OPTIMAL INVESTMENT

1. (i) If W is a Brownian motion, prove that for any $a \in \mathbb{R}$ the process $M_{t}=\exp \left(a W_{t}-\frac{1}{2} a^{2} t\right)$ is a martingale, in two ways:
2. Use distributional properties of Brownian motion to calculate $E\left[M_{t} \mid \mathcal{F}_{s}\right]$ for $0 \leq s \leq t$;
3. Use Itô's formula to discover that M is a local martingale, and then establish estimates sufficient to prove that M is in fact a martingale.
(ii) Using (i) or otherwise, prove that $W_{t}^{2}-t$ is a martingale.
(iii) If X is a continuous real-valued process such that for every $a \in \mathbb{R}$ the process $\exp \left(a X_{t}-\frac{1}{2} a^{2} t\right)$ is a martingale, prove that X is a Brownian motion.
(iv) If we use the martingale $M_{t}=\exp \left(a W_{t}-\frac{1}{2} a^{2} t\right)$ to define a new probability measure \tilde{P} by the recipe

$$
\left.\frac{d \tilde{P}}{d P}\right|_{\mathcal{F}_{t}}=M_{t}
$$

prove that under \tilde{P} the process $\tilde{W}_{t}=W_{t}-a t$ is a Brownian motion.
2. If X is a Brownian motion in $\mathbb{R}^{n}, n>1$, started at 0 , prove that

$$
M_{t} \equiv\left|X_{1+t}\right|-\int_{0}^{t} \frac{n-1}{2\left|X_{1+s}\right|} d s
$$

is a local martingale. What is its covariation process? In the case $n=3$, show that
(i) $Y_{t} \equiv 1 /\left|X_{1+t}\right|$ is a local martingale;
(ii) Y is bounded in L^{2};
(iii) Y is not a martingale.
3. If X, Y are independent Brownian motions, find the Itô expansions of the following semimartingales:
(i) Y_{t} / X_{t};
(ii) $\tan ^{-1}\left(Y_{t} / X_{t}\right)$;
(iii) $\left(X_{t}, Y_{t}\right) / \sqrt{X_{t}^{2}+Y_{t}^{2}}$;
(iv) $X_{t} /\left(X_{t}^{2}+Y_{t}^{2}\right)$.

In each case, comment on any possible issues concerning the application of Itô's formula.

4 . If $Z_{t}=X_{t}+i Y_{t}$ is a complex Brownian motion (so X and Y are independent standard Brownian motions), and f is an analytic function, prove that $f(Z)$ is a local martingale. What is its covariation process? Find the Itô expansion of $\log Z_{t}$.

5 . Suppose that the real-valued process X solves the stochastic differential equation

$$
d X_{t}=\sigma\left(X_{t}\right) d W_{t}+b\left(X_{t}\right) d t, \quad X_{0}=x_{0} \in \mathbb{R}
$$

where $\sigma>0$ and b are Lipschitz functions. Assuming that σ^{-2} is locally integrable, prove that $s\left(X_{t}\right)$ is a local martingale, where

$$
s^{\prime}(x)=\exp \left(-\int^{x} \frac{2 b(y)}{\sigma(y)^{2}} d y\right)
$$

and deduce that for $a<x_{0}<b$, and $\tau=\inf \left\{t: X_{t} \notin(a, b)\right\}$

$$
P(X(\tau)=b)=\frac{s\left(x_{0}\right)-s(a)}{s(b)-s(a)}
$$

6 . With standard multivariate asset dynamics

$$
d S_{t}=S_{t}\left(\sigma d W_{t}+\mu d t\right)
$$

and objective

$$
E\left[\int_{0}^{T} U\left(t, c_{t}\right) d t+U\left(T, w_{T}\right)\right]
$$

where

$$
U(t, c)=a e^{-\rho t} u(c) \quad(0 \leq t<T), \quad U(T, c)=b u(c)
$$

and $u(c)=c^{1-R} /(1-R)$ for some $R>0, R \neq 1$, prove that

$$
\begin{aligned}
V(t, w) & =f(t) u(w) \\
\pi_{t} & =\pi_{M} w_{t} \\
c_{t} & =\gamma(t) w_{t}
\end{aligned}
$$

where

$$
\begin{aligned}
f(t) & =\left\{b^{1 / R} e^{-q(T-t) / R}+\frac{R a^{1 / R}}{\rho+q} e^{-\rho t / R}\left(1-e^{-(\rho+q)(T-t) / R}\right)\right\}^{R} \\
\pi_{M} & =R^{-1}\left(\sigma \sigma^{T}\right)^{-1}(\mu-r \mathbf{1}) \\
\gamma(t) & =a^{1 / R} e^{-\rho t / R} f(t)^{-1 / R}
\end{aligned}
$$

and

$$
\begin{equation*}
q \equiv(R-1)\left(r+|\kappa|^{2} / 2 R\right), \quad \kappa \equiv \sigma^{-1}(\mu-r \mathbf{1}) . \tag{0.1}
\end{equation*}
$$

