## OPTIMAL INVESTMENT: Examples 2

1. An investor may invest in a single log-Brownian asset, and in a riskless bank account bearing a constant interest rate $r$. His wealth evolves as

$$
d w_{t}=r w_{t} d t+\theta_{t}\left(\sigma d W_{t}+(\mu-r) d t\right)-c_{t} d t
$$

where $c_{t}$ is his consumption rate at time $t$, and $\theta_{t}$ is the cash value of his holding of the risky asset at time $t$. If his objective is to maximize $E \int_{0}^{\infty} e^{-\rho t} U\left(c_{t}\right) d t$, where $U(x)=-\gamma^{-1} \exp (-\gamma x)$, derive the HJB equation for his value function $V$. Show that the HJB equation is solved by $V(w)=-A \exp (-r \gamma w)$ for some constant $A>0$. Show that this solution of the HJB equation implies that the agent's optimal consumption rate is of the form $c_{t}^{*}=r w_{t}+c_{0}^{*}$ for some constant $c_{0}^{*}$, and that the optimal investment strategy is to keep a fixed monetary value invested in the risky asset.

2 . So what problem did you actually solve in Question 1?
3. An agent may invest in a single log-Brownian asset,

$$
d S_{t}=S_{t}\left(\sigma d W_{t}+\mu d t\right)
$$

and in a riskless bank account bearing a constant interest rate $r$. Additionally, he receives a stream $\left(\varepsilon_{t}\right)_{t \geq 0}$ of endowment. Suppose that the agent's objective is to maximize $E \int_{0}^{\infty} e^{-\beta t} U\left(c_{t}\right) d t$, where $U^{\prime}(x)=x^{-R}$ for some $R>0$ different from 1. Solve his problem in each of the following two cases:

1. $\varepsilon_{t}=a$ constant for all $t \geq 0$;
2. the endowment evolves as

$$
d \varepsilon_{t}=\varepsilon_{t}\left(v d \tilde{W}_{t}+\alpha d t\right)
$$

for constants $v$ and $\alpha$, where $\tilde{W}$ is another Brownian motion, $d W d \tilde{W}=\rho d t$.
4. An agent may invest in a riskless bank account yielding interest at rate $r$, or in a stock evolving as

$$
d S_{t}=S_{t}\left(\sigma d W_{t}+\mu d t\right)
$$

His objective is to maximise

$$
E\left[\int_{0}^{\infty} U\left(t, c_{t}\right) d t\right]
$$

where $U$ is CRRA. If he chooses to follow a proportional strategy, where he invests a fixed proportion $\pi$ of his wealth in the stock, and consumes at rate $\gamma w_{t}$ for some constant $\gamma$, find the value of his objective.
Suppose now that the true value of $\mu$ is unknown; the agent knows only that $\mu \in J$ for some interval $J$ which contains $r$. If the agent wishes to maximise

$$
\min _{\mu \in J} E\left[\int_{0}^{\infty} U\left(t, c_{t}\right) d t\right]
$$

show that his optimal rule is to invest nothing in the stock, and that

$$
\max _{c, \theta} \min _{\mu \in J} E\left[\int_{0}^{\infty} U\left(t, c_{t}\right) d t\right]=\min _{\mu \in J} \max _{c, \theta} E\left[\int_{0}^{\infty} U\left(t, c_{t}\right) d t\right]
$$

5 . Suppose we have the usual dynamics, but now the objective of the agent is given as

$$
\begin{equation*}
\sup E \int_{0}^{\infty} e^{-\rho t} U\left(\xi_{t}\right) d t \tag{0.1}
\end{equation*}
$$

where the process $\xi$ solves

$$
\begin{equation*}
d \xi_{t}=\lambda\left(c_{t}^{\alpha}-\xi_{t}\right) d t \tag{0.2}
\end{equation*}
$$

for positive constants $\alpha$ and $\lambda$, and $U$ is CRRA. Find the optimal policy of the agent as completely as you can.

6 . An agent works until a time $\tau$ of his choosing, at which time he retires. While working, he receives a constant income stream of $\varepsilon$, which incurs a disutility $\lambda>0$. He invests his wealth in a riskless bank account bearing interest rate $r$, and in a risky stock with constant volatility $\sigma$ and rate of growth $\mu$. His wealth therefore evolves as

$$
d w_{t}=r w_{t} d t+\theta\left(\sigma d W_{t}+(\mu-r) d t\right)-c_{t} d t+\varepsilon I_{\{t \leq \tau\}} d t
$$

(where $W$ is a standard Brownian motion, and $\theta_{t}$ is the time- $t$ value of his holding of the stock) and he seeks to maximise

$$
E \int_{0}^{\infty} e^{-\rho t}\left(U\left(c_{t}\right)-\lambda I_{\{t \leq \tau\}}\right) d t
$$

Assume that $U^{\prime}(x)=x^{-R}$ for some positive constant $R \neq 1$. Show that the critical level at which he retires is $\gamma_{M}^{-1}(\varepsilon / \lambda)^{1 / R}$. By introducing the dual variable $z=V^{\prime}(w)$, solve his problem as completely as you can.

