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Forecasting 2 / 49

Context and purpose

Prequential = [Probabilistic]/Predictive/Sequential
— a general framework for assessing and comparing the predictive performance of a FORECASTING
SYSTEM.

� We assume reasonably extensive data, that either arrive in a time-ordered stream, or can be can
be arranged into such a form:

X = (X1,X2, . . .).

� There may be patterns in the sequence of values.

� We try to identify these patterns, so as to use currently available data to form good forecasts of
future values.

Basic idea: Assess our future predictive performance by means of our past predictive performance.

3 / 49

One-step Forecasts

� Introduce the data-points (x1, . . . , xn) one by one.

� At time i, we have observed values xi of Xi := (X1, . . . ,Xi).

� We now produce some sort of forecast, fi+1, for Xi+1.

� Next, observe value xi+1 of Xi+1.

� Step up i by 1 and repeat.

� When done, form overall assessment of quality of forecast sequence fn = (f1, . . . , fn) in the
light of outcome sequence xn = (x1, . . . , xn).

We can assess forecast quality either in absolute terms, or by comparison of alternative sets of
forecasts.

4 / 49
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Time development

t 1 2 3 . . .

f f1 f2 f3 . . .

x x1 x2 x3 . . .

5 / 49

Some comments

Forecast type: Pretty arbitrary: e.g.

� Point forecast

� Action

� Probability distribution

Black-box: Not interested in the truth/beauty/. . . of any theory underlying our forecasts—only in
their performance

Close to the data: Concerned only with realized data and forecasts — not with their provenance,
what might have happened in other circumstances, hypothetical repetitions,. . .

No peeping: Forecast of Xi+1 made before its value is observed — unbiased assessment

6 / 49
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Forecasting systems 7 / 49

Probability Forecasting Systems

Very general idea, e.g.:

No system: e.g. day-by-day weather forecasts

Probability model: Fully specified joint distribution P for X (allow arbitrary dependence)

� probability forecast fi+1 = P (Xi+1 | Xi = xi)

Statistical model: Family P = {Pθ} of distributions for X

� forecast fi+1 = P ∗(Xi+1 | Xi = xi), where P ∗ is formed from P by somehow
estimating/eliminating θ, using the currently available data Xi = xi

Collection of models e.g. forecast Xi+1 using model that has performed best up to time i

8 / 49

Statistical Forecasting Systems

—based on a statistical model P = {Pθ} for X.

Plug-in forecasting system Given the past data xi, construct some estimate θ̂i of θ (e.g., by
maximum likelihood), and proceed as if this were the true value:

P ∗

i+1(Xi+1) = P
θ̂i

(Xi+1 | xi).

NB: This requires re-estimating θ with each new observation!

Bayesian forecasting system (BFS) Let π(θ) be a prior density for θ, and πi(θ) the posterior based
on the past data xi. Use this to mix the various θ-specific forecasts:

P ∗

i+1(Xi+1) =

∫

Pθ(Xi+1 | xi)πi(θ) dθ.

9 / 49
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Prequential consistency

Gaussian process: Xi ∼ N (µ, σ2), corr(Xi,Xj) = ρ

MLEs:

µ̂n = Xn
L
→ N (µ, ρσ2)

σ̂2
n = n−1

∑n
i=1(Xi − Xn)2

p
→ (1 − ρ)σ2

ρ̂n = 0

— not classically consistent.

But the estimated predictive distribution P̂n+1 = N (µ̂n, σ̂2
n) does approximate the true predictive

distribution Pn+1:
normal with mean xn + (1− ρ)(µ − xn)/{nρ + (1− ρ)} and variance (1 − ρ)σ2 + σ2/{nρ + (1− ρ)}.

10 / 49

Absolute assessment 11 / 49

Weak Prequential Principle

The assessment of the quality of a forecasting system in the light of a sequence of observed outcomes
should depend only on the forecasts it in fact delivered for that sequence

— and not, for example, on how it might have behaved for other sequences.

12 / 49
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Calibration

� Binary variables (Xi)

� Realized values (xi)

� Emitted probability forecasts (pi)

Want (??) the (pi) and (xi) to be close “on average”:

xn − pn → 0

where xn is the average of all the (xi) up to time n, etc.

Probability calibration: Fix π ∈ [0, 1], average over only those times i when pi is “close to” π:

x′

n − π → 0

13 / 49

Example

14 / 49
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Calibration plot

15 / 49

Computable calibration

Let σ be a computable strategy for selecting trials in the light of previous outcomes and forecasts

— e.g. third day following two successive rainy days, where forecast is below 0.5.

Then require asymptotic equality of averages, pσ and xσ, of the (pi) and (xi) over those trials
selected by σ.

Why?

Can show following. Let P be a distribution for X, and Pi := P (Xi = 1 | Xi−1). Then

P σ − Xσ → 0

P -almost surely, for any distribution P .

16 / 49
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Well-calibrated forecasts are essentially unique

Suppose p and q are computable forecast sequences, each computably calibrated for the same
outcome sequence x.

Then pi − qi → 0.

17 / 49

Significance test

Consider e.g.

Zn :=

∑

(Xi − Pi)

{
∑

Pi(1 − Pi)}
1

2

where Pi = P (Xi = 1 | Xi−1).

Then
Zn

L
→ N (0, 1)

for (almost) any P .

So can refer value of Zn to standard normal tables to test departure from calibration, even without
knowing generating distribution P

— ”Strong Prequential Principle”

18 / 49
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Other tests

Suppose the Xi are continuous variables, and the forecast for Xi has the form of a continuous
cumulative distribution function Fi(·).

If X ∼ P , and the forecasts are obtained from P :

Fi(x) := P (Xi ≤ x | Xi−1 = xi−1)

then, defining
Ui := Fi(Xi)

we have
Ui ∼ U [0, 1]

independently, for any P .

19 / 49

So we can apply various tests of uniformity and/or independence to the observed values

ui := Fi(xi)

to test the validity of the forecasts made

— again, without needing to know the generating distribution P .

20 / 49
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Prequential frame of reference 21 / 49

Combining contingency tables

S D

T 46 4 50

C 42 8 50

88 12 100

o − e = 2

v = 2.67

S D

T 31 15 46

C 18 24 42

49 39 88

o − e = 5.4

v = 5.48

S D

T 9 22 31

C 3 15 18

12 37 49

o − e = 1.4

v = 2.15

“log-rank statistic”:
∑

(o−e)

(
∑

v)
1

2

= 2.74

Refer to N (0, 1)

22 / 49

Sequential observation

S D

T 46 4 50

C 42 8 50

88 12 100

o − e = 2

v = 2.67

S D

T 31 15 46

C 18 24 42

49 39 88

o − e = 5.4

v = 5.48

S D

T 9 22 31

C 3 15 18

12 37 49

o − e = 1.4

v = 2.15

“log-rank statistic”:
∑

(o−e)

(
∑

v)
1

2

= 2.74

Refer to N (0, 1) ???

23 / 49
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Sequential observation — with drop-out

S D

T 46 4 50

C 42 8 50

88 12 100

o − e = 2

v = 2.67

S D

T 22 13 35

C 17 21 38

39 34 73

o − e = 3.1

v = 4.60

S D

T 4 12 16

C 2 6 8

6 18 24

o − e = 0

v = 1.04

“log-rank statistic”:
∑

(o−e)

(
∑

v)
1

2

= 1.84

Refer to N (0, 1) ??? ???

24 / 49
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Censored survival data [1]

25 / 49
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Censored survival data [2]

26 / 49
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Censored survival data [3]

27 / 49
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Game-theoretic probability 28 / 49

Sequential prediction of binary variables

At successive times t = 1, 2, . . .:

� (Optional) Nature N chooses (and reveals) value wt of Wt

� Forecaster F chooses probability pt ∈ [0, 1]

� Adversary A chooses stake ht ∈ R

� Nature N chooses value xt ∈ {0, 1} of Xt

� F pays A ht(xt − pt) (“fair bet”)

Kn := A’s accumulated fortune at time n (starting with 1)

= 1 +
n

∑

t=1

ht(xt − pt)

29 / 49

Full event

Let C be a “prequential event” (possible property of infinite sequence (w1, p1, x1, w2, p2, x2, . . .) of
plays of N and F)
– automatically respects WPP

Call C full if A has a strategy that ensures:

1. Kn ≥ 0, all n, AND

2. either

(a) C holds;
or

(b) Kn → ∞

Example: C = “n−1
∑n

t=1(xt − pt) → 0” (calibration).

30 / 49
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Almost sure event

Can show that any full event has probability 1 under any joint distribution P for (W1,X1,W2,X2, . . .)

– so long as (“compatibility”)

pt = P (Xt = 1 | W1 = w1,X1 = x1, . . . ,Wt = wt)

– a strong prequential property
– but criterion is meaningful (and sensible) even in the absence of any P (which we may not be
willing to specify)

– justifies prequential compatibility criteria

31 / 49

Prequential probability

C a prequential event. For β > 0, say C ∈ S(β) if A has a strategy ensuring that, whenever C
occurs, the process (Kt) reaches or exceeds 1/β before ever having been negative.

� C ∈ S(1)

� β < β′ ⇒ S(β) ⊆ S(β′)

The (upper) prequential probability of C is

PP (C) := inf{β > 0 : C ∈ S(β)}

� PP (C) ∈ [0, 1]

� C is full ⇐⇒ its complement has prequential probability 0

� For any compatible probability distribution P , P (C) ≤ PP (C)

– justifies limiting normal-based tests, etc.

32 / 49
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Comparative assessment 33 / 49

Loss functions and scoring rules

Measure inadequacy of forecast f of outcome x by

loss function: L(x, f)

Then measure of overall inadequacy of forecast sequence fn for outcome sequence xn is cumulative
loss:

Ln =

n
∑

i=1

L(xi, fi)

We can use this to compare different forecasting systems.

34 / 49

Examples:

Squared error: f a point forecast of real-valued X
L(x, f) = (x − f)2.

Scoring rule: f a probability forecast Q for X
L(x, f) = S(x,Q).

Logarithmic score: S(x,Q) = − log q(x), where q(·) is the density function of Q.
The logarithmic score is proper: for given P , S(P,Q) = EP {S(X,Q)} is minimised by taking Q = P .
Consider only this from now on.

35 / 49
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Single distribution P

At time i, having observed xi, probability forecast for Xi+1 is its conditional distribution
Pi+1(Xi+1) := P (Xi+1 | Xi = xi).
When we then observe Xi+1 = xi+1, the associated logarithmic score is

S(xi+1, Pi+1) = − log p(xi+1 | xi).

So the cumulative score is

Ln(P ) =

n−1
∑

i=0

− log p(xi+1 | xi)

= − log

n
∏

i=1

p(xi | x
i−1)

= − log p(xn)

where p(·) is the joint density of X under P .

36 / 49

Likelihood

Ln(P ) is just the (negative) log-likelihood of the joint distribution P for the observed data-sequence
xn.

If P and Q are alternative joint distributions, considered as forecasting systems, then the excess score
of Q over P is just the log likelihood ratio for comparing P to Q for the full data xn.

This gives an interpretation to and use for likelihood that does not rely on the assuming the truth of
any of the models considered.

37 / 49
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Bayesian forecasting system

For a BFS:

P ∗

i+1(Xi+1) =

∫

Pθ(Xi+1 | xi)πi(θ) dθ

= PB(Xi+1 | xi)

where PB :=
∫

Pθ π(θ) dθ is the Bayes mixture joint distribution.

This is equivalent to basing all forecasts on the single distribution PB . The total logarithmic score is
thus

Ln(P) = Ln(PB)

= − log pB(xn)

= − log

∫

pθ(x
n)π(θ) dθ

38 / 49

Plug-in SFS

For a plug-in system: Ln = − log
∏n−1

i=0 p
θ̂i

(xi+1 | xi).

� The outcome (xi+1) used to evaluate performance, and the data (xi) used to estimate θ, do not
overlap

– “unbiased” assessments (like cross-validation)

� If xi is used to forecast xj , then xj is not used to forecast xi

– “uncorrelated” assessments (unlike cross-validation)

Both under- and over-fitting automatically and appropriately penalized.

39 / 49
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Prequential efficiency 40 / 49

Efficiency

Let P be a SFS. P is prequentially efficient for {Pθ} if, for any PFS Q:

Ln(P )−Ln(Q) remains bounded above as n → ∞, with Pθ probability 1, for almost all θ.

[In particular, the losses of any two efficient SFS’s differ by an amount that remains asymptotically
bounded under almost all Pθ.]

� A BFS with π(θ) > 0 is prequentially efficient.

� A plug-in SFS based on a Fisher efficient estimator sequence is prequentially efficient.

41 / 49

Model testing

Model:
X ∼ Pθ (θ ∈ Θ)

Let P be prequentially efficient for P = {Pθ}, and define:

µi = EP (Xi | X
i−1)

σ2
i = varP (Xi | X

i−1)

Zn =

∑n
i=1(Xi − µi)

(
∑n

i=1 σ2
i

)
1

2

Then Zn
L
→ N (0, 1) under any Pθ ∈ P.

So refer Zn to standard normal tables to test the model P.

42 / 49
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Model choice 43 / 49

Prequential consistency

Probability models Collection C = {Pj : j = 1, 2, . . .}.

� Both BFS and (suitable) plug-in SFS are prequentially consistent: with probability 1 under
any Pj ∈ C, their forecasts will come to agree with those made by Pj .

Parametric models Collection C = {Pj : j = 1, 2, . . .}, where each Pj is itself a parametric model:
Pj = {Pj,θj

}. Can have different dimensionalities.

� Replace each Pj by a prequentially efficient single distribution Pj and proceed as above.

� For each j, for almost all θj, with probability 1 under Pj,θj
the resulting forecasts will come

to agree with those made by Pj,θj
.

44 / 49

Out-of-model performance

Suppose we use a model P = {Pθ} for X, but the data are generated from a distribution Q 6∈ P. For
an observed data-sequence x, we have sequences of probability forecasts Pθ,i := Pθ(Xi | x

i−1), based
on each Pθ ∈ P: and “true” predictive distributions Qi := Q(Xi | x

i−1). The “best” value of θ, for
predicting xn, might be defined as:

θQ
n := arg min

θ

n
∑

i=1

K(Qi, Pθ,i).

NB: This typically depends on the observed data
With θ̂n the maximum likelihood estimate based on xn, we can show that for any Q, with
Q-probability 1:

θ̂n − θQ
n → 0.

45 / 49
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Conclusions 46 / 49

Conclusions

Prequential analysis:

� is a natural approach to assessing and adjusting the empirical performance of a sequential
forecasting system

� can allow for essentially arbitrary dependence across time

� has close connexions with Bayesian inference, stochastic complexity, penalized likelihood, etc.

� has many desirable theoretical properties, including automatic selection of the simplest model
closest to that generating the data

� raises new computational challenges.

47 / 49
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