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Analysis of Survival Data

Net Survival (2014)

1 Introduction

1.1 Context

A net survival analysis is a time-to-event analysis which has been adjusted for
a competing, secondary event.

The most common application is in time-to-death studies, where individuals in
such a study are at risk of dying of the disease of interest but are also at risk of
dying from other causes. It is often impracticable to ascertain cause of death
but we can work with the deaths observed in the study population and the
deaths that would have been expected in a comparator population.

A net survival analysis is very like a competing risks analysis in that the in-
dividual is at risk of two different events, both of which are absorbing. Net
survival also borrows ideas from frailty : in particular the at risk population
changes character with time as high risk individuals are preferentially removed.

1.2 Statistical Model

Each individual is at risk of three events:

1. the event of interest A.

2. a competing event of no interest B.

3. censoring C.

If we cannot distinguish between events A and B we have a net survival analysis.
(If we can, we have a competing risks analysis.)

We imagine that there are three times-to-event – TA, TB , TC – which are jointly
independent given a set of baseline covariates Z. The independence of TC

with the other two results in censoring being uninformative; the independence
of TA and TB is an unverifiable assumption. We observe X = TA∪B∪C =
min (TA, TB , TC) and we can only distinguish between A ∪ B and C. We will
use J as a shorthand for the composite event ‘A or B’ so that TJ = TA∪B =
min(TA, TB).
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1.3 Medical Application

A typical net survival analyis in cancer research would have

A = death from the cancer of interest;

B = death from other causes, the Background mortality;

J = death from any cause;

C = C ensoring, usually a combination of lost to follow up and the end of the
study.

The baseline covariates are normally age at diagnosis, calendar year of diagnosis,
gender and geographical location (the ‘demographic’ covariates).

In practice, it is notoriously difficult to determine cause of death. Net survival is
an attempt to characterise the excess mortality due to a disease without knowing
the cause of death It is very important to allow for background mortality when
comparing survival for a particular disease across different populations.

2 Lecture

2.1 Competing risks

The hazard hJ(t) for the event death-from-any-cause (A ∪ B) is given by the
sum of hazards for the individual events:

hJ(t)= hA(t)+hB(t)

where hA(t) is defined as:

hA(t) = lim
∆↓0

{
1

∆
P [t < TA ≤ t + ∆|t < TJ ]

}
,

with the corresponding definition for hB(t), and the same relationship applies
for the integrated hazards:

HJ(t)= HA(t)+HB(t).

hA(t), hB(t), hJ(t) are often called the excess, background and joint hazards
respectively.

2.2 Obtaining an estimate for HA(t)

HJ(t) is the integrated hazard for death that is actually observed in the diseased
population, HB(t) is the integrated hazard for deaths other than due to the
disease of interest. Government life tables provide the hazard rates for all
deaths broken down by the demographic covariates. The hazard for death
from a particular disease in the general population is usually small compared to
HB(t). We therefore use the government published hazard rates for all deaths
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as a good substitute for the hazard rates for deaths from other causes than the
disease of interest.

Näıvely, an estimate for HA(t) can be written in terms of known quantities:

ĤA(t)= ĤJ(t)−HB(t). (1)

(Note that there is no ‘hat’ above HB as the background mortality is assumed
to be known exactly from the published tables.)

An equivalent relationship can be written in terms of survivor functions:

F̂A(t)=
F̂J(t)

FB(t)
(2)

where F̂A(t) is often referred to as the relative survivor function.

These relationships work at an individual level but there is a difficulty at the
population level: individuals will vary with respect to their demographic covari-
ates, the background integrated hazards HB(t) at least will vary from individual
to individual and great care has to be taken when combining individual hazards
to give an appropriate population hazard.

Exercise Verify that (1) implies (2).

2.3 Ederer II estimate of HA(t)

The experience of the ith individual can be written in counting process notation
as:

dNi(t) = Yi(t)dHi
J(t) + dMi(t) (3)

where Ni(t) is the observed event indicator, Yi(t) is the at-risk indicator and
Mi(t) is the associated Martingale. We decompose Hi

J(t) into Hi
A(t) + Hi

B(t)
and use the method of moments to replace the integrated excess hazard by its
estimator and dMi(t) by zero:

dNi(t) = Yi(t)
(

dĤ
i

A(t) + dHi
B(t)

)
The Ederer II method assumes the excess hazard is common to all indivduals.
Replacing Ĥi

A(t) by ĤA(t), summing over the n individuals, re-arranging and
integrating gives:

ĤA(t) =

∫ t

0

∑n
i=1 dNi(t

′)∑n
i=1 Yi(t′)

−
∫ t

0

∑n
i=1 Yi(t

′)dHi
B(t′)∑n

i=1 Yi(t′)

or

ĤA(t) =

∫ t

0

dN+(t′)

Y+(t′)
−
∫ t

0

∑n
i=1 Yi(t

′)dHi
B(t′)

Y+(t′)
. (4)
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Equation (4) tells us that the estimate of the integrated excess hazard is obtained
by offsetting the Nelson-Aalen estimator for the integrated joint hazard by the
integral of the overall background hazard, where the overall background hazard
is the mean hazard of individuals still in the risk set.

2.4 Pohar-Perme estimate of HA(t)

Generally, the integrated excess hazard function Hi
A(t) depends on the individ-

ual i: in particular the excess hazard may depend on the demographic covariates.
The Ederer II estimate ĤA(t) therefore is some sort of weighted average of the
individual excess hazards. The question arises: is it an appropriately weighted
hazard? We can find out by finding the expectation of (4) in terms of the
individual hazards.

First of all we replace dN+(t′) by the RHS of (3), decomposing Hi
J(t) and writing

out sums in full:

ĤA(t) =

∫ t

0

∑n
i=1

{
Yi(t

′)
[
dHi

A(t′) + dHi
B(t′)

]
+ dMi(t

′)
}∑n

i=1 Yi(t′)
−
∫ t

0

∑n
i=1 Yi(t

′)dHi
B(t′)∑n

i=1 Yi(t′)
.

We note, first of all, that the integrals in dHi
B(t) vanish (it would be embarassing

if they did not), giving:

ĤA(t) =

∫ t

0

∑n
i=1

{
Yi(t

′)dHi
A(t′) + dMi(t

′)
}∑n

i=1 Yi(t′)
. (5)

We would now like to take expectations. The expectation of Yi(t) is the prob-
ability that both the censoring time TC and the joint event time TJ are both
greater than t. Censoring being uninformative means that (i) we can multiply
the survivor functions for TC and TJ and (ii) the survivor function for TC does
not depend on the individual. The expectation of Yi(t) is given therefore by:

EYi(t) = Fi
A(t)Fi

B(t)FC(t) (6)

where we have also used the independence of events A and B. We can now
take the expectations of both sides of (5):

EĤA(t) =

∫ t

0

∑n
i=1 Fi

A(t′)Fi
B(t′)dHi

A(t′)∑n
i=1 Fi

A(t′)Fi
B(t′)

(7)

where we have used the Martingale property EdMi(t) = 0 and then cancelled
the FC(t).

Expectation (7) is not satisfactory. The expectation of the estimate of the over-
all integrated excess hazard depends not only on the individual excess hazards
(desirable and necessary) but also on the background hazards (undesirable as
the underlying motivation is to remove the effect of background hazard).
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We can remove the dependence by noting that the expected hazard in (7) is a
weighted sum of the individual hazards. The Fi

B(t) are known quantities so we
can adjust the weights to eliminate them. We define Y ∗i (t) and N∗i (t)by:

Y ∗i (t) = Yi(t)/Fi
B(t)

and
N∗i (t) = Ni(t)/Fi

B(t)

respectively. The Pohar-Perme H̃A(t) estimate of the net survival is, by analogy
with (4):

H̃A(t) =

∫ t

0

dN∗+(t′)

Y ∗+(t′)
−
∫ t

0

∑n
i=1 Y

∗
i (t′)dHi

B(t′)

Y ∗+(t′)
.

The expectation of H̃A(t) can be obtained by first noting that, by (6):

EY ∗i (t) = EYi(t)/Fi
B(t) = Fi

A(t)FC(t)

and then following through the derivation of (7) to obtain:

EH̃A(t) =

∫ t

0

∑n
i=1 Fi

A(t′)dHi
A(t)∑n

i=1 Fi
A(t′)

(8)

which has a much more appropriate form as it is a weighted sum of the excess
hazards.

Exercise The hazard experienced by the ith of n individuals is hi (t). Show
that the overall hazard h̄ (t) experienced by the population of n individuals is
given by:

h̄ (t) =

∑n
i=1 Fi(t)hi(t)∑n

i=1 Fi(t)
(9)

where Fi(t) = exp
[
−
∫ t

0
hi(t′)dt′

]
. (Note that this is essentially a frailty prob-

lem with a discrete frailty distribution gi = 1/n.) Use (9) to interpret (8).


