Causal Inference Isn’t What You Think It Is

Philip Dawid

University of Cambridge

25 June 2020
You may think that statistical causal inference is about inferring causation. You may think that it can not be tackled with standard statistical tools, but requires additional structure, such as counterfactual reasoning, potential responses or graphical representations. I shall try to disabuse you of such woolly misconceptions by locating statistical causality firmly within the scope of traditional statistical decision theory. From this viewpoint, the enterprise of “statistical causality” could fruitfully be rebranded as “assisted decision making”.
Simple 2-sample experiment

- \(N = n_0 + n_1 \) individuals randomly sampled from relevant population [headache sufferers]
- \(n_0 \) randomly assigned to inactive control (c, 0) [chalk]
 - responses \(Y_{0j} : j = 1, \ldots, n_0 \) [log-duration of headache]
- \(n_1 \) randomly assigned to active treatment (t, 1) [aspirin]
 - responses \(Y_{1j} : j = 1, \ldots, n_1 \)

Model: \(Y_{ij} \sim P_i = \mathcal{N}(\mu_i, \sigma^2) \), all independently

Effect of treatment? Compare \(P_1 \) and \(P_0 \) – e.g., \(\mu_1 - \mu_0 \)

- Purely distributional comparison
- Inference by e.g. 2-sample t-test.

Question: What about “potential responses?”
Potential Response Approach

Conceive of each unit u having two pre-existing potential responses:

- Y_{u0} if given chalk
- Y_{u1} if given aspirin
- pairs (Y_{u0}, Y_{u1}) from common bivariate distribution
- “individual causal effect”: $\text{ICE}_u := Y_{u1} - Y_{u0}$

We can observe at most one of Y_{u1}, Y_{u0} — for treatment actually taken — the other then being “missing data”

- so ICE_u is never observable
- cannot estimate dependence/correlation ρ between Y_0 and Y_1

Fundamental Problem of Causal Inference?

or just of this approach to causal inference ??
Problems with ICE

We can estimate the average causal effect:

\[\text{ACE} := E(\text{ICE}) = E(Y_1 - Y_0) = E(Y_1) - E(Y_0) \]

- unaffected by unknowable dependence between \(Y_1 \) and \(Y_0 \)
- could estimate by \(\overline{Y}_1 - \overline{Y}_0 \)

However, consider the individual ratio effect, \(\text{IRE} := Y_1 / Y_0 \)

- We can not estimate \(\text{ARE} := E(\text{IRE}) \)
- — since this involves the unknowable dependence between \(Y_1 \) and \(Y_0 \).

For the same reason we cannot estimate the “effect of treatment on the observed treated”, \(E(\text{ICE} \mid Y_1 = y) \).
Neyman’s null hypothesis

Let $\tilde{Y}_j (j = 0, 1)$ be the average of Y_{uj} over all N units in the experiment

- unobservable

Neyman (1935) interpreted “No effect of treatment” as:

$$\tilde{Y}_0 = \tilde{Y}_1 \quad (\text{ICE} = 0)$$

and showed that, for this null hypothesis, the usual (t, F) test

- is unbiased in a simple randomised experiment
- but not when the logic is extended to more complex designs, e.g. Latin Square
- unless we assume treatment-unit additivity:
 - $\text{ICE}_u = Y_{u1} - Y_{u0}$ the same for all units
- requires $\rho = 1$ — an unknowable condition
Fisher’s null hypothesis

Neyman’s null hypothesis depends crucially on which units are in the experiment

So not sensible...

Fisher: “the hypothesis to be tested was...that differences of treatment made no difference to the yields”

\[Y_{u0} = Y_{u1}, \text{ all } u \quad (\text{ICE}_u \equiv 0) \]

But any performable test can only target weaker properties, e.g.:

- all observed values are exchangeable (permutation test)
- all observed values are from a common distribution
 - e.g., \(\mathcal{N}(\mu, \sigma^2) \) (t-test of \(\mu_0 = \mu_1 \))

These purely distributional hypotheses are perfectly good interpretations of “no treatment effect”

The potential outcome machinery has not added (indeed, has subtracted!) value
An Alternative Approach: Decision Theory

I have a headache. Should I take aspirin?

I have to compare the hypothetical future consequences of my two available decisions

I assess \(Y \sim P_i \) if I were to take decision \(i \).

\[
\begin{align*}
Y \sim P_1 & \quad Y \sim P_0 \\
\nu_1 & \quad \nu_0 \\
1 & \quad 0 \\
T & \quad \nu_*
\end{align*}
\]

\(\nu_* \)

\(T \)

\(1 \)

\(\nu_1 \)

\(y \)

\(L(y) \)

\(\nu_0 \)

\(y \)

\(L(y) \)

\(\nu_0 \)

\(y \)

\(L(y) \)

\(\nu_1 \)

\(y \)

\(L(y) \)

\[\text{Take aspirin if } E_{Y \sim P_1} L(Y) \leq E_{Y \sim P_0} L(Y) \]

\[\text{All that is need to solve any such decision problem is the pair of “hypothetical distributions”, } P_0 \text{ and } P_1, \text{ for response } Y \]
Causal Inference

- What then is “causal inference”?
 - Learning about required P_0, P_1 with assistance of available data (observational or – in this case – experimental)

- If I do take aspirin, I will become like (exchangeable with) those in the treated group.
 - then my response Y would be distributed as $Y \sim P_1 = \mathcal{N}(\mu_1, \sigma^2)$

- If I don’t, I will become like (exchangeable with) those in the control group.
 - then my response Y would be distributed as $Y \sim P_0 = \mathcal{N}(\mu_0, \sigma^2)$

I can learn P_0, P_1 from the data. Then I have all I need to solve my decision problem:

- Take aspirin if $\mathbb{E}_{Y \sim P_1} L(Y) \leq \mathbb{E}_{Y \sim P_0} L(Y)$, where $L(y)$ is a suitable loss function
- If $L(y)$ is linear, take aspirin if the average causal effect $\mu_1 - \mu_0$ is negative
Some comments

- No use for potential responses. We have two hypothetical distributions for a single variable Y, not one joint distribution for a pair of potential variables (Y_0, Y_1).
 - In particular, no need to consider the (unknowable) dependence between Y_0 and Y_1
- No need for counterfactual logic: “What would have happened to a treated study individual, if she had not been treated?”
- No determinism/predetermination: response Y can develop stochastically, even after application of treatment
- No missing data
 - so no “fundamental problem of causal inference”
- Average causal effect is a difference of expectations, $E_{P_1}(Y) - E_{P_0}(Y)$, not the expectation of a difference, $E(Y_1 - Y_0)$
- No new principles/formulation/notation needed, only basic Fisher and standard decision theory. We can solve our problem without weighing it down with unnecessary baggage
Observational Study

Suppose now that assignment of treatments to study subjects was not done experimentally. When can we still use the data as before?

This would require **post-treatment exchangeability**:

- If I were to decide on treatment t, I would become exchangeable with those in the treatment group
- If I were to decide on treatment c, I would become exchangeable with those in the control group

NB: These can only both hold when (prior to treatment application), the treatment and control groups are exchangeable with each other

- so we would have to be “comparing like with like”
- **ignorable** treatment assignment
Variables and Regimes

- Binary treatment variable T
- Response variable Y
- Non-stochastic regime indicator F_T:
 - $F_T = 0$: (hypothetically) take treatment 0 ($\Rightarrow T = 0$)
 - $F_T = 1$: (hypothetically) take treatment 1 ($\Rightarrow T = 1$)
 - $F_T = \emptyset$: “Nature” chooses T (random)

- I am interested in comparing regimes $F_T = 1$ and $F_T = 0$
- I have data from $F_T = \emptyset$
- I should like to use the data to assist me with my decision problem
- So I will need to make (and justify) some connexions between the different regimes
Ignorability

The simplest case is when I can assume **ignorability** ("like an experiment"):

- The distribution of Y is the same in regime $F_T = 1$ [resp., 0] as in regime $F_T = \emptyset$, conditional on $T = 1$ [resp., 0].

- Y is independent of F_T, given $T = 1$ [resp., 0]

- $Y \perp F_T \mid T$

(If not, we have **confounding**)
Conditional ignorability ("no unobserved confounding")

When ignorability fails, it might be restored if we condition on additional information.

Call an observed variable U a sufficient covariate if:

- $U \perp F_T$
- $Y \perp F_T \mid (T, U)$

Can then estimate ACE by ("back door formula"):

$$ACE = E(SCE_U \mid F_T = \emptyset)$$

where we define the specific causal effect (relative to U) as

$$SCE_U := E(Y \mid U, T = 1, F_T = \emptyset) - E(Y \mid U, T = 0, F_T = \emptyset).$$

Not possible if U unobserved—confounding
So such a variable U is an unconfounder.
Propensity score

\(U \) a sufficient covariate, \(V \) a function of \(U \)

\(V \) will be a sufficient covariate if

\[
T \perp\!\!\!\perp U \mid (V, F_T = \emptyset)
\]

- In the observational regime, choice of treatment depends on \(U \) only through \(V \)
- Does not involve response variable \(Y \)
Propensity score

\[T \perp \indep U \mid (V, F_T = \emptyset) \]

Equivalently,

\[U \perp \indep T \mid (V, F_T = \emptyset) \]

- Observational distribution of \(U \), given \(V \) the same for both treatments
- \(V \) is a *balancing score* for \(U \)
- \(V \) is a *sufficient statistic* for comparing hypotheses \(T = 1, T = 0 \) for data \(U \)
- Minimal such \(V \) is likelihood ratio:

\[p(U \mid T = 1)/p(U \mid T = 0) \]

- Equivalently, posterior probability \(p(T = 1 \mid U) \)
 - single variable \(\in [0, 1] \)
 - *propensity score*
Effect of treatment on the treatable

Suppose I consider that, if I had been in the study, I would have been deemed “suitable for treatment” (i.e., exchangeable with those for whom $T = 1$). Should I take the treatment?

Let $S = 1$ [0] denote “suitable [unsuitable] for treatment”. In the study, $T = S$. I have $S = 1$ but have choice over T.

I should thus consider

$$\text{ETT} := \mathbb{E}(Y \mid S = 1, T = 1) - \mathbb{E}(Y \mid S = 1, T = 0)$$

I can estimate first term from treated group in the study — but have no data directly relevant to second term.
Effect of treatment on the treatable

We can show:

$$ETT = \frac{E(Y \mid FT = \emptyset) - E(Y \mid FT = 0)}{Pr(T = 1 \mid FT = \emptyset)}.$$

— estimable if I have also observed Y in an experimental control group.
Alternatively, if in the data we can observe a sufficient covariate U, conditional on which both $T = 0$ and $T = 1$ are possible, we can compute

$$ETT = E(SCE_U \mid T = 1, FT = \emptyset).$$

Compare the PR definition:

$$ETT = E(ICE \mid T = 1) = E(Y_1 - Y_0 \mid T = 1)$$

All above variants yield same value.

NB: Does not use information on outcome when treated
Sequential decisions

Variables arising in sequence: \(L_1 — T_1 — L_2 — T_2 — Y \)

- \(L_1 \) pre-treatment variable
- \(T_1 \) first treatment — in light of \(L_1 \)
- \(L_2 \) response to \(T_1 \)
- \(T_2 \) second treatment — in light of \(L_1, T_1, L_2 \)
- \(Y \) response

Let \(s \) be a contemplated (possibly randomised) *strategy* for choosing \(T_1 \) and \(T_2 \), each in the light of previous values. We want to evaluate \(s \), using observational data.

- Introduce non-stochastic regime indicator \(\sigma \), values \(s \) and \(o \) (observation).
- Can we evaluate \(E(Y \mid \sigma = s) \) from properties of the observational regime \(\sigma = o \)?
Sequential ignorability

Assume

\[L_1 \perp \perp \sigma \]
\[L_2 \perp \perp \sigma \mid (L_1, T_1) \]
\[Y \perp \perp \sigma \mid (L_1, T_1, L_2, T_2). \]

Robins’s G-formula for estimating \(E(Y \mid \sigma = s) \) from the observational data follows directly.
G-formula

\[
p(l_1, t_1, l_2, t_2, y \mid \sigma = s) = p(l_1 \mid \sigma = s) \\
\times p(t_1 \mid l_1, \sigma = s) \\
\times p(l_2 \mid l_1, t_1, \sigma = s) \\
\times p(t_2 \mid l_1, t_1, l_2, \sigma = s) \\
\times p(y \mid l_1, t_1, l_2, t_2, \sigma = s)
\]

\[
= p(l_1 \mid \sigma = o) \\
\times p(t_1 \mid l_1, \sigma = s) \\
\times p(l_2 \mid l_1, t_1, \sigma = o) \\
\times p(t_2 \mid l_1, t_1, l_2, \sigma = s) \\
\times p(y \mid l_1, t_1, l_2, t_2, \sigma = o).
\]

Now marginalise to find \(p(y \mid \sigma = s) \).
Compare potential response approach

Conceive of potential versions of all variables under either regime:

\[\Pi^s := (L^s_1, T^s_1, L^s_2, T^s_2, Y^s) \]
\[\Pi^o := (L^o_1, T^o_1, L^o_2, T^o_2, Y^o) \]

—all with a joint distribution.

Principal assumptions/constraints:

Consistency

\[L^o_1 = L^s_1 \]
\[T^o_1 = s(L^o_1) \Rightarrow L^o_2 = L^s_2. \]
\[T^o_2 = s(L^o_1, T^o_1, L^o_2) \Rightarrow Y^o = Y^s. \]

Sequential ignorability

\[T^o_1 \perp (L^s_2, Y^s) \mid L^o_1 \]
\[T^o_2 \perp Y^s \mid L^o_1 = l_1, T^o_1 = s(l_1), L^o_2 = l_2 \]
Instrumental variable

Suppose I can not observe U, but there is a variable Z such that:

1. Z affects T
2. Z affects the outcome Y only through T
3. Z does not share common causes with the outcome Y ("no confounding of the effect of Z on Y”).

Observational conditional independence properties:

\[
\begin{align*}
T \perp\!\!\!\!\perp Z \\
U \perp\!\!\!\!\perp Z \\
Y \perp\!\!\!\!\perp Z \mid (T, U)
\end{align*}
\]

—no causal content!
Add regime indicator F_T for causal content:

$$U \perp (Z, F_T)$$

$$Y \perp (Z, F_T) \mid (T, U).$$
Linear model

Assume

$$E(Y \mid T, U, [Z, F_T]) = W + \beta T$$

for some function W of U.

Let $w_0 = E(W), = E(W \mid Z, F_T)$ since $U \perp (Z, F_T)$

Then

$$E(Y \mid F_T = t) = w_0 + \beta t,$$

β can be interpreted causally.

Want to identify β.

Assumptions imply

$$E(Y \mid Z, F_T = \emptyset) = w_0 + \beta E(T \mid Z, F_T = \emptyset).$$

Then $\beta = \text{Cov}_\emptyset(Y, Z)/\text{Cov}_\emptyset(T, Z)$ can be estimated by the ratio of the coefficients of Z in the sample linear regressions of Y on Z and of T on Z.
Wrap-up

- (EoC) Causal Inference is really about assisted decision making

- Traditional statistical tools are adequate for this

- Arguments using potential responses are:
 - unnecessary
 - obscure
 - complex
 - potentially misleading

- Next time you are tempted to do such an analysis, think about doing so more directly
THANK YOU!
References

94 pp.

DOI:10.1146/annurev-statistics-010814-020105

Statistics in Biosciences, **6**, 166–88

Statistical Surveys, **4**, 184–231

