12. 13. Linear models with normal assumptions 13.1. One way analysis of variance

One way analysis of variance

Example 13.1

Resistivity of silicon wafers was measured by five instruments.
Five wafers were measured by each instrument (25 wafers in all).
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This can be written in matrix form: Let
y=c(130.5,112.4,118.9,125.7,134.0, Yii 10 .. 0 €11
130.4,138.2,116.7,132.6,104.2,
113.0,120.5,128.9,103.4,118.1, . L e .
128.0,117.5,114.9,114.9, 98.9, Y15 10 .. O €15
121.2,110.5,118.5,100.5,120.9) Y21 01 .. 0 s €21
o ) ) ) 25Y><1: Yos |’ 25)§5: 0 1 .. 0| &0 ™ i €25
Let Y;; be the resistivity of the jth wafer measured by instrument i, where ] o Ha
ij=1,.,5. . C e K :
A possible model is, for i,j =1,..,5. Y51 00 .. 1 €51
Yii=pi+eij :
i i (VB Ys5 00 1 €55
where ¢; ; are independent N(0, 02) random variables, and the f;'s are unknown
constants. Then
Y=X3+e.
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Assuming normality

5 0 0
0 5 0
Ty _
XX = . @ We now make a Normal assumption
0 0 5
Y =XB+e¢, e ~ N,(0,5°/), rank (X) = p(< n).
Hence )
8 ? 8 @ This is a special case of the linear model of Lecture 12, so all results hold.
xx)t=1 o8 | o Since Y ~ N,(XB,021), the log-likelihood is
00 i
5 n n 1
((B,0°) = —=log2m — = logo? — =S
so that L (8,7) 3 BT T 51087 T 52 (B),
Yi.
p=X"X)XTY = | where S(8) = (Y — XB)' (Y — X3).
Ys. e Maximising ¢ wrt 3 is equivalent to minimising S(3), so MLE is
RSS = >0, Zle(yu — 2=, Zle(y,-,j ~Yi)?onn—p=25—-5=20 B=XX)"XTY,
degrees of freedom.
For these data, & = 1/RSS/(n — p) = /2170/20 = 10.4. the same as for least squares.
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Lemma 13.2
(i) IfZ ~ N,(0,0%1), and A is n x n, symmetric, idempotent with rank r, then
5 . ZTAZ ~ 022
@ For the MLE of o°, we require . Xre .
(i) For a symmetric idempotent matrix A, rank(A) = trace(A)
ol
do? B.62 Y Proof:
n S(A) o (i) A2 = A since idempotent, and so eigenvalues of A are
ie. ~ 557 + 5t = 0 A €{0,1},i=1,..n, [Aix = Ax = A?x = \?x].
@ A is also symmetric, and so there exists an orthogonal @ such that
e . So
6% = 2S(B) = (Y = XBY (Y = XB) = ~RSS, G AQ = disg (1, \n) = diog (1,10, ..,0) = A (say).
n n n r n—r

here RSS is 'residual f ' - last lecture.
where 1 residua fum © square? see. ast lec ure. o Let W= Q"Z, and so Z= QW. Then W ~ N,(0, /) by Proposition
@ See example sheet for 3 and 62 for simple linear regression and one-way 11.1(i). (since cov(W) = Q7021Q = 021).

analysis of variance.
@ Then

ZTAZ =W Q"AQW = WTAW = > " w? ~ 0?x7,
i=1
from the definition of x2.
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rank (A) = rank (QTAQ) if Q orthogonal
= rank (A)
= trace (A)
= trace (Q"AQ)
= trace (AQ"Q) since tr(AB) = tr(BA)
= trace (A)
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13. Linear models with normal assumptions 13.2. Assuming normality
(i) We can apply Lemma 13.2(i) with Z =Y — X3 ~ N,(0, o%/,) and
A= (I, — P), where P = X(X" X)71XT is the projection matrix covered after
Definition 12.3.

o (P is also known as the 'hat’ matrix since it projects from the observation Y
onto the fitted values Y.)

@ P is symmetric and idempotent, so /, — P is also symmetric and idempotent
(check).

@ By Lemma 13.2(ii),
rank(P) = trace(P) = trace(X (X" X)71X") = trace((X" X)X X) = p,

so rank(l, — P) = trace(l, — P) =n—p.
o Note that (/, — P)X = 0 (check) so that

Z'AZ = (Y - XB) (I, — P)(Y = XB) = Y"(I, — P)Y since (I, — P)X = 0.

We know R =Y — Y = (I, — P)Y and (I, — P) is symmetric and
idempotent, and so

RSS=R'R=Y"(I,-P)Y (=Z"AZ).

Hence by Lemma 13.2(i), RSS ~ 0°x3_, and 6 = RTSS ~ T2

n /An—p*°

Lecture 13. Linear models with normal assumptions 11 (1-1)

13. Linear models with normal assumptions 13.2. Assuming normality

Theorem 13.3

For the normal linear model Y ~ N,(XB, 0?1),
(i) B~ No(B,0*(XTX)1).

(i) RSS ~ azxf,fp, and so 6% ~ %zX’sz'

(iii) B and 62 are independent.

Proof:
o (i) B=(X"X)"'XTY, say CY.
Then from Proposition 11.1(i), 3 ~ N,(3, 02(X" X)™1).
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13. Linear models with normal assumptions 13.2. Assuming normality

(B _ C :
o (iii) Let (p+\n/)><1 = ( R |~ DY, where D = _p )isa (p+n)xn

matrix.

@ By Proposition 11.1(i), V is multivariate normal with

ccr C(l,—P)"
cov(V) =o?DD" = o ( (Ih—P)C" (Iy—P)(ln—P)" >

cCcT c(l,—P
N ”2( (I, — P)CT (sn—P)) )

o We have C(/, — P) = 0 (check)
(I, —P)X =0].
@ Hence 3 and R are independent by Proposition 11.2(ii).

@ Hence B and RSS=R'R are independent, and so B and &2 are independent.
.

From (ii), E(RSS) = o?(n — p), and so 52 = % is an unbiased estimator of o2

& is often known as the residual standard error on n — p degrees of freedom.

[(XTX)"1X" (I, — P) = 0 because
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Example 12.1 continued

The RSS = residual sum of squares is the sum of the squared vertical distances
from the data-points to the fitted straight line.

RSS = Zi()’i - }71)2 = Zi()’i —a - B(Xi - ’_<)2 = 67968.

So the estimate of RSS 67968
~2
_ _ — 3089.
7 n—p (24-2)

Residual standard error is & = +/3089 = 55.6 on 22 degrees of freedom.
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13. Linear models with normal assumptions 13.3. The F distribution

The F distribution

@ Suppose that U and V are independent with U ~ x2, and V ~ x2.

@ Then X = (U/m)/(V/n) is said to have an F distribution on m and n
degrees of freedom.

o We write X ~ Fp, .

o Note that, if X ~ Fp, , then 1/X ~ F, .

o Let Fp, n(v) be the upper 100a% point for the F, ,-distribution so that if
X ~ Fp n then P(X > Fp, 5(a)) = . These are tabulated.

o If we need, say, the lower 5% point of F, ,, then find the upper 5% point x
of Fom and use P(Fp, p, < 1/x) =P(F, m > x).

o Note further that it is immediate from the definitions of t, and F; , that if
Y ~ t, then Y2 ~ Fy ,, since ratio of independent x3 and x? variables.
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