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1 Stochastic integration: a resumé.

This section aims to present the outline of stochastic integration. Proofs will be omitted,
but can be found in any of a number of standard texts on the subject (add refs).
Definitions and results will be properly stated.

Like any integration theory, stochastic integration starts from the definition of an integral
for very simple situations, and extends, by way of linearity, and continuity. We are
aiming to define what is meant by the stochastic integral

t 7→
∫ t

0

Hs dXs ≡ (H ·X)t ≡ I(H, X)t

for some suitably large class of integrands H and integrators X. The stochastic integral
will be thought of as a continuous-time process, and ultimately we shall find that

I : lbP × S → S,

where lbP is the space of locally bounded previsible processes, and S is the space of
semimartingales, both of which will be defined in due course. But let’s start small, and
suppose firstly that H is a basic integrand

H = Z(S, T ] (1)

(the notation is a crisp way to write the more formal statement Ht = ZI{S<t≤T}), where
S ≤ T are two stopping times, and Z is bounded and FS-measurable. In this case, the
only definition we could possibly use is to set

(H ·X)t = Z(Xt∧T −Xt∧S). (2)
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If E denotes the space of all finite linear combinations of basic integrands, then the
required bilinearity of the integral I extends the definitions of H ·X to all1 H ∈ E , but
without further restrictions on X we can get no further.

We shall next suppose that X is in M2 ≡ {M : M is an L2-bounded martingale }. It
is easy to see then that H ·X defined by (34) is again an L2-bounded martingale, and,
as such, is closed on the right by its limit at infinity, (H ·X)∞. The key to the extension
(due in essence to Paul-André Meyer) is the following.

Theorem 1 For X ∈M2, there exists a unique increasing adapted process [M ] vanish-
ing at 0 such that

(i) M2
t − [M ]t is a uniformly-integrable martingale;

(ii) ∆[M ]t = (∆M)2
t for all t > 0.

Using this, it is not hard to prove that

‖(H ·M)∞‖2 ≡ E[(H ·M)2
∞] = ‖H‖2

M ≡ E

∫ ∞

0

H2
s d[M ]s, (3)

and so the map I from E (equipped with the norm ‖ · ‖M) to L2 is an isometry. We can
therefore extend the definition of stochastic integral to all processes H in the closure of
E in the norm ‖ · ‖M , which coincides with the space of all previsible2 processes H with
finite ‖ · ‖M norm.

This is a good start to the construction of stochastic integrals, but the requirement to
check that things are in the appropriate L2 space is far too restrictive in practice. The
way forward is to localise. We shall say that M is a local martingale if there exists a
sequence Tn ↑ ∞ of stopping times such that MTn ≡ M(Tn∧·) is a uniformly-integrable
martingale for all n. We shall say that the previsible process H is locally bounded if there
exists a sequence Tn ↑ ∞ of stopping times such that HI(0,Tn] is bounded; the space of
all locally bounded previsible processes is denoted lbP .

Because our only applications will be to continuous processes, and because the devel-
opment of stochastic integration theory is substantially complicated by having jumps,
we will from now on just discuss the case of continuous integrators X. Any continuous
local martingale M is locally an L2-bounded martingale3, so this allows us to localise

1When H ∈ E can be represented in different ways as linear combinations of basic integrands, we
have to ensure that all lead to the same definition of H ·X.

2A process H : (0,∞)×Ω → R is previsible if it is measureable with respect to the σ-field generated
by all left-continuous adapted processes (equivalently, the σ-field generated by all basic integrands.)

3Not true without continuity.
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M to L2, and localise H ∈ lbP to be bounded, and then use the stochastic integral so
far constructed. The end point is the following.

Theorem 2 If H ∈ lbP and M ∈ Mc
loc, then there is a unique continuous local mar-

tingale H ·M such that for any stopping time T strongly reducing4 M and H

(H ·M)T = (H(0, T ]) ·MT = (H(0, T ]) ·M = H ·MT .

We have that (H ·M)2
t −

∫ t

0
H2

s d[M ]s is a local martingale.

Remark. Note that M2
t −[M ]t is a continuous local martingale; this follows from Theorem

3, but is really a more elementary consequence of the definition of a local martingale.

The final extension is to allow the integrator to be what is known as a semimartingale:
the continuous process X is called a semimartingale5 if it can be represented in the form

Xt = X0 + Mt + At (4)

for some local martingale M vanishing at 0, and finite-variation process A vanishing at
zero. It turns out that the M and A can be taken to be continuous, and in that case the
representation (36) of X is unique. We refer to M as the (continuous) martingale part
of X, denoted Xc, and we use the notation [Xc]t = [X]t = [M ]t. It is now completely
obvious how we shall define the stochastic integral H ·X for a continuous semimartingale
X; we set

(H ·X)t = (H ·M)t + (H · A)t, (5)

where the first integral is in the sense of Theorem 3 and the second is just an ordinary
Lebesgue-Stieltjes integral.

Important and obvious properties inherited from the integration of simpler integrands
are

(i) (H, X) 7→ H ·X is bilinear;

(ii) H · (K ·X) = (HK) ·X for H, K ∈ lbP , X ∈ Sc.

We have now presented the main points of the construction of stochastic integrals of
locally-bounded previsible processes with respect to continuous semimartingales - so
what? This is no sterile abstract theory, as we are about to see - there are endless
applications, mainly of what is called stochastic calculus. The seed of stochastic calculus
is the following result.

4A stopping time T reduces M strongly if MT is bounded. We shall say that T reduces H strongly
if H(0, T ] is bounded.

5The class of all such is denoted Sc.
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Theorem 3 If X is a continuous semimartingale, then

X2
t −X2

0 − [X]t =

∫ t

0

2Xs dXs. (6)

The proof comes from the simple identity

X2
t −X2

t−h = 2Xt−h∆Xt + ∆X2
t .

Letting h ↓ 0, the first term on the right tends to 2XtdXt, the second to d[X]t.

Polarisation of this quadratic equation (38) leads immediately to the following important
extension.

Theorem 4 (Integration-by-parts formula.) For X, Y continuous semimartin-
gales,

XtYt = X0Y0 +

∫ t

0

XsdYs +

∫ t

0

YsdXs + [X, Y ]t. (7)

Of course, 4[X, Y ] = [X + Y ] − [X − Y ]. Theorem 5 lets us express products of semi-
martingales in terms of stochastic integrals; extending this, we can get expressions for
polynomial functions of semimartingales in terms of stochastic integrals; and then from
polynomials we can to all the way to general C2 functions.

Theorem 5 (Itô’s formula.) For any C2 function f : Rn → R, we have

f(Xt) = f(X0) +
n∑

i=1

∫ t

0

Dif(Xs) dX i
s +

1

2

n∑
i,j=1

∫ s

0

Dijf(Xs)d[X i, Xj]s. (8)

It is for (40) that the entire theory of stochastic integration is worth the effort6. Here’s
a quick example of how it can be used.

Theorem 6 Suppose that X is a continuous local martingale, and that [X]t = t. Then
X is Brownian motion.

6Some people refer to Itô’s formula as the change-of-variables formula, but perhaps that term should
be reserved for Itô’s personal use.

4



Proof. For θ ∈ R, consider the process

M θ
t = exp

[
iθXt +

1

2
θ2t

]
.

By Itô’s formula7, in the shorter differential notation

dM θ
t = M θ

t

{
iθdXt +

1

2
θ2dt +

1

2
(iθ)2d[X]t

}
= M θ

t iθdXt

using the fact that [X]t = t. Thus M θ is a local martingale, and since it is obviously
bounded on every interval [0, T ] for T ∈ R, it is a true martingale. Thus for all 0 ≤ s ≤ t
we have

Es

[
exp(iθ(Xt −Xs))

]
= exp(−1

2
θ2(t− s)).

Thus the distribution of (Xt − Xs) conditional on Fs is N(0, t − s), and hence X is
Brownian motion.

Corollary 1 Let M be a continuous local martingale, M0 = 0. Then M can be repre-
sented as

Mt = B([M ]t)

where B is a Brownian motion on a suitably-defined probability space. (See Theorem
IV.34.11 in RW).

Theorem 7 If W is a standard Brownian motion, and (Ft)t≥0 is the usual augmen-
tation8 of the filtration generated by W , then every Y ∈ L2(FT ) can be represented
as

Y = EY +

∫ T

0

HsdWs (9)

for some previsible H such that E
∫ T

0
H2

s ds < ∞. In particular, every L2-bounded (Ft)
martingale is a stochastic integral with respect to W .

Remark. In fact, any Y ∈ L1(FT ) can be represented as a stochastic integral (41).
Moreover, all local martingales in the Brownian filtration are represented as stochastic
integrals with respect to W - see RW IV.36.5.

7Of course, Mθ is complex-valued, but you can obviously work on the real and imaginary parts
separately if you are bothered by this apparent extension of the validity of the formula.

8See RW II.67; this is needed for technical reasons.
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Change of measure. Suppose that Q is a probability measure on (Ω,F , (F)0≤t≤T )
which is equivalent to P . Then the process

Zt ≡
dQ

dP

∣∣∣∣
Ft

is a positive P -martingale. It is a straightforward exercise to prove that M is a Q-
martingale if and only if MZ is a P -martingale; a little more effort establishes the
result that M is a Q-local martingale if and only if MZ is a P -local martingale. See
RW, IV.17.

The famous theorem of Cameron & Martin, Girsanov, Maruyama, ... concerning changes
of measure in the Brownian filtration is useful and important; informally, it says that
a change of measure is in effect a change of the drift of a Brownian motion. See RW
Theorem IV.38.5 for the n-dimensional generalisation (and proof) of the following result.

Theorem 8 Suppose that (Ω,F , (F)0≤t≤T , P ) is the (usual augmentation of) the filtered
probablity space generated by Brownian motion X.

(i) If Q ∼ P , then there exists a previsible process c such that

Zt ≡
dQ

dP

∣∣∣∣
Ft

= exp

( ∫ T

0

csdXs −
1

2

∫ T

0

c2
s ds

)
, (10)

and under Q,

X̃t ≡ Xt −
∫ t

0

cs ds is a martingale. (11)

(ii) Conversely, if γ is a previsible process such that

ζt ≡ exp

( ∫ t

0

γsdXs −
1

2

∫ t

0

γ2
s ds

)
(12)

is a martingale, and if we define a measure Q on (Ω,FT ) by

dQ

dP

∣∣∣∣
FT

= ζT ,

then under Q

X̃t ≡ Xt −
∫ t

0

γs ds is a martingale.
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