
straints12, liquidity premium13, taxation effects14, leverage effects15, to list but a few of the
relevant papers on the equity premium puzzle. Some of these alternatives are more successful
than others, and a detailed comparison and discussion of the literature is beyond the scope of
this paper, but it is the verdict of Kocherlakota (Kocherlakota, 1996) and Mehra & Prescott
(Mehra and Prescott, 2003) that there is not yet an explanation that is entirely satisfactory.
Maybe more than one of the effects studied should be included, but we remark that the sim-
plicity of the basic Lucas-Breeden representative agent analysis is strongly appealing, and the
more complicated the alternative story, the less appealing it becomes.

What we offer in this paper is another possible explanation of the equity premium puzzle.
In contrast to all the other explanations that we are familiar with, we shall take the basic
Lucas-Breeden model, and change nothing! The process for the log dividends will still be
a random walk, even a random walk with IID Gaussian increments, preferences will not be
changed, consumption will equal dividend at all dates. To explain what will be different, let
us first consider a simple but extremely illuminating example.

Example 1 (The 20’s example). Suppose you observe daily prices for T years
of a stock with an annual rate of return of 20%, and an annual volatility of 20%.
You want to observe for long enough so that your 95%(= 19

20 ) confidence interval
estimates of the parameters are good to 1 in 20 (that is your confidence interval is
±1%).

(i) How large must T be to give this level of precision in the estimate of the volatil-
ity?

(ii) How large must T be to give this level of precision in the estimate of the rate
of return?

The answers are: (i) about 11, (ii) about 1550!!

Thus uncertainty regarding the rate of return is enormous, and any analysis which over-

6Cecchetti, Lam & Mark (Cecchetti et al., 1993), Rietz (Rietz, 1988), Mehra & Prescott (Mehra and Prescott,
1988), Tsionas (Tsionas, 2005), Barro (Barro, 2005).

7Campbell & Cochrane (Campbell and Cochrane, 1999), Constantinides (Constantinides, 1990), Epstein & Zin
(Epstein and Zin, 1991), Ferson & Constantinides (Ferson and Constantinides, 1991)

8Constantinides & Duffie (Constantinides and Duffie, 1996), Weil (Weil, 1989), Heaton & Lucas (Heaton and
Lucas, 1996), Lucas (Lucas, 1994), Mankiw (Mankiw, 1986), Mehra & Prescott (Mehra and Prescott, 1985).

9Brennan & Xia (Brennan and Xia, 2001), Veronesi (Veronesi, 1999), (Veronesi, 2000)
10Mankiw & Zeldes (Mankiw and Zeldes, 1991)
11Brown, Goetzmann & Ross (Brown et al., 1995)
12Constantinides, Donaldson & Mehra (Constantinides et al., 2002)
13Bansal & Coleman (Bansal and Coleman, 1996)
14McGrattan & Prescott (McGrattan and Prescott, 2001)
15Kandel & Stambaugh (Kandel and Stambaugh, 1991), Benninga & Protopapadakis (Benninga and Protopa-

padakis, 1990)
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looks this is unlikely to sit well with reality. We therefore assume alternatively that both the
mean and the volatility of the growth rate are unknown to the representative agent, who is
endowed with a prior distribution about these two parameters. Observing market rates of
return, he can update his posterior beliefs about these parameters in a Bayesian way. Such
a Bayesian procedure is significantly different from the literature described above, where the
risk premium and the risk-free rate are effectively calibrated by plugging into the model prices
the sample mean and the sample variance of past growth rates. We are inserting the full pos-
terior distribution of growth parameters into our model prices, not just their point estimates16.

The hidden variable stories of Brennan & Xia (Brennan and Xia, 2001) and Veronesi (Veronesi,
1999), (Veronesi, 2000) have something of the flavour of our approach, but are very different in
fundamental ways. Firstly, the returns in their models are not IID, but are instead stationary
Markov processes; and secondly, the agent is supposed to know exactly what the law of the
returns process is. This second feature seems to us to be hard to justify in view of the 20’s
example. In the language of the filtering community, (Brennan and Xia, 2001), (Veronesi,
1999), (Veronesi, 2000) are about filtering an unknown signal with known dynamics, whereas
what we are doing is estimating the dynamics of a more simple model.

Thus we shall analyse the price process from a Bayesian perspective. One issue, highlighted
by (Geweke, 2001), is that obvious choices of priors can lead to divergent expressions for the
stock price in the standard Lucas tree model. We use a methodological innovation to deal with
this. If we propose a Gamma-Gaussian prior for the precision and mean of the (Gaussian)
log returns, then we shall obtain divergent expressions. But this is because this particular
prior proposes parameter combinations which imply infinite asset price. We deal with this by
inserting an additional factor into the prior density which eliminates the (absurd) parameter
combinations which would lead to infinite stock price; the simple prior-to-posterior updating
is not affected, but the divergences are gone.

When it comes to fitting the model to the data, we have to make inferences about the
parameters of the problem, which here are the parameters of the representative agent’s pref-
erences, and of his prior density. At this point, we could apply conventional likelihood-based
methods, but the functional forms of the stock and bond prices as functions of parameters and
observations are not particularly simple, so we have resorted to computational Bayesian tech-
niques. We chose to apply particle filtering techniques to calibrate our model to the growth
rate of real consumption and real returns on the US Treasury bill and the SP500 index. This
Bayesian approach is shown to account for the equity premium puzzle.

16A recent preprint of Weitzman (Weitzman, 2005) proposes a Bayesian approach similar to ours.
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1 The basic model.

Let us consider the case of a frictionless economy that has a single representative agent,
ordering its preferences over random consumption paths by

E0

[

∞
∑

t=0

βtU(ct)

]

, (1)

where 0 < β < 1 is a subjective discount factor, Et denotes the expectation conditional on
information available at time t, U is an increasing, continuously differentiable concave utility
function and ct represents per-capita consumption. The utility function is taken to be of
constant relative risk-aversion (CRRA) form, namely

U(c) =
c1−R

1 − R
, (2)

where 0 < R < ∞ denotes the coefficient of relative risk-aversion, R 6= 1.

In this economy, the outputs yt in period t (period t dividends assumed to be produced
by one productive unit) are assumed to equal the consumption ct in period t (so that market
clears). One share with price St is competitively traded and is viewed as a claim on the divi-
dend process yt. Since the agent’s time-t marginal utility is equal to U ′(ct) = U ′(yt) = y−R

t ,
his state-price density at time t is given by ζt ≡ βty−R

t and it follows from the usual marginal
pricing story that equity is priced at time t by

St = Et





∑

j≥0

βj

(

yt+j

yt

)−R

yt+j





= ytEt





∑

j≥0

βj

(

yt+j

yt

)1−R


 . (3)

The time t-price of a one-year bond which pays 1 at maturity is given by

Bt = βEt

(

yt+1

yt

)−R

. (4)

The prices of stock and bond depend on the postulated dynamics of y, and on the preferences
of the representative agent, embodied in the parameters β,R. Now in the original study of
Mehra & Prescott, it is assumed that the agent knows the law of y with certainty, but in view
of the 20’s example, this assumption is hard to defend. Abandoning it leads us to propose that
the agent knows a parametric form for the dynamics of y, but does not know the parameters;
the agent will carry out a Bayesian inference on the parameters, and the expectations (3), (4)
will be averages over the parameters of averages over future paths of y. As we shall see, this
change of viewpoint substantially alters the problem.
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2 The Bayesian representative agent.

We suppose that the log returns ξt ≡ log(yt/yt−1) are independent random variables with
common N(µ, τ−1) distribution, where the agent does not know the parameters µ, τ , but
takes a prior density π0(µ, τ) for them, and makes Bayesian inferences about the parameters
in the light of the observations. The approach we are going to use could be described as ‘doubly
Bayesian’. This is because firstly the agent acts as a Bayesian; he knows the parameters (β,R)
of his preferences, but he does not know the true parameters (µ, τ) of the dynamics of y. He
proposes a prior for (µ, τ), and updates his beliefs with the observations, and computes at
each time t what St and Bt should be, using (3), (4). The prices he comes up with will be
complicated functions of his preference parameters (β,R), the parameters specifying his prior,
and the observations, but in what follows we will make this functional form quite explicit.

The second Bayesian level of thinking going on is that of the econometrician, who observes
the same market data as the representative agent, but does not know the preference parameters
(β,R), or the parameters the agent used to specify his prior; the econometrician proposes a
prior for these (to him) unknown parameters, and uses Bayesian methods to make inferences
about them.

The particular form of the prior density π0 that the representative agent uses is

π0(µ, τ) ∝ ϕ(µ, τ)τα0−1 exp(−1

2
K0τµ2 − b0τ)

√
τ , (5)

where
ϕ(µ, τ) ≡ e−c/2τ2

(1 − βe−νµ+ν2/2τ )+, (6)

and ν ≡ R − 1 and the constant c is positive. We shall assume that R > 1; this is not
essential but makes various subsequent statements cleaner. In any case, the equity premium
puzzle arises because of the apparently large values of R needed, so excluding small values is
unimportant. The term exp(−c/2τ 2) in the prefactor is included to guarantee the convergence
of various integrals to be detailed later.

The form of (5) is mainly quite conventional; the law of τ is Gamma distributed, and given
τ , µ is normally distributed with zero mean and precision17 τ - or at least that is what the
joint law would be were it not for the prefactor ϕ(µ, τ). The reason for this prefactor becomes
clear when we consider the expression (3) for the share price. Using the assumed structure of
y, we have

St = ytEt

[

∑

j≥0

βj

(

yt+j

yt

)−ν ]

= ytEt

[

∑

j≥0

βj exp(−ν

t+j
∑

r=t+1

ξr)
]

= ytEt

[

∑

j≥0

βj exp(−νµj + jν2/2τ)
]

.

17The precision is the reciprocal of the variance.
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This is the reason for the prefactor; if β exp(−νµ + ν2/2τ) ≥ 1 then the sum inside the last
expectation is infinite18! We must therefore ensure that the prior (and hence the posteriors)
give no mass to this region, and the prefactor in (5) is one way to ensure this. Develop-
ing the expression for St one line further shows why this choice of prefactor is particularly
advantageous:

St = ytEt

[

1

1 − βe−νµ+ν2/2τ

]

. (7)

The point of the choice of the prefactor ϕ is that it will give a cancellation in the evaluation
of the stock price, resulting in considerable simplification.

Let us record the analogous result to (7) for bond prices, referring to (4):

Bt = βEt exp(−Rµ + R2/2τ). (8)

In order to compute the expectations in (3) and (4), we now need to find the posterior
distribution of (µ, τ) given (ξ1, . . . , ξt), denoted by πt(µ, τ |ξ1, . . . , ξt). After observing ξ1, . . . , ξt

(assumed to be IID), the posterior density will be

πt(µ, τ |ξ1, . . . , ξt) ∝ ϕ(µ, τ) exp

[

−1

2
K0τµ2 − b0τ

]

τα0−1 exp

[

−τ

2

t
∑

k=1

(ξk − µ)2

]

√
τ τ t/2

∝ ϕ(µ, τ) exp

[

−1

2
Ktτ(µ − mt)

2

]

ταt−1 exp [−btτ ]

√

Ktτ

2π
(9)

where

Kt = K0 + t,

mt =
tξt

Kt
,

αt = α0 + t/2,

bt = b0 +
1

2
Sξξ(t) +

1

2
tξ̄2

t K0/Kt

where ξt = 1
t

∑t
k=1 ξk and Sξξ(t) =

∑t
k=1(ξk − ξt)

2. As is well known, the Gamma-Gaussian
family updates nicely under Gaussian observations, and we see that the posterior density πt

is of the same structural form as the prior π0.

For the calculation of share and bond prices, it is helpful to introduce the function

Ft(λ, ρ) ≡
∫ ∞

0
dτ

∫

1

ν
log β+ ν

2τ

dµ
πt(µ, τ)

1 − βe−νµ+ν2/2τ
exp(−λµ + λ2/2τ − ρµ + ρ2/2τ) (10)

The integral defining Ft is guaranteed to converge, because of the term exp(−c/τ 2) which
controls the integrand near τ = 0. Further analysis of F is required before we can implement

18This divergence problem has also been observed by Geweke (Geweke, 2001).
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the computation; we defer this to the Appendix. For now, what we need is that in terms of
Ft, the expressions (3) and (4) become respectively

St = yt
Ft(0, 0)

Ft(0, 0) − βFt(ν, 0)
≡ fS(t,Ξt, θ), (11)

Bt = β
Ft(0, R) − βFt(ν,R)

Ft(0, 0) − βFt(ν, 0)
≡ fB(t,Ξt, θ), (12)

where we let Ξt = (ξ0, . . . , ξt)
T denote the vector of values of dividend growth, and let θ

denote the parameter vector θ = (β,R, α0, b0,K0, v1, v2, v3)
T , where the parameters v1, v2, v3

will be explained in the next section. In order to calculate the prices of stock and bond, the
representative agent needs to know yt; his preference parameters (β,R); and the parameters
(α0, b0,K0) of his prior19.

3 Calibration.

We used the same data as Mehra and Prescott in their original analysis (Mehra and Prescott,
1985). Their original dataset was used to generate three time series, which we will be calibrat-
ing the model to, namely the growth rate of real consumption, the real return on a risk-free
asset and the real return on the SP500. The observations are described in Figure 1.

In terms of our existing notation, the observation Yt ≡ (Y 1
t , Y 2

t , Y 3
t )T is just





Y 1
t

Y 2
t

Y 3
t



 =





ξt

− log Bt

log(St/St−1)



 +





ε1
t

ε2
t

ε3
t



 (13)

where the εi
t are independent zero-mean Gaussians, with variance of εi

t equal to vi. We require
there to be the possibility that there is some noise in the observations, as it would in general
be impossible to fit the observed values exactly.

We briefly explain the main ideas of particle filtering, how they are modified for the
present example, and how the methodology is applied. Excellent surveys are to be found
in (Arumpalam et al., 2001), (Doucet et al., 2001), (Crisan and Doucet, 2002) that explain
the methodology in greater detail.

A discrete-time Markov process (Xt)t≥0 with known transition density p(·|·) is imperfectly
observed through (Yt)t≥0, where the density of Yt given Xt ≡ (X0, . . . , Xt)

T is f(·|Xt). The
posterior density πt of Xt given Yt ≡ (Y0, . . . , Yt)

T is approximated by

π̂t =

N
∑

i=1

wi
t δxi

t

, (14)

19In principle, he needs to know c as well, but since this is just needed to make integrals converge we shall propose
a value for this and hold it fixed, for no reason other than to lighten the calculations. We shall show in the Appendix
that the choice of c has negligible effect on the outcome.
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an atomic probability measure concentrated on the ‘particles’ (xi
t)1≤i≤N at time t. The exact

Bayesian updating

P (Xt+1 ∈ A, Yt+1 ∈ B|Yt) =

∫

πt(dx)

∫

A
dx′

∫

B
dy p(x′|x)f(y|x′)

P (Xt+1 ∈ A|Yt+1) =

∫

πt(dx)
∫

A dx′ p(x′|x)f(Yt+1|x′)
∫

πt(dx)
∫

dx′ p(x′|x)f(Yt+1|x′)

gets approximated by selecting a ‘descendent’ xi
t+1 of xi

t according to the density p̃(·|xi
t, yt+1),

and recomputing the weights

wi
t+1 ∝ wi

t

f(Yt+1|xi
t+1)p(xi

t+1|xi
t)

p̃(xi
t+1|xi

t, yt+1)
(15)

The most natural choice20 for p̃ is to take p̃(x′|x, y) = p(x′|x), but the added flexibility is
frequently helpful; see, for example, (Crisan and Doucet, 2002).

Applying this algorithm without further modification will in practice lead to posteriors
π̂t with virtually all weight concentrated on a small number of particles - impoverishment.
To counteract this, a resampling step is generally used21; once the new particles (xi

t+1) and
weights (wi

t+1) have been found, we select a sample of size N from the set {xi
t+1 : i = 1, . . . , N}

according to a multinomial distribution22 with probabilities (wi
t+1). The criterion used to

determine when to resample was as follows. Given the N particles, we set n to be the integer
part of N 0.4, and then sorted the particles into decreasing order of wi

t. If

n
∑

i=1

wi
t < RSLEV EL,

where RSLEV EL ∈ [0, 1] is some pre-assigned value, then we do multinomial resampling,
otherwise we do not resample. A value for RSLEV EL of 0 means there is no resampling, a
value of 1 means that there is always resampling, and we tried various values on different runs
of the particle filter.

In our application, the Markov process is

Xt = (t, ξt, ξ̄t, Sξξ(t), θ)T ,

with known transitions. We initialise the population of particles by choosing the values of
ξ0 uniformly from the interval [−0.2, 0.2], and then setting ξ̄0 = ξ0, and Sξξ(0) = 0. Next
the value of β is chosen according to a B(30.7, 2.6355) distribution23. Next, values of R are

20... which we shall use here
21The details may be varied; for example, resampling need not be done every period, or it may only be done

among particles with weight less than some low threshold value.
22This is the most obvious resampling scheme, but others can be used: see (Crisan and Doucet, 2002).
23The mean look-ahead time of an agent with a given value of β is (1−β)−1. The particular parameters chosen for

the Beta distribution were selected to make sure that the probability that P [(1−β)−1 < 6] = 0.05 and P [(1−β)−1 >
50] = 0.05. It seems unlikely that an agent would be looking ahead much more than 50 years, or much less than 6
years.
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generated in the form R = 1 + Z1 + Z2, where Z1, Z2 are independent exponential variables
with means which varied from one run to the next, but were in the range [1, 2]; we do not
expect values of R to be higher than 5, and this choice of initial distribution makes such values
possible but unlikely. We let initial values of α0 be uniform on [0.02, 25], initial values of b0

be uniform on [0.01, 2], and initial values of K0 be uniform24 on [5, 80]. Finally, we generate
values for vi as (Z1 + Z2), where Zi are independent exponentials, whose means vary from
run to run, but are typically chosen so that the prior mean of vi is about half the residual
sum-of-squares of the observed Y i; in basis points (10−4) the residual sums-of-squares of the
data were (12.86, 35.04,273.63).

We now detail the procedure used to generate the moves of the particles. Given the value
Xt = x of the Markov process at time t, we simulate the value Xt+1 by firstly simulating a
pair (µ, τ) according to the Gamma-Gaussian density proportional to

exp

[

−1

2
Ktτ(µ − mt)

2

]

ταt−1 exp [−btτ ]
√

Ktτ ;

see (9). Then we perform rejection sampling, using the prefactor ϕ; we compute ϕ(µ, τ), and
accept (µ, τ) if ϕ(µ, τ) < U , with U some independent U [0, 1] variable, otherwise we propose
another (µ, τ) and repeat until there is an acceptance. Though the principle is clear, we had to
be very careful to carry out this rejection sampling efficiently to ensure rapid acceptance; we
explain the details of this in the Appendix. Once we have accepted a pair (µ, τ), we simulate
ξt+1 ∼ N(µ, τ−1), and update (ξ̄t, Sξξ(t)) using the new value ξt+1.

One further modification of the particle-filtering algorithm is needed, and this concerns θ.
Under the Markovian law of X, the θ-components never change. An undesirable consequence
of this is that once the collection of particles at time 0 has been chosen, the set of possible
θ-values will never change, and so at all later time the particle posterior for θ will be restricted
to this set. If this set did not put enough points in the places where the data is telling us θ
should be, the particle-filter estimates of θ will be poor.

To counteract this, we propose to replace (14) with

π̂t =
N

∑

i=1

wi
t qε(x

i
t, ·) (16)

where qε is a Markov transition function creating a small perturbation of the initial state.
This is in some sense a simulated annealing step. Of course, this introduces a bias (we are now
approximating πtqε, not πt), but it is essential to do this, particularly as the dimension of θ is
quite large. In the absence of any observations, this would cause the parameter values to evolve
according to some (slow) Markov process, which is not what constant parameters should do!
Something has to be done to correct this; (Liu and West, 2001), for example, propose that
there should be some shrinkage of the parameter values to the population mean. What we

24The value of K0 can be thought of as the factor by which the annual precision of ξ values gets scaled; in effect,
if we were to observe for M years, and use that data to form our initial estimate of the precision, then the precision
would be Mτ . It seems reasonable then that the Bayesian agent would be basing his prior for τ on somewhere
between 5 and 80 years of data.
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have done is firstly to use only random perturbations which keep the mean unchanged; once we
have gone through the algorithm with these random perturbations, we can then approximate
the posterior discovered in this way to choose an initial set of particles which put most θ-values
in the most likely places, and then run the analysis again, but this time permitting no change
in the parameter values.

Once again, the exact details of how the perturbations (16) were performed are given in
the Appendix.

4 Results.

We present here the results of the analysis. We performed a number of different runs, with
various parameters set to different values, to test the sensitivity of the conclusions to the
possible inputs, and to find situations where the fit was good. A fit is good if we find that
the posterior distribution of the vi is small, ideally a lot smaller than the values obtained by
assuming the Yi are IID; this means that we are relying little on the observational errors to
reconcile the model values and the observed values. In each run, we fixed the value of c; its
numerical value was in the range 5 × 105 to 107. Other parameters were chosen as described
in the previous section. Many different runs were made to build up a picture; the resulting
posteriors were generally quite similar.

In Figure 2, we present the posterior densities of the eight parameters β, R, α0, b0, K0, v1,
v2, v3. These results came out of a run with 25000 particles, RSLEV EL = 0.5, c = 107, prior
mean for R equal to 3, prior means for the vi set at 5, 10 and 100 bp, and the parameters εi

used for the shaking (see the Appendix) set at 10−4.
The posteriors of the agent’s preference parameters, β and R, are presented in Figure 3 and

4. The interquartile ranges [94.79%, 94.95%] for β, [1.62, 1.71] for R, are completely plausible
values for these parameters.

The posteriors for the vi are informative, and deserve further comment, as they allow us
to assess the effectiveness of the model in explaining the data. If we simply supposed that
the Yt were independent Gaussian variables, then fitting the mean would leave a residual
sum-of-squares vector of 10−4 times (12.86, 35.04, 273.62). From the posterior plots for the vi,
we see that the residual sum-of-squares from fitting the model is of the order of 10−4 times
(1, 24, 200). The residual sum-of-squares of all three is substantially reduced; the quality of
the fit is therefore improved. We should not however expect much better than this from fitting
a model that is time-homogeneous, because a casual inspection of the data suggests that there
have been substantial variations in the volatility of the three time series over the 90-year span
of the data.
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5 Conclusions.

The equity premium puzzle arises from a failure to account for the natural uncertainty about
structural growth parameters and especially the rate of return, whose point estimation is
well known to be extremely imprecise. Inserting the full posterior distribution of growth
parameters (and not just their point estimates) into our formulae for equity and bond prices
leads us to a standard Bayesian calibration procedure based upon particle filtering techniques.
The observed equity premium is shown to be reconciled with the neoclassical paradigm of
a representative agent, to whom both the mean and the volatility of the growth rate are
unknown. No implausibly large values for the coefficient of relative risk-aversion are needed
and the equity premium puzzle is therefore solved in a fully Bayesian way.

Table 1: Summary values of the posterior.
Parameter 25 %ile Median 75 %ile

β 0.9479 0.9487 0.9497
R 1.6263 1.6618 1.7153
α0 2.5736 2.7362 2.8738
b0 0.07169 0.07715 0.08211
K0 65.219 69.441 75.013
v1 0.94 bp 1.03 bp 1.09 bp
v2 24.40 bp 25.67 bp 27.24 bp
v3 188.43 bp 200.67 bp 210.54 bp
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A Appendix

A.1 Analysis of F .

For the calculation of share and bond prices, we introduced the function F defined as an
integral, and were able to express the prices in terms of it. In order to implement the algorithm
effectively, we need to make sure that the evaluation of F is done as rapidly as possible
consistently with accuracy. For this, we need to understand what part of the (infinite) region
of integration really matters, and restrict function calls to that region.

In order to understand this, we develop the integral defining F :

Ft(λ, ρ) ≡
∫ ∞

0
dτ

∫

1

ν
log β+ ν

2τ

dµ
πt(µ, τ)

1 − βe−νµ+ν2/2τ
exp(−λµ + λ2/2τ − ρµ + ρ2/2τ)

=

∫ ∞

0
dτ ταt−1 exp

[

−btτ + (λ2 + ρ2)/2τ − c

2τ2

]

∫

1

ν
log β+ ν

2τ

dµ exp
{

−1

2
Ktτ(µ − mt)

2 − (λ + ρ)µ
}

√

Ktτ

2π

=

∫ ∞

0
dτ ταt−1 exp

[

−btτ + (λ2 + ρ2)/2τ − c

2τ2

]

e−(λ+ρ)mt

∫

1

ν
log β+ ν

2τ

dµ exp

{

−1

2
Ktτ

(

µ − mt +
λ + ρ

Ktτ

)2

+
1

2

(λ + ρ)2

Ktτ

}

√

Ktτ

2π

= e−(λ+ρ)mt

∫ ∞

0
dτ ταt−1 exp

[

−btτ + (λ2 + ρ2)/2τ +
1

2

(λ + ρ)2

Ktτ
− c

2τ2

]

·

Φ̄
(

(
1

ν
log β − mt +

ν

2τ
+

λ + ρ

Ktτ
)
√

Ktτ
)

= e−(λ+ρ)mt

∫ ∞

0
dz z−αt−1 exp

[

−bt

z
+

λ2 + ρ2

2
z +

(λ + ρ)2

2Kt
z − cz2

2

]

·

Φ̄

(

(1

ν
log β − mt + (

ν

2
+

λ + ρ

Kt
)z

)

√

Kt

z

)

.

Here, as usual, Φ̄ is the tail of the standard Gaussian distribution. Notice that although Ft is
not available in closed form, its evaluation requires only the computation of a single univariate
integral, so this can be done rapidly numerically. The integral defining Ft is guaranteed to
converge, because of the term exp(−c/τ 2) which controls the integrand near τ = 0. However,
the exact choice of c is relatively unimportant, as we see when we study the integrand. It is
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well known that the function Φ̃(x) ≡ ex2/2Φ̄(x) varies as x−1(2π)−1/2 as x → ∞, while Φ̄(x)
is O(1) for negative values of x.

Simplifying the notation by dropping the t-subscripts, and setting a0 = ν−1 log β − m,
a1 = ν/2+ (λ+ρ)/K, D = (λ2 +ρ2)/2+ (λ+ρ)2/2K, we see that the integral is more simply
expressed as

I ≡
∫ ∞

0
z−α−1 exp

[

− b

z
+ Dz − cz2

2

]

Φ̄((a0 + a1z)
√

K/z) dz. (17)

Using the asymptotic for Φ̄, the integrand (for large z) is in effect the exponential of

− b

z
+ Dz − cz2

2
− 1

2
(a0 + a1z)2

K

z
.

Now as t gets larger, Kt = K0 + t gets larger, and so we see that we do not in fact need the
convergence term −cz2/2, once t has got so large that γ2Kt/2 > Dt.

Numerical evaluation of the integral (17) requires some care. The first point that can be
problematic is that the integrand may be very small everywhere, so a numerical integration
routine quickly decides that the integral is zero; but this is no use for (11), (12). It is clear what
must be done; the integrands must be scaled appropriately. In order to do this, we have to
know (at least approximately) what the maximum value of the integrand is. For this, we notice
that (with Z ≡ (a0 + a1z)

√

K/z) we have approximately either Φ̄(Z) = exp(−Z2/2)/Z
√

2π
or Φ̄(Z) = 1, the first eventuality obtaining if Z is reasonably large. Since Z gets large if
either z or z−1 is large, we have three regimes to consider, where s = 0, 1,−1, and the log of
the integrand is approximated by

−(1 + α + s/2) log(z) − b/z + Dz − cz2/2 − s2K

2z
(a0 + a1z)2. (18)

Here, s = 0 corresponds to Φ̄ ' 1, s = 1 corresponds to the case of large Z, large z, and the
case s = −1 corresponds to the case of large Z, small z. To find the maximum of the function
(18), we differentiate to obtain the cubic equation

cz3 − (D − s2Ka2
1/2) z2 + (1 + α + s/2)z − (b + s2Ka2

0/2) = 0.

The calculation now finds the real positive roots of these three cubics, evaluates the log
integrand at those points, and picks the place where the integrand is maximal.

A.2 Details of the rejection sampling.

The simulation methodology requires us to sample the pair (µ, τ) from the posterior (9) before
simulating the next ξ from a N(µ, τ−1) distribution. This is not quite as easy as it might at
first sight appear; rejection-sampling is the natural methodology to use here, but we have to
be careful not to pick a proposal distribution that will result in billions of proposals before an
acceptance.
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The first step is to sample a value of τ according to a density which is proportional to25

τα−1 exp(−c/2τ 2 − bτ). (19)

What we shall do is sample a value of Z ≡ 1/τ from a density proportional to

eϕ0(z) = z−1−α exp(−cz2/2 − b/z). (20)

We shall do this by proposing a value for Z from a N(a, c−1) distribution, and then doing
rejection sampling. This requires us to find a constant B such that

eϕ0(z) ≤ B exp(−c(z − a)2/2) ≡ Beϕ1(z)

for all z, and then accepting the proposed value of Z with probability exp(ϕ0(z) − ϕ1(z))/B.
Clearly, the smaller the value of B, the better the chances of acceptance. The question we
have to answer is how to choose a. Holding a fixed, and maximising ϕ0(z)−ϕ1(z) over z leads
to the equation26

acz2 + Az − b = 0 (21)

to determine the value z∗ where the maximum is attained. The difference ∆(z∗) ≡ ϕ0(z∗) −
ϕ1(z∗) must now be minimised over choice of a. We may equivalently think of it as a min-
imisation over z∗, where a is expressed as a function of z∗ using (21). Solving ∆′(z) = 0
leads to a quartic equation, one of whose roots is z = 2b/A; this root corresponds to a value
a = −A2/4bc, with negative second derivative, so ∆ achieves a local maximum there. Factor-
ing out this root, the equation ∆′(z) = 0 becomes the cubic equation

cz3 + Az − b = 0, (22)

which has a unique positive root given by Cardan’s formula:

z∗ = Y/6c − 2A/Y, (23)

where

Y ≡
(

c2
(

108b + 12
√

3/c
√

4A3 + 27cb2
)

)1/3

. (24)

The second derivative ∆′′ is positive at z∗, so we have a minimum.
Having found τ , the second stage of the simulation is to generate a value of µ from a

density proportional to

(1 − βe−νµ+ν2/2τ )+ exp
[

−1

2
Kτ(µ − m)2

]

. (25)

If we define

b∗ ≡ 1

ν
log β +

ν

2τ
,

25For this discussion, we omit the subscript t.
26For brevity, we set 1 + α ≡ A for this discussion.
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then the prefactor in (25) is positive for µ > b∗. Two cases then arise, the first (simpler) being
when m > b∗, for then we just propose a value of µ from a N(m, (Kτ)−1) distribution, and
accept with probability (1−βe−νµ+ν2/2τ )+. More interesting is the situation where b∗ > m, for
then we have to sample out in the tail of a Gaussian density, and this requires some ingenuity.
What we shall do is to propose a value of µ from the density

(µ − m)
√

Kτ exp
[

−1

2
Kτ(µ − m)2

]

, (26)

and then accept with probability

(1 − βe−νµ+ν2/2τ )+

γ(µ − m)
≡ (1 − e−ν(µ−b∗))+

γ(µ − m)
, (27)

where γ = min{ν, (b∗ − m)−1} is chosen so that the acceptance probability is always at most
1. How do we simulate a random variable X from density (26)? Notice that if X has the
density (26), then Y ≡ (X −m)2Kτ/2 has a standard exponential law, so what we shall do is
generate a standard exponential variable η, set27 Y = η + (b∗ − m)2Kτ/2, and then recover
our proposed value for µ as

µ = m +

√

2Y

Kτ
.

A.3 Perturbing the parameters.

The perturbation of the different components of our vector θ = (β,R, α0, b0,K0, v1, v2, v3)
T of

parameters has to be handled in different ways.
(i) Given the current value of β, the perturbed value β ′ is chosen from a B(a, b) distribution,
where a = β/εβ , b = (1 − β)/εβ , where εβ is a small parameter of the calibration. The mean
of β′ is β, the variance is ab/(a + b)2(a + b + 1), which is of the order of εβ.
(ii) The current value of R gets perturbed to R′ = 1 + Z(R − 1), where the random variable
Z is expressed as

Z =
X

1 − X
(28)

for some B(a, a + 1) random variable X. It is easily verified that Z has mean 1 and variance
2/(a − 1). We set a = 1/εR, where εR is a small parameter of the calibration.
(iii) For the remaining components θi of the parameter vector, the perturbation is done in
the same way, namely to set θ′i = Zθi, where the random variable Z is expressed as (28) for
some B(a, a + 1) random variable X. We set a = 1/εi, where εi is a small parameter of the
calibration.

27We are only going to accept a value for µ if it exceeds b∗, equivalently, if Y exceeds (b∗ −m)2Kτ/2, so we shall
condition Y to exceed that value; of course, the overshoot of Y over that value is again standard exponential.
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Figure 1: Growth rate of real consumption, real return on US Treasury Bill and real return on the
SP500 index over the period 1889-1978 (all expressed in %).
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Figure 3: Posterior density for β
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