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1 Introduction

If wt denotes the assets at time t of an insurance company, then the evolution of w is given
by

dwt = rt(wt − θt · 1)dt+ θt · (dSt/St−)− δtdt− dCt + πtdt,

where rt is the riskless rate, θt is the portfolio of holdings of the N risky assets, whose
prices are St = (S1

t , . . . , S
N
t ) at time t, δt is dividend rate at time t, Ct is the cumulative

claims by time t, πt the rate of premium income. Here 1 is the N -vector of 1’s.

The company controls θ, δ, and in some measure it controls C and π as well (it can refuse, or
reinsure, certain risks; it can vary the premia which it charges for cover – higher premiums
typically will reduce the volume of business coming in); how should the firm choose these
controls?

The answer to this depends on the dynamics of r and S; on the way that π and C respond
to pricing decisions, but mainly on the objective of the insurance company. Some examples
of objectives we might be interested in:

(i) E
[∫ τ

0
e−ρtU(δt)dt

]
, where τ := inf{t : wt = 0};

(ii) E
[∫ τ

0
e−ρtU(δt)dt−Ke−ρτ

]
∗These notes grew out of a short course given at the Mathematisches Institut, Ludwig-Maximilians

Universität, München, 29-30 June 2006. It is a pleasure to thank the organisers, Damir Filipovic and
Francesca Biagini, and all the participants for their interest and comments. Special thanks to Yuliya
Bregman who prepared the first LATEXdraft of these notes. The study of examples is far from complete,
and if anyone is interested to add others to the collection in Section 3, I would be pleased to hear more.
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(iii) E
[∫ τ

0
e−ρt{U(δt)− L(δt − δ̄t)dt−Ke−ρτ

]
, where δ̄t =

∫ t

−∞ λe
λ(s−t)δsds

The second can be thought of as the first with a penalty for ruin, which would constrain
the firm to behave prudently. The third criterion incorporates a penalty also for dividends
which vary too much over time, which would induce the firm to offer a much smoother
dividend flow, something which investors appear to like.

Typically in these criteria, we shall think of U as being strictly increasing, strictly concave,
though for a profit-maximising firm we shall have U is linear. In the last example, we
would have a convex loss function L.

More general objectives (recursive utility, for example) might be considered too, but these
will do for the present discussion. The forms assumed are simple enough to allow us to get
some quite explicit solutions to these problems, for some quite interesting asset dynamics
as well.

Modelling ideas:

(i) The spot rate (rt)t≥0 is often taken to be constant, but if we drop this we could allow
it to be some simple diffusion process, such as a Vasicek model

drt = σsdWt + β(r̄ − rt)dt.

Even this simple dynamic must be solved numerically, so we could easily allow more
general one-dimensional diffusions for the spot rate, such as the Cox-Ingersoll-Ross
model, or the Black-Karasinski model.

(ii) The portfolio process θ may be constrained to take values in a convex set; or may
have to be piecewise constant; or changes may incur losses (proportional transaction
costs, liquidity costs, for example).

(iii) A common assumption for S is than

dSi
t

Si
t

=
∑

j

σijdW
j
t + µidt

for constants σij, µi. Sometimes we use log-Lévy dynamics, but this always com-
plicates the analysis considerably, and only occasionally leads to qualitatively novel
results. We shall later discuss some interesting variants on these dynamics, where we
know σ, but not µ, and have to filter it from the data; and the case where σ, µ are
known functions of an underlying Markov chain (Markov-modulated dynamics):

dSt = St(σ(ξt)dWt + µ(ξt)dt),

where ξ is some finite state Markov chain.
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(iv) The claims process Ct is frequently modelled as a subordinator, but often it is tech-
nically easier to work with

Ct = at+ bWt

for constants a > 0 and b ∈ R (the reasoning being that a subordinator less its mean
growth rate looks quite like a Brownian motion).
The premium income could b assumed to be constant for a first approximation, but
more interestingly is to impose some relationship for the dependence of volume of
business on price, so that π = pv(p). In this case the Brownian approximation to the
claims will be

dCt =
√
v(pt)adWt + v(pt)bdt.

Types of risk

• Market risk - financial assets do badly;

• Model risk - uncertainty about parameters makes some of your choices bad;

• Regime risk - rates of return on assets may vary with business cycle, mortality may
change a lot (AIDS, new treatments, global warming, floods);

• Large loss risk - earthquakes for property, longevity for life.

While the models we look at may be oversimplified, they do give us the possibility of
discovering relative magnitudes of the effects studied. This is important, because it helps
us to understand what effects matter most; these can then be modelled more realistically
as the next stage of our understanding.

2 Optimal investment without insurance

Just to get started, let’s look at the optimal investment/consumption in the absence of
any insurance component. For simplicity, we will just derive things for the situation with
a single risky asset; only the notation gets more complicated with many risky assets. So
the wealth dynamics become

dwt = rt(wt − θt)dt+ θtdSt/St− − δtdt.

In terms of the bank account numeraire dBt = rtBtdt (so that Bt = exp{
∫ t

0
rsds}), we may

consider W̃t := Wt/Bt and obtain

dw̃t = θtdS̃t/S̃t− − δ̃tdt,
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where S̃t = St/Bt, δ̃t = δt/Bt. In effect, this reduces to the case where r ≡ 0. Suppose
now we consider the problem

sup
θ,δ

E[

∫ T

0

U(t, δt)dt+ u(wt)]

and suppose that this supremum is attained at (θ∗, δ∗). If we perturb to θ = θ∗ + εη, δ =
δ∗ + εψ, then the change in wT is given by

w̃T =

∫ T

0

θt
dS̃t

S̃t

−
∫ T

0

δ̃tdt

= w̃∗T + ε

{∫ T

0

ηt
dS̃t

S̃t

−
∫ T

0

ψ̃tdt

}
.

The change in the objective to first order in ε is

εE

[∫ T

0

U ′(t, δ∗)ψtdt+ u′(w∗T )BT

(∫ T

0

ηt
dS̃t

S̃t

−
∫ T

0

ψ̃t

Bt

dt

)]
= 0.

Interpreting what this says, since the perturbations ψ, η are (presumably) arbitrary, we
must have

U ′(t, δ∗t ) =
1

Bt

Et[BTu
′(w∗T )] (2.1)

and that under the measure Q
dQ
dP

∣∣∣∣
Ft

∝ Btu
′(w∗T ) (2.2)

the process S̃t is a martingale. So we have argued that if we define the state-price density
process ζt by

ζt = U ′(t, δ∗t ) (2.3)

then
ζtSt, Zt := ζtBt are P-martingales.

Special case (Merton, complete log-Brownian market): Take the dynamics of S to be

dSt = St(σdWt + µdt), σ > 0, µ ∈ R,

with constant rt =: r. In this case, the martingale Zt has to have the property that
ζtSt = ZtB

−1
t St = ZtS̃t is a martingale. But we know that

dS̃t = S̃t(σdWt + (µ− r)dt)

= S̃tσ(dWt + κdt),
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where κ ≡ (µ − r)/σ, the so-called Sharpe ratio. So the change-of-measure martingale
Z has to change dWt + κdt into a martingale. By the Cameron-Martin-Girsanov (CMG)
theorem, this gives us

dZt = Zt(−κdWt).

So we have explicitly

ζt = exp{−rt− κWt −
1

2
κ2t}

(or we could equally well work with any positive multiple of this process).

Suppose we now take the objective

E
[∫ ∞

0

e−ρtU(δt)dt

]
to be maximised with the constraint wt ≥ 0 for any t. Our little first-order argument tells
us to expect that

e−ρtU ′(δ∗t ) = λζt

for some λ > 0 fixed, so that

δ∗t = I(λe−ρtζt), I := (U ′)−1.

This gets us a long way, but how do we decide what λ is? We use risk-neutral valuation
principle; wealth at time 0 equals the net present value (NPV) of all future consumption,
so that

wt = Et

[∫ ∞

t

ζu
ζt
δ∗udu

]
= ζ−1

t Et

[∫ ∞

t

ζuI(λe
−ρuζu)du

]
which relates λ and w0. This looks good (and is correct) but there are a couple of out-
standing questions:

(i) is there some portfolio that would allow us to consume δ∗ while keeping w ≥ 0?

(ii) Is this optimal?

The answer to the first is ”yes”: it uses Brownian integral representation result. For the
second, we can carry out a direct verification, since we have the solution so explicitly.

A special case: CRRA utility.

This section illustrates the use of the HJB (=Hamilton-Jacobi-Bellman) approach to the
Merton problem. Suppose that we have

U(x) =
x1−R

1−R
(2.4)
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for some R > 0, R 6= 11. Then U ′(x) = x−R, I(x) = x−1/R and we shall have

w0 = E
[∫ ∞

0

ζ1−1/R
u e−ρu/Rλ−1/Rdu

]
= λ−1/RE

[∫ ∞

0

exp
{
−ρu
R
− (r +

1

2
κ2)(1− 1

R
)u− (1− 1

R
)κWu

}
du

]
= λ−1/R

∫ ∞

0

exp
{
−ρu
R
− (r +

1

2
κ2)(1− 1

R
)u− 1

2
(1− 1

R
)2κ2

}
du

= λ−1/RR
(
ρ+ (R− 1)

(
r + κ2/2R

))−1

≡ λ−1/R

γ
,

where we have defined the constant γ by

γ = R−1
(
ρ+ (R− 1)(r + κ2/2R)

)
(2.5)

So this links wealth and λ; we have λ = (γw0)
−R. Doing the similar calculation at time t,

we get

wt =
λ−1/R(eρtζt)

− 1
R

γ
=
δt
γ
.

The value of the objective is

V (w0) = E
[∫ ∞

0

U(δ∗t )e
−ρtdt

]
= E

[∫ ∞

0

(λeρtζt))
1−1/R

1−R
e−ρt dt

]
=

λ1−1/R

1−R
E
[∫ ∞

0

exp{−ρt/R− (r +
1

2
κ2)(1−R−1)t− κ(1−R−1)Wt} dt

]
=

λ1−1/R

1−R
· 1

γ

=
(γw0)

1−R

1−R
· 1

γ
= γ−RU(w0).

Alternative approach: Martingale Principle of Optimal Control

If

V (w) = supE

[∫ ∞

0

e−ρtU(δt)dt

∣∣∣∣ w0 = w

]
,

1The case R = 1 corresponds to log utility, and is handled by similar techniques, though the forms of
the answers look quite a bit different.
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then Yt =
∫ t

0
e−ρsU(δs)ds+e

−ρtV (wt) is a supermartingale, and a martingale under optimal
control.
Now we have dynamics

dw = rwdt+ θ(σdW + (µ− r)dt)− δtdt,

so if we expand Y by Itô’s formula,

dY = d(loc.mart.) +

(
U(δt)− ρV (wt) +

1

2
σ2θ2

tV
′′(wt) + (rwt + θ(µ− r)− δt)V

′(wt)

)
e−ρtdt

≡ d(loc.mart.) + Φdt

Now in order that Y should be a supermartingale, we need that the drift Φ should be
non-positive, and for Y to be a martingale under optimal control we shall have to have
that the supremum of Φ over choices of the controls should be zero2. So

0 = sup
θ,δ

(
U(δt)− ρV (wt) +

1

2
σ2θ2

tV
′′(wt) + (rwt + θ(µ− r)− δt)V

′(wt)

)
= Ũ(V ′)− ρV + rwtV

′ − 1

2
κ2 (V ′)2

V ′′ , (2.6)

where Ũ is the convex dual function Ũ(y) = sup{U(x) − yx}. In general, there is no
closed-form solution to the HJB equations, but if U(x) = x1−R/(1−R) we have

Ũ(y) = − y1−1/R

1− 1/R
,

and a solution of the form V (w) = aU(w) for some constant a is evident from scaling.
Check it out - you get the same.

The Merton problem with CRRA is a baseline example for the whole subject. It is simple,
and has a closed-form solution, in which the investor’s preference parameters (ρ,R) appear
completely explicitly. The form of the solution is simple and intuitive - keep proportion 3

πM = (µ − r)/σ2R of your wealth in the risky asset, consume at rate γw. It provides a
natural framework for studying the effects of many variants of the basic Merton example.
Here’s how. If we consider some variant of the Merton problem (for example, with trans-
action costs) which has a value function v instead of the Merton value function VM , then
we derive the efficiency of the modified problem to be that θ > 0 for which

v(w) = VM(θw).

This gives us a way to assess the impact of the variation introduced.

2These statements are of course only approximately correct - a local martingale can be a supermartingale
- but the point is that we are describing a recipe for calculating the solution to the problem. Once we
know what that solution is, we have a simple verification methodology to confirm that what we believe is
optimal actually is.

3When there are multiple log-Brownian assets, you keep proportions πM = R−1(σσT )−1(µ− r1) in the
risky assets.
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3 Variations on the basic story.

1. Stochastic interest rates.

Suppose that the riskless rate is not constant, but diffuses as in a Vasicek model:

dr = σrdW
′ + β(r̄ − r)dt,

where dW ′dW = ηdt. What happens? We can derive the HJB equations for

V (w, r) = supE

[∫ ∞

0

e−ρtU(δt)dt

∣∣∣∣ w0 = w, r0 = r

]
,

which must satisfy

0 = sup
δ,θ

(
U(δ)− ρV +

1

2
(σ2θ2Vww + 2ηθσσrVwr + σ2

rVrr)

+(rw + θ(µ− r)− δ)Vw + β(r̄ − r)Vr)
)

= Ũ(Vw)− ρV + rwVw + β(r̄ − r)Vr +
1

2
σ2

rVrr −
((µ− r)Vw + ησσrVwr)

2

2σ2Vww

.

However, by scaling we see we must have

V (w, r) = f(r)U(w)

for some function f ; reworking the HJB equations gives the ODE

0 = (1−R)Ũ(f)− ρf + r(1−R)f + Lf +
((µ− r)f + ησσrf

′)2

2σ2Rf
(1−R)

for f , where L is the generator of the diffusion for r:

L ≡ 1

2
σ2

r

∂2

∂r2
+ β(r̄ − r)

∂

∂r
.

We can re-express this in the form

(ρ+ (R− 1)r)f − Lf =
((µ− r)f + ησσrf

′)2(1−R)

2σ2Rf
+ (1−R)Ũ(f) ≡ Ψ(f),

so iterative solution possible. In more detail, we take some initial guess f (0) for f , and
then recursively generate approximations f (n) by the recipe

(ρ+ (R− 1)r)f (n) − Lf (n) = Ψ(f (n−1).

8



2. Transaction costs.
Consider the situation where

dXt = rXtdt+ (1− ε)dMt − (1 + ε)dLt − δtdt

dYt = Yt(σdWt + µdt)− dMt + dLt,

where Xt is value of holding of cash, Yt is value of holding of stock at time t. Mt(Lt) the
cumulative sales of stock by time t. The investor’s goal is to achieve

V (x, y) = supE

[∫ ∞

0

e−ρtU(δt)dt

∣∣∣∣ X0 = x, Y0 = y

]
,

with U(x) = x1−R/(1−R) as in the Merton problem. The HJB equations here give

sup

[
U(δ)− ρV +

1

2
σ2y2Vyy + µyVy + (rx− δ)Vx

]
≤ 0, (1− ε)Vx ≤ Vy ≤ (1 + ε)Vx.

We shall once again have scaling, so if we set V (x, y) = y1−Rf(p), where p ≡ x/y, we can
re-express this as

0 = Ũ(f ′) +
1

2
σ2p2f”(p) + (σ2R− µ+ r)pf ′(p) + {µ(1−R)− ρ− 1

2
σ2R(1−R)}f(p),

(1− ε)f ′ ≤ (1−R)f − pf ′(p) ≤ (1 + ε)f ′.

Alternatively, if we write f(p) ≡ g(log(p)), we simplify the HJB differential operator quite
a bit:

0 ≥ e−t(1−1/R)Ũ(g′(t)) + a2g
′′(t) + a1g

′(t) + a0g(t)− ρg(t),

0 ≥ (1− ε+ et)g′(t)− (1−R)etg(t),

0 ≥ −(1 + ε+ et)g′(t) + (1−R)etg(t).

where t ≡ log(p), and

a2 =
1

2
σ2,

a1 = (σ2R + r − µ− 1

2
σ2),

a0 = (R− 1)(
1

2
σ2R− µ).

Constantinides solves a simplified form of this problem, and Davis & Norman analyse it
quite completely. The main conclusion is that there is some interval K = [ts, tb] for t
such that while t remains within [ts, tb], you make no change in your portfolio; if ever
t < ts you immediately sell enough stock to move back into the interval K, and if ever
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t > tb you immediately buy sufficient stock to move t back into the interval K. No closed-
form solution is known, but Davis & Norman show how the ODE for g may be solved by
iteratively solving the ODE with different initial conditions until the solution closes in on
one which satisfies the C2 pasting condition at the ends of K.

The main things we need to note are

(i) the form of the solution;

(ii) the fact that the loss of efficiency is O(ε
2
3 ) - see (4 ), (2 ).

This last tells us that when we consider typical values for the transaction cost (of the order
of 1% or less), the impact on efficiency will be small.

3. Parameter uncertainty.

This example and the next are discussed in more detail in (1 ).

The 20’s example. This little example, which requires no more than an understanding of
basic statistical concepts, should be remembered by anyone who works in finance.

Suppose we consider a stock, with annualised rate of return µ = 0.2, and annualised
volatility σ = 0.2 = 20%. We see daily prices for N years, and we want to observe
for long enough that our 95% confidence interval for σ (respectively, µ) is of the form
[σ̂ − 0.01, σ̂ + 0.01] (respectively, [µ̂ − 0.01, µ̂ + 0.01]) - so we have a 19 in 20 chance of
knowing the true value to one part in 20.

How big must N be to achieve this precision in σ̂?

Answer: about 11 years;

How big must N be to achieve this precision in µ̂?

Answer: about 1580 years !!

The most important thing to know about the rate of growth of a stock is that we know
almost nothing about it! When it comes to the Merton problem, we invest a fixed propor-
tion of our wealth in the risky asset, but that proportion depends on the rate of growth
parameter µ, which we do not know ... So while the analysis of the Merton problem is
correct, the model assumptions do not fit reality well.

Instead, let us suppose we have wealth dynamics

dwt = r(wt − θt)dt+ θtσ(dWt + αdt)− δtdt,
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where α = σµ is not known, but σ is. We propose a N(α̂, τ−1
0 ) prior for α, and try to filter

α from the observations. Write

Xt = Wt + αt = σ−1
{
log(St/S0) +

1

2
σ2t
}
,

so that we see X, and must filter α from that. According to CMG, the likelihood of
(Xs)0≤s≤t if α is the true value is

exp{αXt −
1

2
α2t},

so the posterior for α is proportional to

exp{−1

2
τ0(α− α̂0)

2 + αXt −
1

2
α2t} ∝ exp

{
−1

2
(τ0 + t)

(
α− α̂0τ0 +Xt

τ0 + t

)2
}
.

So the posterior for α given (Xs)0≤s≤t is N(α̂t, τ
−1
t ), where τt = τ0 + t, α̂t = (α̂0τ0 +

Xt)/(τ0 + t). Standard results from filtering theory (see, for example, VI.8 in (3 )) tell us
that

dXt = dWt + αdt = dŴt + α̂tdt = dŴt +
α̂τ0 +Xt

τ0 + t
dt,

dα̂t =
dŴt

τ0 + t
,

so the dynamics ofXt are different in the observation filtration. For this situation, probably
the best thing to do is to work with state-price density approach. As we’ve seen, we relate
the state-price density to the optimal consumption rate process by

e−ρtU ′(δt) = λζt,

and this then has the property that ζtSt is a martingale. Now

dSt = σStdXt = σSt

(
dŴt + α̂tdt

)
,

so the change-of-measure martingale is

exp

[∫ t

0

(σ−1r − α̂s)
2dŴs −

∫ t

0

(σ−1r − α̂s)
2ds

]
and we are able to derive after some calculations the expression

ζt =

(
τt
τ0

) 1
2

e−rt exp

{
−1

2
m2

t τt +
1

2
m2

0τ0

}
, mt = α̂t − σ−1r.

We therefore conclude that
δ∗t = I(λζte

ρt),
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where λ is fixed by the budget constraint

w0 = E
[∫ ∞

0

ζtδ
∗
t dt

]
= λ−1/RE

[∫ ∞

0

e−ρt/Rζ
1−1/R
t dt

]
= λ−1/Rφ(α̂0, τ0)

and the optimised objective is

E
[∫ ∞

0

e−ρtU(δ∗t )dt

]
= E

[∫ ∞

0

1

1−R
e−ρt/Rλ1−1/Rζ

1−1/R
t dt

]
=

λ1−1/R

1−R
φ(α̂0, τ0)

= u(w0)φ(α̂0, τ0)
R.

Numerical examples:. . .

4. Infrequent portfolio rebalancing.

Suppose we have a standard Merton investor, maximizing

E[

∫ ∞

0

e−ρtU(δt)dt], U ′(x) = x−R

and now instead of rebalancing continuously, we only allow the agent to rebalance the
portfolio at times t = 0, h, 2h, . . . . Obviously the agent does less well, but does this
actually matter? Let’s also suppose the rate δ is held constant in each interval, so the
value solves

V (w) = sup
δ,p

[
U(δ)

1− e−ρh

ρ
+ e−ρhEV

(
(w − δh)(pS + (1− p)erh)

)]
,

where S = exp{σ
√
hZ + (µ− 1

2
σ2)h} with Z ∼ N(0, 1). Now scaling tells us that for some

constant a, V (w) = aU(w), so we get

a

1−R
= sup

t,p

[
t1−R

1−R

1− e−ρh

ρ
+ e−ρhaE

(1− th)1−R

1−R
(pZ + (1− p)erh)1−R

]
= sup

t

[
h̃

t1−R

1−R
+ ae−ρh(1− th)1−RK

]
,

whereK = (1−R)−1 supp E(pS+(1−p)erh)1−R, h̃ = 1−e−ρh

ρ
, and therefore we can maximize

explicitly. Routine calculations lead us to

a1/R =
h(h̃/h)1/R

1− (K(1−R)e−ρh)1/R
.

Some numerical values. . .
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5. Optimisation under drawdown constraints.

In this problem, we assume the (by now) standard dynamics

dwt = r(wt − θt)dt+ θt(σdWt + µdt)− δtdt

for the wealth and objective

sup E[

∫ ∞

0

e−ρtU(δt)dt], U ′(x) = x−R,

but now we shall impose the constraint

wt ≥ bw̄t = b sup
s≤t

ws, ∀t, (3.7)

where b ∈ (0, 1) is fixed. This is called a drawdown constraint, in a natural terminology.
Drawdown constraints are of practical importance for fund managers, because if their
portfolio loses too much of its value, the investors are likely to take their money out and
that is the end of the story, however clever (or even optimal!) the rule being used by the
fund manager. For this problem, the value function

V (w, w̄) = sup E[

∫ ∞

0

e−ρtU(δt) dt

∣∣∣∣ w0 = w, w̄0 = w̄]

evidently scales like

V (w, w̄) = w̄1−RV (w/w̄, 1) = w̄1−Rv(w/w̄) = w̄1−Rv(x), x = w/w̄ ∈ [b, 1].

So the HJB equation here is

sup
δ,θ

[
U(δ)− ρV +

1

2
σ2θ2Vww + (r(w − θ) + µθ − δ)Vw

]
= 0

with the boundary condition that Vw = 0 at w = w̄. So HJB is

Ũ(Vw)− ρV + rwVw −
1

2
κ2 V

2
w

Vww

= 0,

where as before κ = (µ− r)/σ, and in terms of v this gives

Ũ(v′)− ρv + rxv′ − 1

2
κ2 (v′)2

v′′
= 0, (3.8)

(1−R)v(1) = v′(1) (3.9)

(indeed, (1 − R)v(x) − xv′(x) ≤ 0 always, with equality when x ≥ 1). The boundary
condition at 1 can be understood as saying that we extend v to (1,∞) by v(x) = x1−Rv(1)
(x ≥ 1), and this extension is C1.

13



Now the ODE (3.8) is highly non-linear, and yet it is possible to linearize it, and solve
explicitly!

The trick is to make
z ≡ v′(w)

the new variable, and
J(z) = v(w)− wz

the new function. Then as a little calculus confirms, we have

J ′(z) = −w, J ′′(z) = −1/v′′(w),

and now (3.8) becomes simply

Ũ(z) +
1

2
κ2z2J ′′ + (ρ− r)zJ ′ − ρJ = 0, (3.10)

−(1− 1

R
)J(z) + zJ ′(z) ≤ 0, (3.11)

with equality in (3.11) when J ′(z) ≤ −1.

One other observation is required: as w ↓ bw̄, the portfolio weight θ → 0, because otherwise
at the boundary the constraint (3.7) would get violated. But recall that the optimal
portfolio is

θ =
(µ− r)Vw

σ2Vww

;

this implies that v′′(b) = +∞, J ′′(v′(b)) = 0. Thus there exist zb = v′(b) > z1 = v′(1) such
that the solution J has the form

J(z) =


A0Ũ(z) for z ≤ z1;

A1(z/zb)
−α +B1(z/zb)

β + qŨ(z) for z1 ≤ z ≤ zb;

qŨ(zb) + A1 +B1 + b(zb − z) for z ≥ zb

where q = −1/Q(1 − R−1), and Q(t) ≡ 1
2
κ2t(t − 1) + (ρ − r)t − ρ is the quadratic whose

roots are −α < 0 < β. In order that the problem is well posed, it is necessary and sufficient
that q > 0. The constants A0, A1, B1, z1, and zb are to be determined from the conditions

(i) J is C2 at zb;

(ii) J is C1 at z1.

Thus if we pick zb, we know that J ′(zb) = −b, J ′′(zb) = 0, so the ODE (3.10) gives us

ρJ(zb) = −(ρ− r)zbb+ Ũ(zb).

We also have the condition that J ′(z1) = −1 = −A0z
−1/R
1 , giving us the relation z1 = AR

0 .
Using these conditions it is not too hard to find (numerically) the solution J , and hence
the original value function v.
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6. Optimisation under Markov-modulated dynamics.

This time, the wealth dynamics are given by

dwt = r(ξt)wtdt+ θt(σ(ξt)dWt + (µ(ξt)− r(ξt))dt)− δtdt,

where ξ is a finite state irreducible Markov chain with generator Q. The value function

V (w, ξ) = sup E[

∫ ∞

0

e−ρtU(δt)dt

∣∣∣∣ w0 = w, ξ0 = ξ]

is of the form V (w, ξ) = f(ξ)U(w), by the scaling properties again, and the HJB equations
are

0 = sup
δ,θ

[
U(δ)− ρV +

1

2
σ2θ2Vww + (rw + θ(µ− r)− δ)Vw +QV

]
= Ũ(Vw)− ρV + rwVw −

1

2
κ2 V

2
w

Vww

+ U(w)Qf

from we which we deduce the equations for f :

0 = Rf1−1/R − ρf + r(1−R)f +
κ2

2R
(1−R) +Qf

= Rf1−1/R −RΓf +Qf,

where Γ(ξ) = R−1(ρ+ (R− 1)(r(ξ) + κ(ξ)2

2R
)). We therefore have to solve

(RΓ−Q)f = Rf1−1/R.

This can again be done recursively, by setting f (0) = 1,

(RΓ−Q)fn+1 = R(f (n))1−1/R.

The efficiency is then
(γRf)1/(1−R).

7. An example related to insurance.

At last we reintroduce the premium terms in the wealth dynamics which we have so far
omitted, and consider a very simple model for the evolution of the wealth of an insurance
company. We suppose that the wealth dynamics are

dwt = rwtdt+ θ(σdWt + (µ− r)dt)− δtdt− kdt, (3.12)

where the outflow k > 0, constant, represents payments to policyholders less premium
income – too simple, but at least a place to start. The objective is

max Ew

[∫ τ

0

e−ρtU(δt)dt−Ke−ρτ

]
= V (w),
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where K > 0 is a penalty for the firm going broke, at time τ = inf{t : wt = 0}. This may
be infinite of course. Varying K allows us to impose different degrees of security on the
firm. The HJB equation for this problem is

max
θ,δ

[
U(δ)− ρV +

1

2
σ2θ2Vww + {rw + (µ− r)θ − δ − k}Vw

]
= 0,

V (0) = −K

and as before the optimal dividend and investment in the risky asset are given by

U ′(δ) = Vw, θ = −µ− r

σ2

Vw

Vww

= −κ
σ

Vw

Vww

,

leading to the HJB differential equation

Ũ(Vw)− ρV + (rw − k)Vw −
1

2

κ2V 2
w

Vww

= 0.

Now we use the dual variables trick: z = V ′(w), J(z) = V (w)− wz, giving

J ′ = −w, V (w) = J(z)− zJ ′(z), V ′′(w) = −1/J ′′(z),

which linearises the HJB equation to

0 = Ũ(z) +
1

2
κ2z2J ′′(z) + (ρ− r)zJ ′ − ρJ − kz

which we can solve explicitly! The general solution of the homogeneous equation is of the
form Az−α + Bzβ, where −α < 0 < β are the roots of Q(t) = 1

2
κ2t(t − 1) + (ρ − r)t − ρ,

and the particular solution is −kz/r + qŨ(z), where q = −1/Q(1 − R−1) > 0 (this is the
condition for the problem to be well posed, and in fact Q(1 − R−1) = −γ), so we have a
solution of the form

J(z) = −kz
r

+
1

γ
Ũ(z) + Az−α +Bzβ, (3.13)

at least for z ≤ z∗ = V ′(0); for z ≥ V ′(0), we have J(z) = −K. There will be C1 contact
of J to −K at z = z∗. Now the problem is well posed if and only if Q(1 − 1/R) < 0,
which is easily seen on consideration of the form of the quadratic Q to be equivalent to
−α < 1 − 1/R. Hence the dominant term in (3.13) is the term Az−α, where A ≥ 0 to
ensure the convexity of J . But if A > 0, we would have that V grows faster at infinity
than w1−R, and this is impossible, because the value for this insurance problem cannot
be greater than the value for the standard Merton problem where there is no downward
outflow k. The only possibility is therefore that A = 0, and J has the form

J(z) =

{
−kz

r
+ 1

γ
Ũ(z) +B( z

z∗
)β if z ≤ z∗

−K if z ≥ z∗.
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So matching the slope at ξ∗ gives us

0 = −k
r
− 1

γ
z−1/R
∗ +

Bβ

z∗
⇒ B =

1

β

[
kz∗
r

+
1

γ
z1−1/R
∗

]
.

If we select z∗, this tells us B, hence J(z∗), so we now just need to find the z∗ to make
J(z∗) = −K.

8. Annual tax accounting.

What is the effect on the Merton problem of an annual tax on capital gains? Suppose that
U is again CRRA, and at each time t = nh we have to pay tax on wealth gain over the last
time period of length h. Thus wnh = wnh− − τ(wnh− −wnh−h) = (1− τ)wnh− + τwnh−h. If
we do this, then the problem becomes a finite-horizon problem,

V (w) = sup E
[∫ h

0

e−ρsU(δs)ds+ e−ρhU(τw + (1− τ)wh)

]
.

Clearly by scaling again, there is some positive constant A such that V (w) = AU(w), so
we have to consider

sup E
[∫ h

0

e−ρsU(δs)ds+ Ae−ρhU(τw + (1− τ)wh)

]
.

As we saw in Section 2, by (2.1) the optimal terminal wealth w∗h and running consumption
δ∗ are related to the state-price density process ζ by

e−ρtU ′(δ∗t ) = e−rtZt = λζt, Zt = Et[e
rhAe−ρh(1− τ)U ′(τw + (1− τ)w∗h)],

where ζt = exp{−rt− κWt− 1
2
κ2t} is the SPD, ζ0 = 1. We deduce that δ∗t = I(λeρtζt) and

λζh = e−rhZh = Ae−ρh(1− τ)U ′(τw + (1− τ)w∗h);

rearranging to make w∗h the subject of the equation gives us

w∗h =
1

1− τ

{
−τw + I

(
λeρhζh
A(1− τ)

)}
.

We now need to relate λ to initial wealth w:

w = E
[∫ h

0

ζuδ
∗
udu+ ζhw

∗
h

]
= E

[∫ h

0

ζ
1−1/R
t λ−1/Re−ρt/Rdt− ζh

τw

1− τ
+
ζ

1−1/R
h

1− τ
λ−1/Re−ρh/RA1/R(1− τ)1/R

]

= −τwe
−rh

1− r
+ λ−1/R 1− e−γh

γ
+ λ−1/RA1/R(1− τ)1/R−1e−γh.
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Thus

w

(
1 +

τe−τh

1− τ

)
= λ−1/R

(
1− e−γh

γ
+ A1/R(1− τ)1/R−1e−γh

)
. (3.14)

Now we need to compute the value,

V (w) = E
[∫ h

0

e−ρtU(δ∗t )dt+ Ae−ρhU(τw + (1− τ)w∗h)

]
= E

[∫ h

0

e−ρt (λe
ρtζt)

1−1/R

1−R
dt+

Ae−ρh

1−R

(
λeρhζh
A(1− τ)

)1−1/R
]

=
λ1−1/R

1−R
E
[∫ h

0

e−ρt/Rζ
1−1/R
t dt+ A1/Re−ρh/R(1− τ)1/R−1ζ

1−1/R
h

]
=

λ1−1/R

1−R

(
1− e−γh

γ
+ A1/R(1− τ)1/R−1e−γh

)
(3.15)

Now from the equation (3.14), λ−1/R = Bw/K, where B = 1 + τe−rh/(1 − τ) and K =
γ−1(1 − e−γh) + A1/R(1 − τ)1/R−1e−γh, so we have that λ = (Bw/K)−R, and from (3.15)
we deduce that

V (w) = U(w)

(
B

K

)1−R

K = U(w)B1−RKR = AU(w).

This implies that

A1/R = KB1/R−1 = B(1−R)/R

(
1− e−γh

γ
+ A1/R(1− τ)

1−R
R e−γh

)
.

We can now make A1/R the subject of this equation:

A1/R =
γ−1(1− e−γh)B1/R−1

1− e−γh(((1− τ)B)1/R−1)
,

expressing A (and hence the value) explicitly in terms of the variables of the problem. The
efficiency can now be expressed explicitly as

θ = (AγR)1/(1−R).

We are now able compute numerical values quite explicitly.
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