1. Ask your supervisor to test you on the sheet of common distributions handed out in lectures.

2. (Probability review) If $X \sim \text{Exponential}(\lambda)$ and $Y \sim \text{Exponential}(\mu)$ are independent, derive the distribution of $\min(X, Y)$. If $X \sim \text{Gamma}(\alpha, \lambda)$ and $Y \sim \text{Gamma}(\beta, \lambda)$ are independent, derive the distributions of $X + Y$ and $X/(X + Y)$.

3. In a genetics experiment, a sample of n individuals was found to include a, b, c of the three possible genotypes GG, Gg, gg respectively. The population frequency of a gene of type G is $\theta/(\theta + 1)$, where θ is unknown, and it is assumed that the individuals are unrelated and that two genes in a single individual are independent. Show that the likelihood of θ is proportional to $\theta^2a + b/(1 + \theta)^2a + 2b + 2c$ and that the maximum likelihood estimate of θ is $(2a + b)/(b + 2c)$.

4. (a) Let X_1, \ldots, X_n be independent Poisson random variables, with X_i having mean $i\theta$, for some $\theta > 0$. Show that $T = T(X) = \sum_{i=1}^{n} X_i$ is a sufficient statistic for θ and write down the distribution of T. Show that the maximum likelihood estimator $\hat{\theta}$ of θ is a function of T, and show that it is unbiased.

(b) For some $n > 2$, let X_1, \ldots, X_n be iid with $X_i \sim \text{Exponential}(\theta)$. Find a minimal sufficient statistic T and write its distribution down. Show that the maximum likelihood estimator $\hat{\theta}$ is a function of T, and show that it is biased, but asymptotically unbiased. Find an injective function h on $(0, \infty)$ such that, writing $\psi = h(\theta)$, the maximum likelihood estimator $\hat{\psi}$ of the new parameter ψ is unbiased.

5. Suppose X_1, \ldots, X_n are independent random variables with distribution $\text{Bin}(1, p)$.

(a) Show that a sufficient statistic for $\theta = (1 - p)^2$ is $T(X) = \sum_{i=1}^{n} X_i$ and that the MLE for θ is $(1 - \frac{1}{n}T)^2$.

Hint: use the chain rule, $df/d\theta = (df/dp)(dp/d\theta)$.

(b) Show that the MLE is a biased estimator for θ. Let $\tilde{\theta} = 1_{\{X_1 + X_2 = 0\}}(X)$. Show that $\tilde{\theta}$ is unbiased for θ. Use the Rao–Blackwell theorem to find a function of T which is an unbiased estimator for θ.

6. For some $n \geq 2$, suppose that X_1, \ldots, X_n are iid random variables uniformly distributed on $[\theta, 2\theta]$ for some $\theta > 0$. Show that $\bar{X} = \frac{1}{3}X_1$ is an unbiased estimator of θ. Show that $T(X) = (\min_i X_i, \max_i X_i)$ is a minimal sufficient statistic for θ. Use the
Rao–Blackwell theorem to find an unbiased estimator \(\hat{\theta} \) of \(\theta \) which is a function of \(T \) and whose variance is strictly smaller than the variance of \(\tilde{\theta} \) for all \(\theta > 0 \).

7. (a) Let \(X_1, \ldots, X_n \) be iid with \(X_i \sim U[0, \theta] \). Find the maximum likelihood estimator \(\hat{\theta} \) of \(\theta \). Show that the distribution of \(R(X, \theta) = \hat{\theta}/\theta \) does not depend on \(\theta \), and use \(R(X, \theta) \) to find a \(100(1-\alpha)\% \) confidence interval for \(\theta \) for \(0 < \alpha < 1 \).

(b) The lengths (in minutes) of calls to a call centre may be modelled as iid exponentially distributed random variables, and \(n \) such call lengths are observed. The original sample is lost, but the data manager has noted down \(n \) and \(t \) where \(t \) is the total length of the \(n \) calls in minutes. Derive a 95\% confidence interval for the probability that a call is longer than 2 minutes if \(n = 50 \) and \(t = 105.3 \).

8. Suppose that \(X_1 \sim N(\theta_1, 1) \) and \(X_2 \sim N(\theta_2, 1) \) independently, where \(\theta_1 \) and \(\theta_2 \) are unknown. Show that \((\theta_1 - X_1)^2 + (\theta_2 - X_2)^2 \) has a \(\chi^2 \) distribution and that this is the same as \(\text{Exponential}(\frac{1}{2}) \), i.e., the exponential distribution with mean 2.

Show that both the square \(S \) and circle \(C \) in \(\mathbb{R}^2 \), given by

\[
S = \{ (\theta_1, \theta_2) : |\theta_1 - X_1| \leq 2.236; |\theta_2 - X_2| \leq 2.236 \} \\
C = \{ (\theta_1, \theta_2) : (\theta_1 - X_1)^2 + (\theta_2 - X_2)^2 \leq 5.991 \}
\]

are 95\% confidence regions for \((\theta_1, \theta_2)\).

What might be a sensible criterion for choosing between \(S \) and \(C \)?

Hint: \(\Phi(2.236) = (1 + \sqrt{0.95})/2 \), where \(\Phi \) is the distribution function of \(N(0, 1) \).

9. Suppose that the number of defects on a roll of magnetic recording tape is modelled with a Poisson distribution for which the mean \(\lambda \) is known to be either 1 or 1.5. Suppose the prior mass function for \(\lambda \) is \(\pi_{\lambda}(1) = 0.4, \ \pi_{\lambda}(1.5) = 0.6 \).

A random sample of five rolls of tape has \(x = (3, 1, 4, 6, 2) \) defects respectively. Show that the posterior distribution for \(\lambda \) given \(x \) is

\[
\pi_{\lambda|X}(1 \mid x) = 0.012, \ \pi_{\lambda|X}(1.5 \mid x) = 0.988.
\]

10. Suppose \(X_1, \ldots, X_n \) are iid with (conditional) probability density function \(f(x \mid \theta) = \theta x^{\theta-1} \) for \(0 < x < 1 \) (and is zero otherwise), for some \(\theta > 0 \). Suppose that the prior for \(\theta \) is \(\text{Gamma}(\alpha, \beta) \), \(\alpha > 0, \beta > 0 \). Find the posterior distribution of \(\theta \) given \(X = (X_1, \ldots, X_n) \) and the Bayesian estimator of \(\theta \) under quadratic loss.

+11 For some \(n \geq 3 \), let \(\epsilon_1, \ldots, \epsilon_n \) be iid with \(\epsilon_i \sim N(0, 1) \). Set \(X_1 = \epsilon_1 \) and \(X_i = \theta X_{i-1} + (1 - \theta^2)^{1/2} \epsilon_i \) for \(i = 2, \ldots, n \) and some \(\theta \in (-1, 1) \). Find a sufficient statistic for \(\theta \) that takes values in a subset of \(\mathbb{R}^3 \).