
10.

Lecture 11. Multivariate Normal theory
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11. Multivariate Normal theory 11.1. Properties of means and covariances of vectors

Properties of means and covariances of vectors

A random (column) vector X = (X1, ..,Xn)T has mean

µ = E(X) = (E(X1), ...,E(Xn))T = (µ1, .., µn)T

and covariance matrix

cov(X) = E[(X− µ)(X− µ)T ] = (cov(Xi ,Xj))i,j ,

provided the relevant expectations exist.

For m × n A,

E[AX] = Aµ,

and
cov(AX) = A cov(X) AT , (1)

since cov(AX) = E
[
(AX − E(AX ))(AX − E(AX ))T

)
] =

E
[
A(X − E(X ))(X − E(X ))TAT

]
.

Define cov(V ,W ) to be a matrix with (i , j) element cov(Vi ,Wj).

Then cov(AX,BX) = A cov(X) BT . (check. Important for later)
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11. Multivariate Normal theory 11.2. Multivariate normal distribution

Multivariate normal distribution

Recall that a univariate normal X ∼ N(µ, σ2) has density

fX (x ;µ, σ2) = 1√
2πσ

exp
(
− 1

2
(x−µ)2
σ2

)
, x ∈ R,

and mgf
MX (s) = E[esX ] = exp

(
µs + 1

2σ
2s2
)
.

X has a multivariate normal distribution if, for every t ∈ Rn, the rv tTX
has a normal distribution.

If E(X) = µ and cov(X) = Σ, we write X ∼ Nn(µ,Σ).

Note Σ is symmetric and is non-negative definite because by (1),
tTΣt = var(tTX) ≥ 0.

By (1), tTX ∼ N(tTµ, tTΣt) and so has mgf

MtTX(s) = E[estTX] = exp

(
tTµs +

1

2
tTΣts2

)
.

Hence X has mgf

MX(t) == E[etTX] = MtTX(1) = exp
(
tTµ + 1

2t
TΣt

)
. (2)
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11. Multivariate Normal theory 11.2. Multivariate normal distribution

Proposition 11.1

(i) If X ∼ Nn(µ,Σ) and A is m × n, then AX ∼ Nm(Aµ,AΣAT )
(ii) If X ∼ Nn(0, σ2I ) then

‖X‖2
σ2

=
XTX

σ2
=
∑ X 2

i

σ2
∼ χ2

n.

Proof:

(i) from exercise sheet 3.

(ii) Immediate from definition of χ2
n. �

Note that we often write ||X ||2 ∼ σ2χ2
n.
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11. Multivariate Normal theory 11.2. Multivariate normal distribution

Proposition 11.2

Let X ∼ Nn(µ,Σ), X =

(
X1

X2

)
, where Xi is a ni × 1 column vector, and

n1 + n2 = n. Write similarly µ =

(
µ1

µ2

)
, and Σ =

(
Σ11 Σ12

Σ21 Σ22

)
, where Σij is

ni × nj . Then
(i) Xi ∼ Nni (µi ,Σii ),
(ii) X1 and X2 are independent iff Σ12 = 0.

Proof:

(i) See Example sheet 3.

(ii) From (2), MX(t) = exp
(
tTµ + 1

2t
TΣt

)
, t ∈ Rn. Write

MX(t) = exp
(
t1
Tµ1 + t2

Tµ2 + 1
2t1

TΣ11t1 + 1
2t2

TΣ22t2 + 1
2t1

TΣ12t2 + 1
2t2

TΣ21t1
)
.

From (i), MXi (ti ) = exp
(
tiTµi + 1

2t
T
i Σiiti

)
so MX(t) = MX1(t1)MX2(t2), for all

t =

(
t1
t2

)
iff Σ12 = 0.

�
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11. Multivariate Normal theory 11.3. Density for a multivariate normal

Density for a multivariate normal

When Σ is positive definite, then X has pdf

fX(x;µ,Σ) =
1

|Σ|
1
2

(
1√
2π

)n

exp
[
− 1

2 (x− µ)TΣ−1(x− µ)
]
, x ∈ Rn.
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11. Multivariate Normal theory 11.4. Normal random samples

Normal random samples

We now consider X̄ = 1
n

∑
Xi , and SXX =

∑
(Xi − X̄ )2 for univariate normal data.

Theorem 11.3

(Joint distribution of X̄ and SXX ) Suppose X1, . . . ,Xn are iid N(µ, σ2),
X̄ = 1

n

∑
Xi , and SXX =

∑
(Xi − X̄ )2. Then

(i) X̄ ∼ N(µ, σ2/n);
(ii) SXX/σ

2 ∼ χ2
n−1;

(iii) X̄ and SXX are independent.
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11. Multivariate Normal theory 11.4. Normal random samples

Proof

We can write the joint density as X ∼ Nn(µ, σ2I ), where µ = µ1 ( 1 is a n × 1
column vector of 1’s).

Let A be the n × n orthogonal matrix

A =




1√
n

1√
n

1√
n

1√
n

. . . 1√
n

1√
2×1

−1√
2×1 0 0 . . . 0

1√
3×2

1√
3×2

−2√
3×2 0 . . . 0

...
...

...
...

...
1√

n(n−1)
1√

n(n−1)
1√

n(n−1)
1√

n(n−1)
. . . −(n−1)√

n(n−1)



.

So ATA = AAT = I . (check)

(Note that the rows form an orthonormal basis of Rn.)

(Strictly, we just need an orthogonal matrix with the first row matching that of A
above.)
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11. Multivariate Normal theory 11.4. Normal random samples

By Proposition 11.1(i), Y = AX ∼ Nn(Aµ,Aσ2IAT ) ∼ Nn(Aµ, σ2I ), since
AAT = I .

We have Aµ =




√
nµ
0
.
.
0




, so Y1 = 1√
n

∑n
i=1 Xi =

√
nX̄ ∼ N(

√
nµ, σ2)

(Prop 11.1 (ii))

and Yi ∼ N(0, σ2), i = 2, ..., n and Y1, ...,Yn are independent.

Note also that

Y 2
2 + . . .+ Y 2

n = YTY − Y 2
1 = XTATAX− Y 2

1 = XTX− nX̄ 2

=
n∑

i=1

X 2
i − nX̄ 2 =

n∑

i=1

(Xi − X̄ )2 = SXX .

To prove (ii), note that SXX = Y 2
2 + . . .+ Y 2

n ∼ σ2χ2
n−1 (from definition of

χ2
n−1).

FInally, for (iii), since Y1 and Y2, ...,Yn are independent (Prop 11.2 (ii)), so
are X̄ and SXX . �
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11. Multivariate Normal theory 11.5. Student’s t-distribution

Student’s t-distribution

Suppose that Z and Y are independent, Z ∼ N(0, 1) and Y ∼ χ2
k .

Then T = Z√
Y/k

is said to have a t-distribution on k degrees of freedom,

and we write T ∼ tk .

The density of tk turns out to be

fT (t) =
Γ((k + 1)/2)

Γ(k/2)

1√
πk

(
1 +

t2

k

)−(k+1)/2

, t ∈ R.

This density is symmetric, bell-shaped, and has a maximum at t = 0, rather
like the standard normal density.

However, it can be shown that P(T > t) > P(Z > t) for all t > 0, and that
the tk distribution approaches a normal distribution as k →∞.

Ek(T ) = 0 for k > 1, otherwise undefined.

vark(T ) = k
k−2 for k > 2, =∞ if k = 2, otherwise undefined.

k = 1 is known as the Cauchy distribution, and has an undefined mean and
variance.
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11. Multivariate Normal theory 11.5. Student’s t-distribution

Let tk(α) be the upper 100α% point of the tk - distribution, so that
P(T > tk(α)) = α. There are tables of these percentage points.
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11. Multivariate Normal theory 11.6. Application of Student’s t-distribution to normal random samples

Application of Student’s t-distribution to normal random
samples

Let X1, . . . ,Xn iid N(µ, σ2).

From Theorem 11.3 X̄ ∼ N(µ, σ2/n) so Z =
√

n(X̄ − µ)/σ ∼ N(0, 1).

Also SXX/σ
2 ∼ χ2

n−1 independently of X̄ and hence of Z .

Hence √
n(X̄ − µ)/σ√

SXX/((n − 1)σ2)
∼ tn−1, ie

√
n(X̄ − µ)√

SXX/(n − 1)
∼ tn−1. (3)

Let σ̃2 = SXX

n−1 . Note this is an unbiased estimator, as E(SXX ) = (n − 1)σ2.

Then a 100(1− α)% CI for µ is found from

1− α = P
(
−tn−1(α2 ) ≤

√
n(X̄ − µ)

σ̃
≤ tn−1(α2 )

)

and has endpoints

X̄ ± σ̃√
n

tn−1(α2 ).

See example sheet 3 for use of t distributions in hypothesis tests.
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