13.

Lecture 14. Applications of the distribution theory J

Lecture 14. Applications of the distribution theory

14. Applications of the distribution theory 14.1. Inference for B

So a 100(1 — a)% Cl for §; has endpoints f3; + s.e.(5;) tp(5)-

To test Hy : B = 0, use the fact that, under Hp,
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14. Applications of the distribution theory 14.1. Inference for B

Inference for 3

We know that 3 ~ N,(8,2(X” X)~1), and so
Bj ~ N(Bj, (X" X); ).

The standard error of Bj is

s.e.(5)) = \/62(XTX); ™,

where 52 = RSS/(n — p), as in Theorem 13.3.
Then
Bi—8 -5 _ B8 o?(XTX)5

s.e. BJ /02 XTX - /RSS/((n— p)o?)

The numerator is a standard normal N(0, 1), the denominator is an independent

Bi—B
Xa_p/(n = p), and so sé(ﬁj) ~thop.
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14. Applications of the distribution theory 14.2. Simple linear regression

Simple linear regression

We assume that
Yi=a +b(x;—X)+e, i=1...,n,

where X = 3" x;/n, and ¢;,i =1, ..., n are iid N(0, o2).
Then from Lecture 12 and Theorem 13.3 we have that

_ 2 .~ S o2
¥y=Y~N(a & h=2Y N (b 2
a <a7n>a Sxx 75XX )

Vi=8 +b(x —%), RSS=D(Vi-V)P~023,,

and (8',b) and 62 = RSS/n are independent.
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14. Applications of the distribution theory 14.2. Simple linear regression 14. Applications of the distribution theory 14.3. Expected response at x™

Example 12.1 continued

o We have seen that 52 = R55 — 6196 _ 3089 — 55.6°.

Expected response at x*

@ So the standard error of b is

@ Let x* be a new vector of values for the explanatory variables
~ . E *) — *T
se.(b) = \/F(XTX)ZL, = 3089 _ 556 _ 190, @ The expected response a:L x* is E(Y|x*) = x*' 3.
Six 28.0 @ We estimate this by x*7 3.
°

@ So a 95% interval for b has endpoints By Theorem 13.3 and Proposition 11.1(i),

b+ s.e.(b) x t,_5(0.025) = —12.9 + 1.99 * t2(0.025) = (—17.0, —8.8), <T(B— B) ~ N(0, 02 xT (X" X)"1x").
where t2,(0.025) = 2.07. ’

@ This does not contain 0. Hence if carry out a size 0.05 test of Hy: b=0 vs

L Let 72 = x*T (X7 X)~1x*.
b _ —129 _

Hi : b # 0, the test statistic would be sed) — 199 = —6.48, and we would o Then X
reject Hy since this is less than —t5(0.025) = —2.07. x*T(B - B) ,

° Estimate Std. Error t value Pr(>lt|) oT P
(Intercept) 826.500 11.346 72.846 < 2e-16 *x*x 0 . . «T
oxy. s 19 869 1 986 -6.479 1.626-06 %xx o A 100.(1 — a)% confidence interval for the expected response x*' 3 has
o endpoints

- ~
Signif. codes: 0 #%* 0.001 ** 0.01 * 0.05 . 0.1 1 X BE 6Tt p(5)
Residual standard error: 55.58 on 22 degrees of freedom
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oxy.s = oxy - mean(oxy)

fit=Im(time~ oxy.s )

pred=predict.lm(fit, interval="confidence")

plot(oxy, time,col="red", pch=19, xlab="Oxygen uptake",ylab="Time for 2 miles", maii
Example 12.1 continued lines(oxy, pred[, "fit"])
lines(oxy, pred[, "lwr"], lty = "dotted")

@ Suppose we wish to estimate the time to run 2 miles for a man with an !
lines(oxy, pred[, "upr"], lty = "dotted")

oxygen take-up measurement of 50.
@ Here x*T = (1, (50 — X)), where x = 48.6.

@ The estimated expected response at x*7 is

95% CI for fitted line

.
xTB =4 + (50 — 48.6) x b = 826.5 — 1.4 x 12.9 = 808.5. g -
0 i \'\‘a_\_ T ' .
o We find 72 = x*T(X"X) Ix* = L + 2= = L 4 L& — 0044 = 0.212 E 8| -
@ So a 95% Cl for E(Y|x* =50 — X) is 8 i -\f‘!'.; N
E § o, -?“{\'__
xTB+67t, p(2) = 808.5 4 55.6 x 0.21 x 2.07 = (783.6,832.2). = "o L S
S . :“‘ ~ '
~ - ~.
T T I
40 45 50 55 60

Oxygen uptake
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14. Applications of the distribution theory ~ 14.4. Predicted response at xx

Predicted response at xx

The response at x* is Y* = x*3 + ¥, where ¢* ~ N(0,02), and Y* is
independent of Yi,..,Y,.

We predict Y* by x*7 3.

A 100(1 — &)% prediction interval for Y* is an interval /(YY) such that
P(Y* € I(Y)) =1 — a, where the probability is over the joint distribution of
(Y*, Y1, ..., Yp).

Observe that Y* — Y* = x*T(3 — 8) — &*.

e SoE(Y* - Y*)=xT(8-8)=0.
e And
var(Y* = Y*) = var(x*"(B)) + var(¢*)
_ 0'2X*T(XTX)_1X* =+ 0_2
o?(? +1)
e So A
Y* — Y* ~ N(0,0%(7% 4 1)).
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14. Applications of the distribution theory 14.4. Predicted response at x*

pred=predict.lm(fit, interval="prediction")

95% interval for predicted values

.
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Oxygen uptake

Note wide prediction intervals for individual points, with the width of the interval
dominated by the residual error term & rather than the uncertainty about the
fitted line.
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14. Applications of the distribution theory ~ 14.4. Predicted response at xx

@ We therefore find that

ye— vy
G/ (T2 +1)

~

tnp-

@ So the interval with endpoints

xTB L6 (72 4+ 1) thp(2).

is a 95% prediction interval for Y*.

Example 12.1 continued
A 95% prediction interval for Y* at x*T = (1, (50 — X)) is

xTB+5\/(r2+1) top(2) = 808.5 + 55.6 x 1.02 x 2.07 = (691.1,925.8).
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14. Applications of the distribution theory  14.4. Predicted response at x*

Example 13.1 continued. One-way analysis of variance

@ Suppose we wish to estimate the expected resistivity of a new wafer in the

first instrument.
Here x*T = (1,0, ..,0).
The estimated expected response at x*' is

xTh=p =Y. =1243
We find 72 = x*T (X" X)~Ix* = %
So a 95% Cl for E(Y1.) is x*T 1 £ 6 7 th_p(2)
=1243 + 10.4/\/5 x 2.09 =124.3 £4.66 x 2.09 = (114.6, 134.0).

Note that we are using an estimate of o obtained from all five instruments. If
we had only used the data from the first instrument, ¢ would be estimated as

51 = /S0y — 7225 — 1) = 8.74

The observed 95% confidence interval for p; would have been

yi =+ % t4(%) = 124.3 £3.91 x 2.78 = (113.5,135.1).

@ The 'pooled’ analysis gives a slightly narrower interval.
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A 95% prediction interval for Y1, at x*" = (1,0,...,0) is

xTh+5/(72+1) thp(2) = 1243+ 10.42 x 1.1 x 2.07 = (100.5,148.1).

95% confidence intervals for means
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