


11. Multivariate Normal theory 11.1. Properties of means and covariances of vectors

Properties of means and covariances of vectors

@ A random (column) vector X = (X, .., X,)" has mean

M= E(X) = (E(X1)7 "'7E(Xn))T = (ﬂ17 ) NH)T
and covariance matrix

cov(X) = E[(X — )(X — )] = (cov(X;. X))

ij’
provided the relevant expectations exist.

@ For mx n A,

E[AX] = Ap,
and
cov(AX) = Acov(X) AT,
since cov(AX) = E [(AX — E(AX))(AX — E(AX))T)] =
E [A(X — E(X))(X —E(X)) AT].
o Define cov(V, W) to be a matrix with (i, j) element cov(V;, W).

Then cov(AX, BX) = Acov(X) B". (check. Important for later)
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11. Multivariate Normal theory 11.2. Multivariate normal distribution

Multivariate normal distribution
@ Recall that a univariate normal X ~ N(u,o?) has density

2o a2

and mgf
Mx(s) = E[e¥] = exp (us + 30°57) .
@ X has a multivariate normal distribution if, for every t € R”, the rv t' X
has a normal distribution.
If E(X) = p and cov(X) = X, we write X ~ N,(p, X).

o Note X is symmetric and is non-negative definite because by (?7),
t' It = var(t' X) > 0.
By (?7), t' X ~ N(t" i1, t" Xt) and so has mgf

1
Mirx(s) = E[e* X] = exp (tTus + 2tTZts2> .

Hence X has mgf
Mx (t) == E[e" X] = Myx(1) = exp (t o+ 17 5t) . (2)
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11. Multivariate Normal theory 11.2. Multivariate normal distribution

Proposition 11.1

(i) If X ~ Np(w,X) and A is m x n, then AX ~ N,,(Au, AZAT)
(i) If X ~ N,(0,02I) then

XP_ XX _ X,

A A Sy,
02 02 02 n

Proof:
(i) from exercise sheet 3.
(i) Immediate from definition of x2. OJ

Note that we often write || X|2 ~ o2x2.
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11. Multivariate Normal theory 11.2. Multivariate normal distribution

Proposition 11.2

X;

X

ny + np = n. Write similarly p = < Zl > and ¥ = <
2

n; x n;. Then
(i) X~ Np (e Zii),
(i) X1 and X, are independent iff 1, = 0.

Let X ~ Ny(p, X), X = < ) where X; is a nj X 1 column vector, and

Y11 Yo

Yo Too ) where ¥jj is

Proof:
(i) See Example sheet 3.
(ii) From (?7), Mx(t) = exp (' + 3t'Zt), t € R". Write
My (t) = exp (t1" py + " pp + 217 Tiats + 360" Tooto + 3417 Tioto + 265" oty .
From (I), Mx,.(t,') = exp (t[TH/ + %t;-T)I,-,-t,-) SO Mx(t) = Mxl(tl)sz (tz), for all
t= ( b ) iff £ = 0.

t

O
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11. Multivariate Normal theory 11.3. Density for a multivariate normal

Density for a multivariate normal

When X is positive definite, then X has pdf

x(x; p, X) = ! (1)nexp [—3(x— p) =M (x — p)], x € R".

|z|% vV 2w
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11. Multivariate Normal theory 11.4. Normal random samples

Normal random samples

We now consider X = %EX,-, and Sxx = Y (Xi— )_<)2 for univariate normal data.

Theorem 11.3

(_Jomt distribution of X and Sxx) Suppose Xi, ..., X, are iid N(u, a?),
= 15X, and Sxx = >(Xi — X)?. Then

(i) X ~ N(p, 2/n)
(i) Sxx/0® ~ Xh_1:
(iii) X and Sxx are independent.
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11. Multivariate Normal theory 11.4. Normal random samples

Proof

We can write the joint density as X ~ N,(u,0?/), where g =l (lisa nx 1
column vector of 1's).

Let A be the n x n orthogonal matrix

1 1 1 1 1 T
! a 0 0 . 0
\/21><1 \/21><1 _2
A= 3x2 3x2 V3x%x2 0 0
1 1 1 1 . 7(’;71)
L \/n(n—l) \/n(n—l) \/n(n—l) \/n(n—l) n(n—1) |

So ATA = AAT = |. (check)
(Note that the rows form an orthonormal basis of R".)

(Strictly, we just need an orthogonal matrix with the first row matching that of A
above.)
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11. Multivariate Normal theory 11.4. Normal random samples

e By Proposition 11.1(i), Y = AX ~ N,(Au, Ac?IAT) ~ N,(Ap, o21), since
AAT = |.

Vnp
O -—
o We have Ap = : ,s0 Y] = ﬁ ST Xi = /nX ~ N(y/nu, o?)
0

(Prop 11.1 (ii))
and Y; ~ N(0,02),i =2,...,n and Y1, ..., Y, are independent.
@ Note also that

Y24, +Y2 = YY - Y2=XAAX - Y2=X"X-nX?

n

= zn:Xiz —nX? = Z(X; — X)* = Sxx.
i=1

i=1

e To prove (ii), note that Sxx = YZ + ...+ Y2 ~ 02x%_; (from definition of
Xn-1)-

e Flnally, for (iii), since Y7 and Y5, ..., Y, are independent (Prop 11.2 (ii)), so
are X and Sxx. O
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11. Multivariate Normal theory 11.5. Student’s t-distribution

Student’s t-distribution

Suppose that Z and Y are independent, Z ~ N(0,1) and Y ~ x2.
Then T = —24— is said to have a t-distribution on k degrees of freedom,

VY /k

and we write T ~ ty.

The density of t, turns out to be

M((k+1)/2) 1 g2\ —(k+1)/2
r(k/2) m(l ) . teR

k
This density is symmetric, bell-shaped, and has a maximum at t = 0, rather
like the standard normal density.

However, it can be shown that P(T > t) > P(Z > t) for all t > 0, and that
the t, distribution approaches a normal distribution as kK — co.

Ex(T) =0 for k > 1, otherwise undefined.
varg(T) = ﬁ for k > 2, = oo if k =2, otherwise undefined.

fT(t) =

k = 1 is known as the Cauchy distribution, and has an undefined mean and
variance.
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11. Multivariate Normal theory 11.5. Student’s t-distribution

t distributions

Let tx() be the upper 100a% point of the t4- distribution, so that
P(T > ty(a)) = . There are tables of these percentage points.
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11. Multivariate Normal theory 11.6. Application of Student’s t-distribution to normal random samples

Application of Student’s t-distribution to normal random
samples

o Let Xu,..., X, iid N(u,02).
o From Theorem 11.3 X ~ N(u,02/n) so Z = v/n(X — p)/o ~ N(0,1).

o Also Sxx/o? ~ x2_; independently of X and hence of Z.
@ Hence _ _
X — X —
V(X —p)fo t_. ie VX =) t_y. (3)
Sxx/((n—1)o?) Sxx/(n—1)

Let 52 = 22X Note this is an unbiased estimator, as E(Sxx) = (n — 1)o?
Then a 100(1 — a)% Cl for u is found from

1—a:]P><—tn_1(g‘) f( )

O'
and has endpoints

< tra($))

- o o

@ See example sheet 3 for use of t distributions in hypothesis tests.
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