
Hints on using WinBUGS

1 Running a model in WinBUGS

1. Start WinBUGS by double clicking on the WinBUGS icon (or double click on the
file WinBUGS14.exe in the WinBUGS14 directory in C:\Program Files).

2. Open file containing model code as follows:

• Point to File on the tool bar and click once with left mouse button (LMB);

• Highlight Open option and click once with LMB;

• Select appropriate directory and double click on file to open.

3. Select the Model menu as follows:

• Point to Model on the tool bar and click once with LMB.

• Highlight Specification option and click once with LMB.

4. Focus the window containing the model code by clicking the LMB once anywhere
in window — the top panel of the window should then become highlighted in blue
to indicate that the window is currently in focus.

5. Highlight the word model at the beginning of the code by dragging the mouse over
the word whilst holding dowm the LMB.

6. Check model syntax by moving the mouse over check model box in the Specifica-
tion Tool window and clicking once with LMB.

• A message saying model is syntactically correct should appear in the
bottom left of the WinBUGS program window.

7. Open data (the data can either be stored in a separate file, in which case open this
file, or they may be stored in the same file as the model code, in which case click
on the arrow as instructed to view the data).

8. Load data as follows:

• Highlight the word list at the beginning of the data file.

• Click once with LMB on load data box in Specification Tool window.

• A message saying data loaded should appear in the bottom left of the Win-
BUGS program window.

9. If you wish to run more than one chain, then specify the number of chains in the
white box labeled num of chains in the Specification Tool window (the default is
1 chain).

10. Compile the model by clicking once with the LMB on the compile box in the
Specification Tool window.

1

• A message saying model compiled should appear in the bottom left of the
WinBUGS program window.

11. Open inital values files (the initial values can either be stored in separate file(s),
in which case open these files, or they may be stored in the same file as the model
code, in which case click on the arrow as instructed to view the initial values).

12. Load initial values as follows:

• Highlight the word list at the beginning of the first set of initial values.

• Click once with LMB on load inits box in Specification Tool window.

• A message saying initial values loaded: model itialialized should
now appear in the bottom left of the WinBUGS program window.

If you have specified more than 1 chain to be run, then you need to load separate
initial value files for each chain (just repeat the above steps for each file).

13. Close the Specification Tool window by clicking once with LMB on X button in top
right corner of window.

14. You are now ready to start running the simulation:

• Before doing so, you may want to set some monitors to store the sampled
values for selected parameters (see section Monitoring parameter values
below).

• To run the simulation, select the Update option from the Model menu.

• Type the number of updates (iterations of the simulation) you require in the
appropriate white box (default is 1000).

• Click once on the update box:

– The program will now start simulating values for each parameter in the
model.

– This may take a few seconds — the box marked iteration will tell you
how many updates have currently been completed. The number of times
this value is revised depends on the value you have set for refresh (see
white box above iteration). The default is every 100 iterations, but
you can ask the program to report more frequently by changing refresh

to, say, 10 or 1.

15. When the updates are finished, the message updates took *** s will appear in
the bottom left of the WinBUGS program window (where *** is the number of
seconds taking to complete the simulation).

16. If you set monitors for any parameters you can now view graphical and numerical
summaries of the samples (see below).

17. To save any files created during your WinBUGS run, focus the window containing
the information you want to save, and select the Save As option from the File menu.

18. To quit WinBUGS, select the Exit option from the File menu.

2

2 Monitoring parameter values

In order to check convergence and obtain posterior summaries of the model parameters,
you first need to set monitors for each parameter of interest. This tells WinBUGS
to store the values sampled for those parameters; otherwise, WinBUGS automatically
discards the simulated values.

There are two types of monitors in WinBUGS:

1. Sample monitors

• Setting a sample monitor tells WinBUGS to store every value it simulates for
that parameter.

• You will need to set sample monitors if you want to view trace plots of the
samples to check convergence (see section Checking convergence below)
and if you want to obtain posterior quantiles, for example, the posterior 95%
Bayesian credible interval for that parameter.

• To set a sample monitor:

– Select Samples from the Inference menu.

– Type the name of the parameter to be monitored in the white box marked
node.

– Click once with the LMB on the box marked set

– Repeat for each parameter to be monitored.

2. Summary monitors

• Setting a summary monitor tells WinBUGS to store the running mean and
standard deviation for the parameter.

• The values saved contain less information than saving each individual sample
in the simulation, but require much less storage. This is an important con-
sideration when running long simulations (1000’s of iterations) and storing
values for many variables.

• We usually set summary monitors on the vector of area-specific random effects
(relative risks) since we are primarily interested in obtaining the posterior
mean as an estimate of the relative risk of disease in each area (these are
the quantities we use for mapping). However, if we want to estimate a 95%
interval for each relative risk, then we would need to set a sample monitor in
order to store the necessary information for each parameter.

• To set a summary monitor:

– Select Summary from the Inference menu.

– Type the name of the parameter to be monitored in the white box marked
node.

– Click once with the LMB on the box marked set

– Repeat for each parameter to be monitored.

3

Note: you should not set a summary monitor until you are happy
that convergence has been reached (see next section), since it is not
possible to discard any of the pre-convergence (’burn-in’) values
from the running mean summary once it is set.

3 Checking convergence

Checking convergence requires considerable care. It is very difficult to say conclusively
that a chain (simulation) has converged, only to diagnose when it definitely hasn’t
converged.

The following are practical guidelines for assessing convergence:

• For models with many parameters, it is inpractical to check convergence for every
parameter, so just chose a random selection of relevant parameters to monitor

– For example, rather than checking convergence for every element of a vector
of random effects, just chose a random subset (say, the first 5 or 10).

• Examine trace plots of the sample values versus iteration to look for evidence of
when the simulation appears to have stabilised:

– To obtain ’live’ trace plots for a parameter:

∗ Select Samples from the Inference menu.

∗ Type the name of the parameter in the white box marked node.

∗ Click once with the LMB on the box marked trace: an empty graphics
window will appear on screen.

∗ Repeat for each parameter required.

∗ Once you start running the simulations (using the Update Tool, trace
plots for these parameters will appear ’live’ in the graphics windows.

– To obtain a trace plot showing the full history of the samples for any parame-
ter for which you have previously set a sample monitor and carried out some
updates:

∗ Select Samples from the Inference menu.

∗ Type the name of the parameter in the white box marked node (or select
name from pull down list).

∗ Click once with the LMB on the box marked history: a graphics window
showing the sample trace will appear.

∗ Repeat for each parameter required.

– The following plots are examples of (i) chains for which convergence (in the
pragmatic sense) looks reasonable (left hand side); (ii) chains which have
clearly not reached convergence (right hand side):

4

iteration

al
ph

a

0 2*10^3 4*10^3 6*10^3 8*10^3 10^4

Trace of beetles1
(10000 values)

-7
5

-5
0

-2
5

iteration

al
ph

a

0 2*10^3 4*10^3 6*10^3 8*10^3 10^4

Trace of beetles2
(10000 values)

-7
5

-5
0

-2
5

iteration

be
ta

0 2*10^3 4*10^3 6*10^3 8*10^3 10^4

20
40

Trace of beetles1
(10000 values)

iteration

be
ta

0 2*10^3 4*10^3 6*10^3 8*10^3 10^4

20
40

Trace of beetles2
(10000 values)

BEETLES

– If you are running more than 1 chain simultaneously, the trace and history
plots will show each chain in a different colour.

∗ In this case, we can be reasonably confident that convergence has been
achieved if all the chains appear to be overlapping one another.

∗ The following plots are examples of (i) multiple chains for which conver-
gence looks reasonable (top); (i) multiple chains which have clearly not
reached convergence (bottom):

5

Iteration

P
ar

am
et

er
 v

al
ue

100 200 300 400

-2
0

2

Iteration

P
ar

am
et

er
 v

al
ue

100 200 300 400

-2
2

6
10

6

4 How many iterations after convergence?

Once you are happy that convergence has been achieved, you will need to run the
simulation for a further number of iterations to obtain samples that can be used for
posterior inference. The more samples you save, the more accurate will be your posterior
estimates.

One way to assess the accuracy of the posterior estimates is by calculating the Monte
Carlo error for each parameter. This is an estimate of the difference between the mean
of the sampled values (which we are using as our estimate of the posterior mean for each
parameter) and the true posterior mean.

As a rule of thumb, the simulation should be run until the Monte Carlo error for each
parameter of interest is less than about 5% of the sample standard deviation. The
Monte Carlo error (MC error) and sample standard deviation (SD) are reported in the
summary statistics table (see next section).

5 Obtaining summary statistics of the posterior dis-

tribution

To obtain summaries of the monitored samples, to be used for posterior inference:

• Select Samples from the Inference menu.

• Type the name of the parameter to be summarised in the white box marked node

(or select name from the pull down list, or type * to select all monitored parame-
ters).

• Type the iteration number which you want to start you summary from in the
white box marked beg: this allows the pre-convergence ’burn-in’ samples to be
discarded.

• Click once with LMB on box marked stats: a table reporting various summary
statistics based on the sampled values of the selected parameter will appear.

6 Plotting summaries of the posterior

WinBUGS version 1.4 includes options for producing various plots of posterior summary
statistics. The plot options include:

1. Kernel density plot: plots an estimate of the shape of the (univariate) marginal
posterior distribution of a parameter see on-line manual for further details (select
User manual from the Help menu in WinBUGS and then take a look at the sub-
section on Density plots in the WinBUGS Graphics section).

7

2. Box plots or caterpillar plots: these plots show a side-by-side comparison of
the posterior distributions of each element of a vector of parameters summarised
either as a point estimate and 95% interval (caterpillar plot) or by the mean,
interquartile range and 95% interval (box plot). Typically this vector will be a
vector of random effects parameters. For example, suppose you have a vector of
random effects called p in your model:

• You should have already set a samples monitor on the appropriate vector (p)
and carried out a suitable number of updates.

• Then select Compare from the Inference menu.

• Type the name of the parameter vector to be plotted (in this case p) in the
white box marked node.

• If you want to discard any pre-convergence burn-in samples before plotting,
type the appropriate iteration number in the white box marked beg.

• Click once with LMB on the button marked either box plot or caterpillar
as required.

3. Model fit: this option produces a ‘time series type plot and is suitable for plot-
ting an ordered sequence of parameter estimates against corresponding values of
a known variable, e.g. plotting posterior estimates of the fitted values of a growth
curve against time. For example, in the rats model from the WinBUGS examples
Vol I, you could use this option to produce a plot of the vector of 5 fitted values
for the weight of each rat (mu[i,]) against age (x), as follows:

• You should have already set a samples monitor on the appropriate vector (i.e.
mu, the mean of the normal distribution assumed for the responses, Y) and
carried out an appropriate number of updates.

• Then select Compare from the Inference menu.

• Type the name of the (stochastic) parameter vector to be plotted on the
vertical axis in the white box marked node (e.g. mu[1,] to produce the plot
for rat 1).

• Type the name of the known (i.e. not stochastic) variable to be plotted on
the horizontal axis in the white box marked axis (in this case, x, the name
of the vector of ages at which each rat was measured).

• An optional argument is to type the name of another known (i.e. not sto-
chastic) variable in the white box marked other (for example, Y[1,] — this
would plot the observed measurements for rat 1 as well as the fitted values
mu[1,]).

• If you want to discard any pre-convergence burn-in samples before plotting,
type the appropriate iteration number in the white box marked beg.

• Click once with LMB on the button marked model fit. The resulting plot
shows the posterior median (solid red line) and posterior 95% interval (dashed
blue line) for the values of node (in this case, the fitted values mu[1,] for rat

8

1) against the values of the variable specified in the axis box (in this case,
x, the age of the rat at each measurement). The black dots show the values
of the variable specified in the other box (in this case, Y[1,], the observed
weights for rat 1).

4. There are various options for customising all these plots (e.g. changing the order
in which the elements of the vector are plotted, switching the x and y axis, etc.).
To access these options, click on the window containing the plot to focus it, then
place the mouse somewhere in the plot window and click once with the right mouse
button. A menu will appear and you should select the Properties option. This will
open another menu called Plot Properties which provides options for editing plot
margins, axis labels and fonts etc. (these are generic options for all WinBUGS plots),
plus some special options specific only to certain plots (click on the Special button
at the bottom of the Plot Properties menu). See the on-line manual for further
details (select User manual from the Help menu in WinBUGS and then take a look
at the sections Inference (see sub-section on the Compare menu) and WinBUGS
Graphics).

7 Some notes on the BUGS language

7.1 Basic syntax

• <- represents logical dependence, e.g. m <- a + b*x

• ~ represents stochastic dependence, e.g. r ~ dunif(a,b)

• Can use arrays and loops

for (i in 1:n){
r[i] ~ dbin(p[i],n[i])
p[i] ~ dunif(0,1)
}

• Some functions can appear on left-hand-side of an expression, e.g.

logit(p[i])<- a + b*x[i] log(m[i]) <- c + d*y[i]

• mean(p[]) to take mean of whole array, mean(p[m:n]) to take mean of elements
m to n. Also for sum(p[]).

• dnorm(0,1)I(0,) means the prior will be restricted to the range (0,∞).

9

7.2 Functions in the BUGS language

• p <- step(x-.7) = 1 if x ≥ 0.7, 0 otherwise. Hence monitoring p and recording
its mean will give the probability that x≥ 0.7.

• p <- equals(x,.7) =1 if x = 0.7, 0 otherwise.

• tau <- 1/pow(s,2) sets τ = 1/s2.

• s <- 1/ sqrt(tau) sets s = 1/
√

τ .

• p[i,k] <- inprod(pi[], Lambda[i,,k]) sets pik =
∑

j πjΛijk.

• See ’Model Specification/Logical nodes’ in manual for full syntax.

7.3 Some common Distributions

Expression Distribution Usage

dbin binomial r ~ dbin(p,n)

dnorm normal x ~ dnorm(mu,tau)

dpois Poisson r ~ dpois(lambda)

dunif uniform x ~ dunif(a,b)

dgamma gamma x ~ dgamma(a,b)

NB. The normal is parameterised in terms of its mean and precision = 1/ variance =
1/sd2.

See ’Model Specification/The BUGS language: stochastic nodes/Distributions’ in man-
ual for full syntax.

Functions cannot be used as arguments in distributions (you need to create
new nodes).

7.4 The WinBUGS data formats

WinBUGS accepts data files in:

1. Rectangular format

n[] r[]

47 0

148 18

...

360 24

END

10

2. S-Plus format:

list(N=12,n = c(47,148,119,810,211,196,
148,215,207,97,256,360),

r = c(0,18,8,46,8,13,9,31,14,8,29,24))

Generally need a ‘list’ to data consist of mixture of scalars and vectors/arrays, or vec-
tors/arrays of different lengths.

7.5 Calling WinBUGS from other software

• Scripts enable WinBUGS 1.4 to be called from other software

• Interfaces developed for R, Splus, SAS, Matlab

• See www.mrc-bsu.cam.ac.uk/bugs/welcome.shtml

• The R2winbugs function for R is most developed - reads in data, writes script,
monitors output etc. See
http://cran.r-project.org/src/contrib/Descriptions/R2WinBUGS.html

• OpenBUGS site http://mathstat.helsinki.fi/openbugs/ provides an open source
version, including BRugs which works from within R

11

