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1 Initial remarks.

The basic wealth dynamics are

dwt = rtwt dt + πt · (dSt + δtdt− rtStdt)− ct dt, (1.1)

where the n-vector semimartingale S denotes the price processes of the risky assets, rt is
the instantaneous riskless rate, δ is the n-vector dividend process, and πt is n-vector of
numbers of assets held at time t, a previsible process.

The objective which the agent wishes to optimize varies from example to example. Com-
monly, the objective is of the form

E

[ ∫ T

0

U(t, ct) dt + U(T, wT )

]
, (1.2)

or the infinite-horizon version of this:

E

[ ∫ ∞

0

U(t, ct) dt

]
. (1.3)

1.1 The basic Merton problem.

The basic Merton problem is one for which the solution to the optimal investment problem
can be found in closed form. For the asset dynamics we take

dSt = St(σdWt + µdt), (1.4)

which is shorthand for the fuller but clumsier specification

dSi
t = Si

t

( n∑
j=1

σijdW j
t + µidt

)
, i = 1, . . . , n. (1.5)
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Here, σ and µ are constants. We also assume that δ ≡ 0, and that r is a constant. For the
objective, we may take the finite-horizon objective (1.2) with

U(t, c) = ae−ρtu(c) (0 ≤ t < T ), U(T, c) = bu(c) (1.6)

where a ≥ 0, b ≥ 0, ρ ≥ 0, and

u(c) =
c1−R

1−R
(1.7)

for some positive R different from 1. This problem can be solved in closed form, and we
find the form of the optimal solution is to take

V (t, w) = f(t)u(w) (1.8)

πt = πM wt (1.9)

ct = γ(t) wt (1.10)

where

f(t) =

{
b1/Re−q(T−t)/R +

Ra1/R

ρ + q
e−ρt/R

(
1− e−(ρ+q)(T−t)/R

) }R

(1.11)

πM = R−1(σσT )−1(µ− r1) (1.12)

γ(t) = a1/Re−ρt/Rf(t)−1/R (1.13)

and
q ≡ (R− 1)(r + |κ|2/2R), κ ≡ σ−1(µ− r1). (1.14)

Two special cases are worthy of note.

Terminal wealth. If a = 0, b = 1, then there is no intermediate consumption, and we
aim to mazimise Eu(wT ). Here the value function simplifies to

V (t, w) = e−q(T−t)u(w). (1.15)

Infinite-horizon. Here we set a = 1, b = 1, but let T → ∞. The asymptotic forms we
find for the solution are

eρtV (t, w) = γ
−1/R
M u(w), (1.16)

πt = πMwt, (1.17)

ct = γMwt, (1.18)

where
γM ≡ R−1

[
ρ + (R− 1)

{
r + |κ|2/2R

} ]
. (1.19)
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1.2 Efficiency.

The Merton problem has a particular feature that makes it ideal for comparing the effects
of different constraints or objectives, and this is due to the scaling. Assuming a CRRA
utility u(c) = c1−R/(1 − R), we frequently find modifications of the Merton problem that
the value takes the form Au(w), where w is the initial wealth, and A is either some constant,
or some function of other variables of the problem. In the case of the standard Merton
problem we found that

A = AM ≡ γ
−1/R
M .

If some variant P of the Merton problem has value Au(w), we shall say that the efficiency
of P is

Θ ≡ (A/AM)1/(1−R). (1.20)

The interpretation is that the standard Merton investor with initial wealth Θ would achieve
the same objective as the investor in problem P would starting with wealth 1.

2 Variants of the basic problem.

We list here a range of interesting optimal investment problems which are all variants in
some form or another of the basic Merton problem. Most are infinite-horizon problems.

2.1 Optimising under portfolio constraints

The Merton rule of investing fixed proportions of wealth in the different assets need not keep
non-negative wealth in each asset; it may well turn out that the conclusion of the Merton
analysis is that some assets should be shorted (perhaps even cash should be shorted).
Understandably, this is not a conclusion that everyone feels comfortable with, so we could
attempt to optimise under the constraint that θt ∈ K for all t, where K is some convex
constraint set, perhaps the positive cone. Likewise, we might be constrained not to allow
the volatility of the wealth process to be too large, and this can also be handled.

2.2 Markov-modulated stock dynamics.

Here we suppose that there is some finite-state Markov chain ξ independent of the driving
Brownian motion W such that the asset dynamics become

dSi
t/S

i
t = σij(ξt)dW j

t + µi(ξt)dt (2.21)
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for some functions σ, µ of the chain, and then the wealth dynamics change to

dwt = θt · σ(ξt)dWt + [r(ξt)wt − ct + θt · (µ(ξt)− r(ξt)1)]dt. (2.22)

Notice that we can without any real loss of generality allow the riskless rate to depend on
the chain as well.

The agent’s objective is the standard one for a consumption problem,

max E

[∫ ∞

0

e−ρtU(ct)dt

]
(2.23)

2.3 Transaction costs.

Consider the situation where

dXt = rXtdt + (1− ε)dMt − (1 + ε)dLt − ctdt

dYt = Yt(σdWt + µdt)− dMt + dLt,

where Xt is value of holding of cash, Yt is value of holding of stock at time t. Mt(Lt) the
cumulative sales (puchases) of stock by time t. The investor’s goal is to achieve

V (x, y) = sup E

[∫ ∞

0

e−ρtU(ct)dt

∣∣∣∣ X0 = x, Y0 = y

]
,

with U(x) = x1−R/(1−R) as in the Merton problem.

2.4 Effect of annual taxation.

What is the effect on the Merton problem of an annual tax on capital gains? Suppose that
U is again CRRA, and at each time t = nh we have to pay tax on wealth gain over the last
time period of length h. Thus wnh = wnh− − τ(wnh− −wnh−h) = (1− τ)wnh− + τwnh−h. If
we do this, then the problem becomes a finite-horizon problem,

V (w) = sup E

[∫ h

0

e−ρsU(cs)ds + e−ρhU(τw + (1− τ)wh)

]
.

2.5 Infrequent portfolio revision.

Suppose we have a standard Merton investor, maximizing

E[

∫ ∞

0

e−ρtU(ct)dt], U ′(x) = x−R
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and now instead of rebalancing continuously, we only allow the agent to rebalance the
portfolio at times t = 0, h, 2h, . . . . Obviously the agent does less well, but does this
actually matter? Let’s also suppose the rate c is held constant in each interval, so the
value solves

V (w) = sup
c,p

[
U(c)

1− e−ρh

ρ
+ e−ρhEV

(
(w − ch)(pS + (1− p)erh)

)]
,

where S = exp{σ
√

hZ + (µ− 1
2
σ2)h} with Z ∼ N(0, 1).

2.6 Random rate of return for stock.

In this example, the basic wealth dynamics get modified by allowing the growth rate µ to
vary with time. We shall take

dwt = rwt + θt(σdWt + (µt − r)dt)− ctdt (2.24)

dµt = σmdW ′
t + β(m− µt)dt (2.25)

where dWtdW ′
t = ηdt, and β > 0 is known, as are σm, m, η.

2.7 A habit formation model.

Constantinides proposed a model where the agent’s consumption is compared to an exponentially-
weighted historical average of past consumption. One motivation for this was to try to
explain the equity premium puzzle (EPP). The model proposed by Constantinides helps a
bit in explaining the EPP, but it is in any case an interesting attempt to explore different
objectives. The dynamics taken are a simple variant of the usual wealth equation:

dwt = rwtdt + θt(σdWt + (µ− r)dt)− ctdt (2.26)

dc̄t = λ(ct − c̄t)dt. (2.27)

The agent’s objective in Constantinides’ account is

sup E

∫ ∞

0

e−ρtU(ct − c̄t) dt

so that present consumption is in some sense evaluated relative to the exponentially-
weighted (EW) average c̄t of past consumption.
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2.8 A better habit formation model.

What we propose to do here is to keep the dynamics (2.26) and (2.27), but to take as the
objective

V (w, c̄) ≡ sup E

[ ∫ ∞

0

e−ρtU(ct/c̄t) dt

∣∣∣∣ w0 = w, c̄0 = c̄

]
(2.28)

which (more realistically) rewards the ratio of current consumption to the EW average.
This objective permits current consumption to fall below the EW average of past consump-
tion at various times, again a more realistic feature.

2.9 Recursive utility.

The wealth dynamics this time are the usual thing,

dwt = rwtdt + θt(σdWt + (µ− r)dt)− ctdt,

with now the objective to maximize U0, where the recursive utility process (Ut)0≤t≤T sat-
isfies the dynamics

Ut = Et

[ ∫ T

t

F (s, cs, Us) ds + G(wT )
]

(2.29)

where F (s, ·, ·) is concave increasing, and G is concave increasing.

2.10 Liquidity effects.

We take a model for an illiquid asset, where the number of units Ht of the asset held at
time t cannot be changed very rapidly. We assume that H is differentiable with derivative
ht, and that there is a cost for rapid change of portfolio. Thus the dynamics are

dwt = rwtdt + Ht(dSt − rStdt)− ctdt− Stl(ht)dt (2.30)

dHt = htdt. (2.31)

Here l is a non-negative convex function, vanishing at 0. The objective is the usual one of

max E

[∫ ∞

0

e−ρtU(ct)dt

]

2.11 Parameter uncertainty.

The dynamics of wealth are as usual

dwt = rwtdt + θt · σ{dWt + (αt − rσ−11)dt} − ctdt (2.32)
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which we have written in a slightly unusual way, because we intend now to suppose that
the parameter α is not known with certainty, rather that we shall have a prior N(α̂0, τ

−1
0 )

distribution for it. The volatility matrix σ is n×n, and assumed known and non-singular.
We write V for σσT .

2.12 Stochastic interest rates.

Suppose that the riskless rate is not constant, but diffuses as in a Vasicek model:

dr = σrdW ′ + β(r̄ − r)dt,

where dW ′dW = ηdt. What happens?

2.13 Drawdown constraints.

In this problem, we assume the (by now) standard dynamics

dwt = r(wt − θt)dt + θt(σdWt + µdt)− ctdt

for the wealth and objective

sup E[

∫ ∞

0

e−ρtU(ct)dt], U ′(x) = x−R,

but now we shall impose the constraint

wt ≥ bw̄t = b sup
s≤t

ws, ∀t, (2.33)

where b ∈ (0, 1) is fixed. This is called a drawdown constraint, in a natural terminology.
Drawdown constraints are of practical importance for fund managers, because if their
portfolio loses too much of its value, the investors are likely to take their money out and
that is the end of the story, however clever (or even optimal!) the rule being used by the
fund manager.

2.14 Business cycle.

Suppose that the growth rate µt of the risky asset is not constant, but varies with time in
a known deterministic way:

dwt = rwt + θt(σdWt + (µt − r)dt)− ctdt, (2.34)
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the objective being once again the standard objective (2.23). This story for the dynamic
reflects the commonly-held belief that there is a so-called ‘business cycle effect’, where
returns are depressed for a while, during a period where business is investing in new
products and technology, and then once the new products become available the profitability
of businesses is increased.

2.15 Ratcheting of consumption.

The standard wealth dynamics

dwt = rwtdt + θ(σdWt + (µ− r)dt− ctdt

get combined with the constraint

ct is non-decreasing. (2.35)

The rationale for this problem is that in some situations (such as the use of a university
endowment) it is hard to reverse commitments to consumption.

2.16 Keeping up with the Jones’.

Suppose there are two agents, i = 0, 1, who derive utility from consumption, but this
utility is modified by the consumption of the other agent. Thus we assume the standard
dynamics

dwi
t = rwi

tdt + θi(σdWt + (µ− r)dt− ci
tdt

for their wealths, and then take the objective of agent i to be

max E
[ ∫ ∞

0

e−ρitUi(c
i
t, c

1−i
t ) dt

]
(2.36)

A natural and simple form to take for Ui would be

Ui(c, y) =
c1−Ri

1−Ri

(
c

y

)αi

, (2.37)

where Ri > 0 and (1−Ri)αi > 0.

2.17 Variable liquidity.

This is another story where there is a finite-state Markov chain ξt influencing the dynamics.
This time, the single risky asset is assumed to be illiquid, in that you are only able to
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change your position in the asset at the times of a Poisson process, whose intensity is
λ(ξt). Suppose that when one of these times occurs, you are able to make an arbitrary
change in your position. If xt denotes the value of your bank account at time t, and yt the
value of your holding of the risky asset, then between the times of rebalancing we have the
dynamics

dxt = (rxt − ct)dt, (2.38)

dyt = yt(σdWt + µdt). (2.39)

What do you do? How big an effect is this illiquidity if the aim is to

max E

∫ ∞

0

e−ρtU(ct) dt

for CRRA U?

2.18 Stochastic volatility

In the Hobson-Rogers model of asset dynamics, the single risky asset evolves as

dSt = St(σtdWt + µdt) (2.40)

where σt = f(Zt) is some function of the offset

Zt =

∫ t

−∞
eλ(s−t)(Xs −Xt) ds (2.41)

where Xt ≡ log St. Thus we could suppose that −f is unimodal, with its maximum
at 0; this would give an increased volatility when the asset was farther away from its
(exponentially-weighted) historical level. If the objective is the standard one (2.23), how
does the solution look?

2.19 Heston’s model of stochastic volatility

In the Heston model of asset dynamics, we have

dSt = St(
√

vtdWt + µdt)

dvt = a
√

vtdW ′
t + β(v̄ − vt)dt (2.42)

where W and W ′ are correlated Brownian motions, dWdW ′ = ρdt and a, β, v̄ are positive
constants. If the objective is again (2.23), what can we say about the solution?
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2.20 Non-constant relative risk aversion

While the assumption of constant relative risk aversion makes for nice scaling, it is arguably
not how people would behave; if you are very wealthy, then you may be less risk-averse
than if you are not wealthy. Or perhaps if you are poor, desperation may drive you to take
greater risks than someone who is not! If we take R1 > 1 > R2, then defining the inverse
marginal utility by

I(y) = y−1/R1 + ky−1/R2 (2.43)

for some positive constant k gives an agent whose coefficient of relative risk aversion is
roughly R2 for large levels of consumption, and roughly R1 for small levels of consumption
- the adventurous rich. Alternatively, we could define

I(y) = (y1/R1 + ky1/R2)−1, (2.44)

which gives an agent whose coefficient of relative risk aversion is roughly R1 for large levels
of consumption, and roughly R2 for small levels of consumption - the desperate poor.

How do the optimal investment/consumption decisions look now?

2.21 Optimizing under risk-management constraints

Suppose there is a single risky asset, the usual dynamics

dSt = St(σdWt + µdt)

and that the objective is to max EU(wT ) subject to a constraint on the value-at-risk (V@R);
we insist that

P (wT < 0.9w0) ≤ 0.05 (2.45)

How does the optimal policy look now?

2.22 Log-Lévy asset dynamics

Suppose now that the asset dynamics are such that log St is a Lévy process, and the agent
wishes to invest so as to maximise E[U(wT )], for some CRRA utility U .

2.23 Production economy

Suppose that the rate of output Yt from the economy is a function F (K, L) of the capital
deployed, and the labour employed in production. We suppose that F is increasing in both
variables, concave, and homogeneous of degree 1:

F (λK, λL) = λF (K, L) ∀λ > 0.
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The controller of the economy chooses the rate It at which to invest in capital, which then
evolves as

K̇t = It − δKt,

where δ > 0 is constant. The consumption rate is Ct = F (Kt, Lt) − It. Suppose that the
objective is to attain

sup E

∫ ∞

0

e−ρtU(Ct/Lt) dt

where ρ > 0 is constant, and the labour force (= population) evolves as

dLt = Lt(σdWt + µdt).

Assuming CRRA utility U , how should the controller of the economy invest?

2.24 Equilibrium with return for investment

Suppose that a productive asset delivers a dividend process δ where

dδt = δt(σdW + µtdt).

Here µt = g(it), where it = δt − ct is the rate of investment into the productive asset. We
assume that g is increasing and concave. The agent aims to

sup E

∫ ∞

0

e−ρtU(ct) dt.

What is the optimal investment policy, and what is the equilibrium price of the productive
asset?

2.25 Choosing a time to retire

An agent works until a time τ of his choosing, at which time he retires. While working,
he receives a constant income stream of ε, which incurs a disutility λ > 0. He invests his
wealth in a riskless bank account bearing interest rate r, and in a risky stock with constant
volatility σ and rate of growth µ. His wealth therefore evolves as

dwt = rwtdt + θ(σdWt + (µ− r)dt)− ctdt + εI{t≤τ}dt

(where W is a standard Brownian motion, and θt is the time-t value of his holding of the
stock) and he seeks to maximise

E

∫ ∞

0

e−ρt(U(ct)− λI{t≤τ}) dt.

Assume that U ′(x) = x−R for some positive constant R 6= 1. Show that the critical level
at which he retires is γ−1

M (ε/λ)1/R. By introducing the dual variable z = V ′(w), solve his
problem as completely as you can.
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2.26 Utility from the slice of the cake

A continuous-time model of an economy contains a single productive asset, whose dividend
process (δt)t≥0 evolves as

dδt = δt(σdWt + µdt),

where W is a standard Brownian motion. Agent i ∈ {1, . . . , J} has preferences over
consumption streams (ci

t)t≥0 given by

E

∫ ∞

0

e−ρitUi(p
i
t) dt,

where

pi
t =

ci
t∑
j cj

t

and Ui : (0,∞) → R is C2, strictly increasing and strictly concave, U ′(0) = ∞, U ′(∞) = 0.
Agent i initially holds a fraction πi

0 of the productive asset.

By considering marginal pricing of future consumption relative to present consumption,
or otherwise, derive the equilibrium for this economy as explicitly as you can. Show that
in equilibrium the process (pt)t≥0 is non-random. Show that if all the agents have same
ρi and Ui then in equilibrium the proportion of the output of the productive asset which
agent i consumes is constant and equal to πi

0.

2.27 History-dependent preferences

Suppose we have the usual dynamics (1.1), but now the objective of the agent is given as

sup E

∫ ∞

0

e−ρtU(ξt) dt, (2.46)

where the process ξ solves
dξt = λ(cα

t − ξt)dt (2.47)

for positive constants α and λ.

2.28 Performance relative to a benchmark.

The geometric market index J is defined to be

Jt ≡
{ n∏

i=1

Si
t

}1/n

.
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Prove that

log(Jt/J0) = n−1
[
1 · σWt + {1 · µ− 1

2
tr(V )} t

]
where 1 = (1, . . . , 1)T , and V ≡ σσT .

An agent with initial wealth w0 invests in this market, choosing a portfolio process θ.
His aim is to invest in such a way as to do well relative to the index; his objective is
E[ U(wT /JT ) ], where U is the CRRA utility U(x) = x1−R/(1 − R), for some positive
R 6= 1. Show that the agent should optimally split his wealth among the stocks in fixed
proportions, given by the vector

R−1V −1(µ− r1) + (1−R−1)n−11.
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