OPTIMAL INVESTMENT: Examples 2

1 . An investor may invest in a single log-Brownian asset, and in a riskless bank account bearing a constant interest rate r. His wealth evolves as

$$dw_t = rw_t dt + \theta_t (\sigma dW_t + (\mu - r)dt) - c_t dt$$

where c_t is his consumption rate at time t, and θ_t is the cash value of his holding of the risky asset at time t. If his objective is to maximize $E \int_0^\infty e^{-\rho t} U(c_t) dt$, where $U(x) = -\gamma^{-1} \exp(-\gamma x)$, derive the HJB equation for his value function V. Show that the HJB equation is solved by $V(w) = -A \exp(-r\gamma w)$ for some constant A > 0. Show that this solution of the HJB equation implies that the agent's optimal consumption rate is of the form $c_t^* = rw_t + c_0^*$ for some constant c_0^* , and that the optimal investment strategy is to keep a fixed monetary value invested in the risky asset.

- **2**. So what problem did you *actually* solve in Question 1?
- **3** . An agent may invest in a single log-Brownian asset,

$$dS_t = S_t(\sigma dW_t + \mu dt),$$

and in a riskless bank account bearing a constant interest rate r. Additionally, he receives a stream $(\varepsilon_t)_{t\geq 0}$ of endowment. Suppose that the agent's objective is to maximize $E \int_0^\infty e^{-\beta t} U(c_t) dt$, where $U'(x) = x^{-R}$ for some R > 0 different from 1. Solve his problem in each of the following two cases:

- 1. $\varepsilon_t = a \text{ constant for all } t \ge 0;$
- 2. the endowment evolves as

$$d\varepsilon_t = \varepsilon_t (v dW_t + \alpha dt)$$

for constants v and α , where \tilde{W} is another Brownian motion, $dWd\tilde{W} = \rho dt$.

4 . An agent may invest in a riskless bank account yielding interest at rate r, or in a stock evolving as

$$dS_t = S_t(\sigma dW_t + \mu dt).$$

His objective is to maximise

$$E\Big[\int_0^\infty U(t,c_t) dt\Big],$$

where U is CRRA. If he chooses to follow a proportional strategy, where he invests a fixed proportion π of his wealth in the stock, and consumes at rate γw_t for some constant γ , find the value of his objective.

Suppose now that the true value of μ is unknown; the agent knows only that $\mu \in J$ for some interval J which contains r. If the agent wishes to maximise

$$\min_{\mu \in J} E\Big[\int_0^\infty U(t, c_t) dt\Big],$$

show that his optimal rule is to invest nothing in the stock, and that

$$\max_{c,\theta} \min_{\mu \in J} E\Big[\int_0^\infty U(t,c_t) dt\Big] = \min_{\mu \in J} \max_{c,\theta} E\Big[\int_0^\infty U(t,c_t) dt\Big]$$

5 . Suppose we have the usual dynamics, but now the objective of the agent is given as

$$\sup E \int_0^\infty e^{-\rho t} U(\xi_t) \, dt, \qquad (0.1)$$

where the process ξ solves

$$d\xi_t = \lambda (c_t^{\alpha} - \xi_t) dt \tag{0.2}$$

for positive constants α and λ , and U is CRRA. Find the optimal policy of the agent as completely as you can.

6 . An agent works until a time τ of his choosing, at which time he retires. While working, he receives a constant income stream of ε , which incurs a disutility $\lambda > 0$. He invests his wealth in a riskless bank account bearing interest rate r, and in a risky stock with constant volatility σ and rate of growth μ . His wealth therefore evolves as

$$dw_t = rw_t dt + \theta(\sigma dW_t + (\mu - r)dt) - c_t dt + \varepsilon I_{\{t < \tau\}} dt$$

(where W is a standard Brownian motion, and θ_t is the time-t value of his holding of the stock) and he seeks to maximise

$$E \int_0^\infty e^{-\rho t} (U(c_t) - \lambda I_{\{t \le \tau\}}) dt$$

Assume that $U'(x) = x^{-R}$ for some positive constant $R \neq 1$. Show that the critical level at which he retires is $\gamma_M^{-1}(\varepsilon/\lambda)^{1/R}$. By introducing the dual variable z = V'(w), solve his problem as completely as you can.