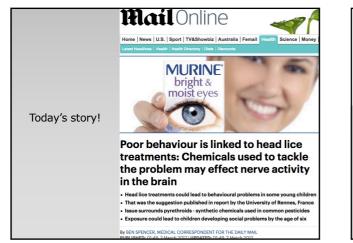


Most studies crave 'significance'


XKCD, Jan 2015	$\begin{array}{c c} \begin{array}{c} p \text{-VALUE} & \text{INTERPRETATION} \\ \hline 0.001 \\ 0.01 \\ 0.02 \\ 0.03 \\ 0.03 \\ 0.04 \\ 0.049 \\ 0.050 \\ 0.049 \\ 0.050 \\ 0$
----------------	--

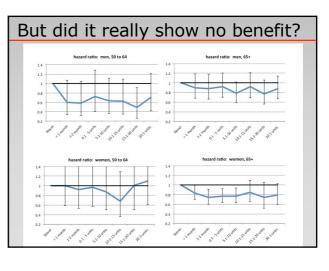
a borderline significant trend (p=0.09) a certain trend toward significance (p=0.08)

- a certain trend toward significance (p=0.08 a clear tendency to significance (p=0.052)
- a clear trend (p<0.09)
- a clear, strong trend (p=0.09)
- a considerable trend toward significance (p=0.069)
- a decreasing trend (p=0.09)
- a definite trend (p=0.08)
- a distinct trend toward significance (p=0.07) a favorable trend (p=0.09)

somewhat statistically significant (p=0.092) strong trend toward significance (p=0.08) sufficiently close to significance (p=0.07) suggestive but not quite significant (p=0.061) suggestive of a significant trend (p=0.08) suggestively significant (p=0.064) tailed to insignificance (p=0.10 tantalisingly close to significance (p=0.104) technically not significant (p=0.06) teetering on the brink of significance (p=0.06) tend to significant (p>0.1)

OEM Online First, published on March 1, 2017 as 10.1136/oemed-2016-104035 Environment ORIGINAL ARTICLE Behavioural disorders in 6-year-old children and pyrethroid insecticide exposure: the PELAGIE mother-child cohort Jean-François Viel,^{1,2} Florence Rouget,^{1,3} Charline Warembourg,¹ Christine Monfort,¹ Gwendolina Limon,⁴ Sylvaine Cordier,¹ Cécile Chevrier¹ Measured insecticide metabolites in urine of 571 pregnant women 6 years later measured metabolites in 287 children Correlated with behavioural problems 5 metabolites at 3 levels, mothers/children, 3 outcome scales = 60 95% confidence intervals for associations (adjusted with logistic regression)

Only one excluded 1.


30 more	e sensitive tes	sts? Children	shown below
	95% CI) and Cox p values for abnorm 282, PELAGIE cohort, France) Internalising score	al or borderline scores on the SDQ and Externalising score	d child concentrations of urinary Reverse-scored prosocial behaviou
Metabolites (µg/L)	OR (95% CI)	OR (95% CI)	OR (95% CI)
3-PBA			
<0.0081	Ref.	Ref.	Ref.
0.008-0.037	1.41 (0.73 to 2.73)	1.52 (0.67 to 3.42)	2.93 (1.27 to 6.78)
≥0.038	0.70 (0.34 to 1.46)	1.96 (0.90 to 4.30)	1.91 (0.80 to 4.57)
Cox p value‡	0.94	0.04	0.07
I-F-3-PBA			
<0.0031	Ref.	Ref.	Ref.
≥0.003	0.86 (0.07 to 1.28)§	0.55 (0.21 to 1.41)¶	1.35 (0.59 to 3.07)
Cox p value‡	0.71	0.27	0.34
is-DCCA			
<0.067†	Ref.	Ref.	Ref.
0.067-0.158	1.06 (0.52 to 2.15)	0.63 (0.27 to 1.45)§	1.20 (0.53 to 2.71)**
≥0.159	0.97 (0.47 to 2.03)	0.97 (0.44 to 2.15)§	1.05 (0.45 to 2.56)**
Cox p value‡	0.95	0.80	0.68
rans-DCCA			
<0.136	Ref.	Ref.	Ref.
0.136-0.409	1.22 (0.59 to 2.51)§	0.60 (0.27 to 1.33)	0.71 (0.30 to 1.64)11
≥0.410	0.99 (0.47 to 2.10)§	0.57 (0.25 to 1.30)	0.76 (0.32 to 1.82)††
Cox p value‡	0.91	0.03	0.06
is-DBCA			
<0.134	Ref.	Ref.	Ref.
0.134-0.345	0.49 (0.22 to 1.13)##	1.92 (0.29 to 1.57)##	0.91 (0.35 to 2.34)††
≥0.346	1.49 (0.73 to 3.06)##	0.82 (0.36 to 1.86)##	2.14 (0.89 to 5.18)††
Cox p value‡	0.49	0.55	0.23

- Paper and press release only reported the few significant results [2 positive and 1 negative]
- A green jelly-bean example?
- And maybe children with behavioural problems get more head lice? [reverse causation]

Conclusions

- Point estimates for all consumption levels show protection
- Confidence intervals are wide as few deaths in the baseline (never-drinker) category
- Wide CIs include plausible protective effects
- But authors essentially interpret 'not significantly different' as 'no effect'
- A serious misuse of statistics