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Maximum Likelihood:

The likelihood function for a model parameterised by � (a vector in a p-dimensional
space �) given observed data vector x is L (�jx) which we abbreviate to L (�) .
The log-likelihood S (�) is de�ned by S (�) := logL (�) :
The value of � which maximizes S (�) is �̂ and is the maximum likelihood

estimate of � :

S(�̂) = max
�2�

S (�) .

�̂ is normally found by solving the score equations S0(�̂) = 0, where a prime
denotes di¤erentiation.
If � is constrained to a q-dimensional subspace �0 of � then the value of �

maximizing S (�) in that subspace is ~� :

S(~�) = max
�2�0

S (�)

and ~� can generally be found using Lagrange multipliers.

Hypothesis tests

The (non-negative) di¤erence S(�̂)� S(~�) is the reduction in the log-likelihood
due to constraining the space from � to �0 . If the data does not support
� 2 �0 then we would expect S(�̂)� S(~�) to be relatively large and vice-versa.
Wilks�s lemma tells us that:

2
h
S(�̂)� S(~�)

i
� chisquare (p� q)

(provided � 2 �0) and so we can compare 2
h
S(�̂)� S(~�)

i
with the chisquare (p� q)

distribution and obtain a size � hypothesis test for the null hypothesis � 2 �0 :

accept hypothesis � 2 �o if S(�̂)� S(~�) 6
1

2
Cp�q;1�� (1)

where Cm; is the th quantile of a chisquare(m) distribution.
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Con�dence Regions and Intervals

A p-dimensional 1�� con�dence region can be constructed by letting �0 consist
of the single point �0 and including �0 in the con�dence region if the hypothesis
test � 2 �0 �equivalently: � = �0 �is not rejected by rule (1). The con�dence
region is therefore (noting here that q = 0 and ~� = �0 ):�

�0 : S(�̂)� S (�0) 6
1

2
Cp�q;1��

�
.

A con�dence interval is a one-dimensional con�dence region and is obtained
when either � is one-dimensional (p = 1) or we are interested in a single com-
ponent of � . In the latter case we partition � as � = [�  ]T where � is a scalar
(parameter of interest) and  is (p� 1)-dimensional (the nuisance parameters).
The maximum likelihood estimate �̂ is now [�̂  ̂]T. The symbols  and  ̂ can
be ignored if � is one-dimensional.
The con�dence interval will be of form L 6 �0 6 U and is given by:�

�0 : S(�̂;  ̂)� S(�0; ~ ) 6
1

2
C1;1��

�
where ~ is de�ned by S(�0; ~ ) = max[�  ]T2�;�=�0 S (�;  ) .

Other Tests Based on the Likelihood

The above tests and con�dence regions are based on the di¤erence in log-
likelihoods and are referred to as likelihood-ratio tests etc. They are (in my
view) the best ones to use. For historical and computational reasons two
other approaches are commonly seen. They are based on approximating the
log-likelihood function by a quadratic and are both asymptotically equivalent
to likelihood-ratio methods. The tests are in practice only as good as the
quadratic approximation (usually good enough)
I shall present the approximate methods using the simplest case: a hypoth-

esis test for a single scalar parameter (that is: p = 1 and q = 0). In theoretical
work the expectation ES00 (�) is often used instead of the observed S00 (�) : this
is rarely practicable (and arguably not desirable) in survival analysis.

The Wald Test

The log-likelihood is approximated by a quadratic at � = �̂ . The statistic for
testing the null hypothesis that � = �0 is

�
�
�̂ � �0

�2
S00(�̂)

which is compared with the chisquare(1) distribution. Many computer pro-
grams report the reciprocal of the square root of S00(�̂) as the estimated stan-
dard deviation of �̂ (the �standard error�).
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The Score Test

The log-likelihood is approximated by a quadratic at � = �0 . This has the huge
computational advantage that the log-likelihood does not have to be maximized.
The test statistic is:

[S0 (�0)]
2

�S00 (�0)
, (2)

again, compared with the chisquare(1) distribution.
Exercise (hard(ish)): show that the score test applied to a proportional

hazards model of a two group comparison gives the log-rank test. Hint: ignore
the denominator in both (2) and the log-rank statistic as they merely normalise
the variance to unity �concentrate on showing the numerators are proportional.
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