OPTIMAL INVESTMENT: Example Sheet 2

1. The (infinite-horizon) Merton consumption problem has wealth dynamics

$$
\begin{equation*}
d w_{t}=r w_{t} d t+\theta_{t}\left(\sigma d W_{t}+(\mu-r) d t\right)-c_{t} d t \tag{1}
\end{equation*}
$$

and objective $\left(u(x)=x^{1-R} /(1-R), 0<R \neq 1\right)$

$$
\begin{equation*}
\sup _{c, \theta} E\left[\int_{0}^{\infty} e^{-\rho t} u\left(c_{t}\right) d t\right] . \tag{2}
\end{equation*}
$$

Let $\pi=(\mu-r) / \sigma^{2} R$. Assuming that $\gamma \equiv R^{-1}\left\{\rho+(R-1)\left(r+\frac{1}{2} \sigma^{2} \pi^{2} R\right)\right\}>0$, prove that the policy

$$
\begin{aligned}
& c_{t}=\gamma w_{t} \\
& \theta_{t}=\pi w_{t}
\end{aligned}
$$

is optimal.
2. Find the value function and optimal policy for the Merton consumption problem with $u(x)=\log (x)$.
3. (i) Consider the problem of maximising $E\left[u\left(w_{T}\right)\right]$ for CRRA u and with wealth dynamics

$$
\begin{equation*}
d w_{t}=r\left(w_{t}-\theta\right) d t+\theta_{t} \sigma\left(d W_{t}+\alpha d t\right)-c_{t} d t \tag{3}
\end{equation*}
$$

but with uncertain α; assume a $N\left(\hat{\alpha}_{0}, \tau_{0}^{-1}\right)$ prior for α. Show that the value of this problem is ($b \equiv 1-R^{-1}$)

$$
u(w) \tau_{0}^{1 / 2} \frac{\left(\tau_{0}+T\right)^{(R-1) / 2}}{\left(\tau_{0}+b T\right)^{R / 2}} \exp \left[r(1-R) T-\frac{\left(\hat{\alpha}_{0}-r / \sigma\right)^{2} b \tau_{0} T}{2\left(\tau_{0}+b T\right)}\right]
$$

Confirm that as $\tau_{0} \rightarrow \infty$ this expression converges to the value that would be obtained by the investor who knew for certain that the true value of α was α_{0}.
(ii) Suppose now that the wealth dynamics are given by (3), where α has a $N\left(\hat{\alpha}_{0}, \tau_{0}^{-1}\right)$ distribution. Investor A is told the true value of α before he starts to invest, but investor B has to filter it from the observation of the stock price. By averaging over the distribution of α, calculate the expected value to investor A , and compare with the expected value to investor B. Deduce that investor B has efficiency

$$
\left(1-\frac{T}{R\left(\tau_{0}+T\right)}\right)^{1 / 2}
$$

relative to investor A .
4. As a variant on the Constantinides habit formation example, let us suppose that the historical level of consumption is measured (as before) by

$$
x_{t}=e^{-a t} x_{0}+b \int_{0}^{t} e^{a(s-t)} c_{s} d s
$$

but that the objective is to obtain

$$
V(w, x) \equiv \sup E\left[\int_{0}^{\infty} e^{-\rho t} u\left(c_{t} / x_{t}\right) d t \mid w_{0}=w, x_{0}=x\right]
$$

Find the HJB equation for V. Can you solve it?
5. (Dybvig's ratcheting of consumption example - quite challenging!.) Suppose an investor wishes to optimise (2) with wealth dynamics (1), but subject to the constraint that the process c should be non-decreasing. If V is the value function

$$
V(w, c)=\sup _{c, \theta} E\left[\int_{0}^{\infty} e^{-\rho t} u\left(c_{t}\right) d t \mid w_{0}=w, c_{0}=c\right]
$$

show that $V(w, c)=c^{1-R} V(w / c, 1) \equiv c^{1-R} v(w / c)$. Derive the HJB equations

$$
\begin{aligned}
& 0=\sup _{\theta}\left[(1-R)^{-1}-\rho v(z)+\frac{1}{2} \sigma^{2} \theta^{2} v^{\prime \prime}(z)+(r z+\theta(\mu-r)-1) v^{\prime}(z)\right] \\
& 0 \geq(1-R) v(z)-z v^{\prime}(z), \quad \text { with equality for } z \geq z_{1}
\end{aligned}
$$

where z_{1} is a value that is to be found. By passing to the dual variables $y=v^{\prime}(z)$, $J(y)=v(z)-z y$, re-express the HJB equation as

$$
\begin{aligned}
& 0=\frac{1}{2} \kappa^{2} y^{2} J^{\prime \prime}(y)+(\rho-r) y J^{\prime}(y)-\rho J(y)-y+\frac{1}{1-R} \\
& 0 \geq(1-R) J(y)+R y J^{\prime}(y)
\end{aligned}
$$

where $\kappa \equiv(\mu-r) / \sigma$.
Argue that if $z=1 / r$ then $v(z)=1 / \rho(1-R)$, and for $z<1 / r, v(z)=-\infty$. Show that (under well-posedness conditions), there exists some $y_{0}>0$ and positive A and A_{0} such that

$$
\begin{aligned}
J(y) & =-A_{0} \frac{\left(y / y_{0}\right)^{1-1 / R}}{1-1 / R} \quad\left(y \leq y_{0}\right) \\
& =-\frac{y}{r}+\frac{1}{\rho(1-R)}+A\left(\frac{y}{y_{0}}\right)^{-\alpha} \quad\left(y \geq y_{0}\right) .
\end{aligned}
$$

Here $-\alpha$ is the negative root of the quadratic $Q(x) \equiv \frac{1}{2} \kappa^{2} x(x-1)+(\rho-r) x-\rho$. Find y_{0}, A, and A_{0} as explicitly as you can.

