INTRODUCTION TO DATA MINING

Attempt no more than THREE questions.

There are FOUR questions in total.

The questions carry equal weight.

STATIONERY REQUIREMENTS
Cover sheet
Treasury tag
Script paper

SPECIAL REQUIREMENTS
None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.
Consider fitting the additive model \(Y_i = \beta_0 + \sum_{j=1}^{p} f_j(x_{ij}) + \epsilon_i, \quad i = 1, \ldots, n \), using the backfitting algorithm.

a. Specify the backfitting algorithm, describing each step. List any identifiability requirements. Assume a generic smoother \(S(x) \).

b. Under what circumstances will the answer not be unique? Explain this both mathematically and conceptually.

c. Suppose the algorithm uses a weighted nearest neighbour smoother that puts weight \(w \) on the nearest observation, for \(0 < w < 1 \), and weights \((1 - w)/2 \) on the second and third nearest observations. Explain how the bias-variance tradeoff works as a function of \(w \).

Consider the linear model \(Y = X\beta + \epsilon \), and the ridge regression estimator, \(\hat{\beta} = X(X^T X + \lambda I)^{-1} X^T Y \).

a. Write the objective function for ridge regression and interpret it in the context of shrinkage and multicollinearity.

b. Suppose the prior on \(\beta \) is \(N(0, \tau^2 I) \). Show that the posterior mode is the ridge regression estimate, and relate the posterior parameters to \(\lambda \).

c. Contrast ridge regression with the LASSO. What are the important differences? Explain the practical implications.

Consider the use of a weak classifier \(G_1(x) \), which you may assume may be applied with weights on the observations.

a. Specify the steps in the AdaBoost algorithm.

b. Assume an exponential loss function \(L[y, f(x)] = \exp[-y f(x)] \). Derive the weights in the AdaBoost algorithm.

c. Describe the Random Forest algorithm, and contrast its strategy with AdaBoost.
Consider the problem of describing model complexity.

a. What is the Vapnik-Červonenkis dimension of a class of models \(\{f(x, \alpha)\} \) for binary classification? Give an example.

b. For squared error loss, define “in-sample error” as

\[
\text{Err}_{\text{in}} = n^{-1} \sum_{i=1}^{n} \mathbb{E}_{y^N} (y^N_i - \hat{f}(x_i))^2
\]

where \(y^N_i \) represents a new observation at \(x_i \) and \(y \) denotes the response values in the training data. Also, the training error is

\[
\text{err} = n^{-1} \sum_{i=1}^{n} (y_i - \hat{f}(x_i))^2.
\]

Define the “optimism” as the expected difference between the in-sample error and the expected training error:

\[
\text{Opt} = \text{Err}_{\text{in}} - \mathbb{E}_y \text{err}.
\]

Show that the optimism is equal to \((2/n) \sum \text{cov}(y_i, \hat{y}_i) \), where \(\hat{y}_i \) is the estimated response at \(x_i \).

c. Explain multiresolution analysis in the context of complexity for wavelet approximations.

END OF PAPER