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Lecture 13. Linear models with normal assumptions
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13. Linear models with normal assumptions 13.1. One way analysis of variance

One way analysis of variance

Example 13.1

Resistivity of silicon wafers was measured by five instruments.
Five wafers were measured by each instrument (25 wafers in all).
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y=c(130.5,112.4,118.9,125.7,134.0,

130.4,138.2,116.7,132.6,104.2,

113.0,120.5,128.9,103.4,118.1,

128.0,117.5,114.9,114.9, 98.9,

121.2,110.5,118.5,100.5,120.9)

Let Yi,j be the resistivity of the jth wafer measured by instrument i , where
i , j = 1, .., 5.

A possible model is, for i , j = 1, .., 5.

Yi,j = µi + εi,j ,

where εi,j are independent N(0, σ2) random variables, and the µi ’s are unknown
constants.
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This can be written in matrix form: Let

Y
25×1

=




Y1,1

.

.
Y1,5

Y2,1

.

.
Y2,5

.

.
Y5,1

.

.
Y5,5




, X
25×5

=




1 0 ... 0
. . ... .
. . ... .
1 0 ... 0
0 1 ... 0
. . ... .
. . ... .
0 1 ... 0
. . ... .
. . ... .
0 0 ... 1
. . ... .
. . ... .
0 0 ... 1




, β
5×1

=




µ1

µ2

µ3

µ4

µ5



, ε

25×1
=




ε1,1
.
.
ε1,5
ε2,1
.
.
ε2,5
.
.
ε5,1
.
.
ε5,5




,

Then
Y = Xβ + ε.
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XTX =




5 0 ... 0
0 5 ... 0
. . ... .
0 0 .. 5


 .

Hence

(XTX )−1 =




1
5 0 ... 0
0 1

5 ... 0
. . ... .
0 0 .. 1

5


 ,

so that

µ̂ = (XTX )−1XTY =




Y1.

..

Y5.




RSS =
∑5

i=1

∑5
j=1(Yi,j − µ̂i )

2 =
∑5

i=1

∑5
j=1(Yi,j − Yi.)

2 on n − p = 25− 5 = 20
degrees of freedom.

For these data, σ̃ =
√

RSS/(n − p) =
√

2170/20 = 10.4.
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Assuming normality

We now make a Normal assumption

Y = Xβ + ε, ε ∼ Nn(0, σ2I ), rank (X ) = p(< n).

This is a special case of the linear model of Lecture 12, so all results hold.

Since Y ∼ Nn(Xβ, σ2I ), the log-likelihood is

`(β, σ2) = −n

2
log 2π − n

2
log σ2 − 1

2σ2
S(β),

where S(β) = (Y − Xβ)T (Y − Xβ).

Maximising ` wrt β is equivalent to minimising S(β), so MLE is

β̂ = (XTX )−1XTY,

the same as for least squares.
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For the MLE of σ2, we require

∂`

∂σ2

∣∣∣∣ ˆβ,σ̂2

= 0,

i.e. − n

2σ̂2
+

S(β̂)

2σ̂4
= 0

. So

σ̂2 =
1

n
S(β̂) =

1

n
(Y − X β̂)T (Y − X β̂) =

1

n
RSS,

where RSS is ’residual sum of squares’ - see last lecture.

See example sheet for β̂ and σ̂2 for simple linear regression and one-way
analysis of variance.
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Lemma 13.2

(i) If Z ∼ Nn(0, σ2I ), and A is n × n, symmetric, idempotent with rank r , then
ZTAZ ∼ σ2χ2

r .
(ii) For a symmetric idempotent matrix A, rank(A) = trace(A)

Proof:

(i) A2 = A since idempotent, and so eigenvalues of A are
λi ∈ {0, 1}, i = 1, .., n, [λix = Ax = A2x = λ2i x].

A is also symmetric, and so there exists an orthogonal Q such that

QTAQ = diag (λ1, .., λn) = diag (1, .., 1,
r

0, ..., 0
n−r

) = Λ (say).

Let W = QTZ, and so Z = QW. Then W ∼ Nn(0, σ2I ) by Proposition
11.1(i). (since cov(W) = QTσ2IQ = σ2I ).

Then

ZTAZ = WTQTAQW = WTΛW =
r∑

i=1

w2
i ∼ σ2χ2

r ,

from the definition of χ2.
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(ii)

rank (A) = rank (QTAQ) if Q orthogonal

= rank (Λ)

= trace (Λ)

= trace (QTAQ)

= trace (AQTQ) since tr(AB) = tr(BA)

= trace (A)

�
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Theorem 13.3

For the normal linear model Y ∼ Nn(Xβ, σ2I ),
(i) β̂ ∼ Np(β, σ2(XTX )−1).

(ii) RSS ∼ σ2χ2
n−p, and so σ̂2 ∼ σ2

n χ
2
n−p.

(iii) β̂ and σ̂2 are independent.

Proof:

(i) β̂ = (XTX )−1XTY, say CY.

Then from Proposition 11.1(i), β̂ ∼ Np(β, σ2(XTX )−1).
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(ii) We can apply Lemma 13.2(i) with Z = Y − Xβ ∼ Nn(0, σ2In) and
A = (In − P), where P = X (XTX )−1XT is the projection matrix covered after
Definition 12.3.

(P is also known as the ’hat’ matrix since it projects from the observation Y
onto the fitted values Ŷ.)

P is symmetric and idempotent, so In − P is also symmetric and idempotent
(check).

By Lemma 13.2(ii),

rank(P) = trace(P) = trace(X (XTX )−1XT ) = trace((XTX )−1XTX ) = p,

so rank(In − P) = trace(In − P) = n − p.

Note that (In − P)X = 0 (check) so that

ZTAZ = (Y − Xβ)T (In − P)(Y − Xβ) = YT (In − P)Y since (In − P)X = 0.

We know R = Y − Ŷ = (In − P)Y and (In − P) is symmetric and
idempotent, and so

RSS = RTR = YT (In − P)Y (= ZTAZ).

Hence by Lemma 13.2(i), RSS ∼ σ2χ2
n−p and σ̂2 = RSS

n ∼ σ2

n χ
2
n−p.
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(iii) Let V
(p+n)×1

=

(
β̂
R

)
= DY, where D =

(
C

In − P

)
is a (p + n)× n

matrix.

By Proposition 11.1(i), V is multivariate normal with

cov(V ) = σ2DDT = σ2

(
CCT C (In − P)T

(In − P)CT (In − P)(In − P)T

)

= σ2

(
CCT C (In − P)

(In − P)CT (In − P)

)
.

We have C (In − P) = 0 (check) [(XTX )−1XT (In − P) = 0 because
(In − P)X = 0].

Hence β̂ and R are independent by Proposition 11.2(ii).

Hence β̂ and RSS=RTR are independent, and so β̂ and σ̂2 are independent.
�.

From (ii), E(RSS) = σ2(n − p), and so σ̃2 = RSS
n−p is an unbiased estimator of σ2.

σ̃ is often known as the residual standard error on n − p degrees of freedom.
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Example 12.1 continued

The RSS = residual sum of squares is the sum of the squared vertical distances
from the data-points to the fitted straight line.

RSS =
∑

i (yi − ŷi )
2 =

∑
i (yi − â′ − b̂(xi − x̄)2 = 67968.

So the estimate of

σ̃2 =
RSS

n − p
=

67968

(24− 2)
= 3089.

Residual standard error is σ̃ =
√

3089 = 55.6 on 22 degrees of freedom.
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The F distribution

Suppose that U and V are independent with U ∼ χ2
m and V ∼ χ2

n.

Then X = (U/m)/(V /n) is said to have an F distribution on m and n
degrees of freedom.

We write X ∼ Fm,n.

Note that, if X ∼ Fm,n then 1/X ∼ Fn,m.

Let Fm,n(α) be the upper 100α% point for the Fm,n-distribution so that if
X ∼ Fm,n then P(X > Fm,n(α)) = α. These are tabulated.

If we need, say, the lower 5% point of Fm,n, then find the upper 5% point x
of Fn,m and use P(Fm,n < 1/x) = P(Fn,m > x).

Note further that it is immediate from the definitions of tn and F1,n that if
Y ∼ tn then Y 2 ∼ F1,n, since ratio of independent χ2

1 and χ2
n variables.
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