Lecture 9. Tests of goodness-of-fit and independence
Suppose the observation space \mathcal{X} is partitioned into k sets, and let p_i be the probability that an observation is in set i, $i = 1, \ldots, k$.

Consider testing H_0: the p_i’s arise from a fully specified model against H_1: the p_i’s are unrestricted (but we must still have $p_i \geq 0$, $\sum p_i = 1$).

This is a **goodness-of-fit** test.

Example 9.1

Birth month of admissions to Oxford and Cambridge in 2012

<table>
<thead>
<tr>
<th>Month</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
</tr>
</thead>
<tbody>
<tr>
<td>n_i</td>
<td>470</td>
<td>515</td>
<td>470</td>
<td>457</td>
<td>473</td>
<td>381</td>
<td>466</td>
<td>457</td>
<td>437</td>
<td>396</td>
<td>384</td>
<td>394</td>
</tr>
</tbody>
</table>

Are these compatible with a uniform distribution over the year? □
Out of n independent observations let N_i be the number of observations in the ith set.

So $(N_1, \ldots, N_k) \sim \text{Multinomial}(n; p_1, \ldots, p_k)$.

For a generalised likelihood ratio test of H_0, we need to find the maximised likelihood under H_0 and H_1.

Under H_1: $\text{like}(p_1, \ldots, p_k) \propto p_1^{n_1} \cdots p_k^{n_k}$ so the loglikelihood is

$$ l = \text{constant} + \sum n_i \log p_i. $$

We want to maximise this subject to $\sum p_i = 1$.

By considering the Lagrangian $\mathcal{L} = \sum n_i \log p_i - \lambda (\sum p_i - 1)$, we find mle's $\hat{p}_i = n_i / n$. Also $|\Theta_1| = k - 1$.

Under H_0: H_0 specifies the values of the p_i’s completely, $p_i = \tilde{p}_i$ say, so $|\Theta_0| = 0$.

Putting these two together, we find

$$ 2 \log \Lambda = 2 \log \left(\frac{\hat{p}_1^{n_1} \cdots \hat{p}_k^{n_k}}{\tilde{p}_1^{n_1} \cdots \tilde{p}_k^{n_k}} \right) = 2 \sum n_i \log \left(\frac{n_i}{n \tilde{p}_i} \right). \tag{1} $$

Here $|\Theta_1| - |\Theta_0| = k - 1$, so we reject H_0 if $2 \log \Lambda > \chi^2_{k-1}(\alpha)$ for an approximate size α test.
Example 9.1 continued:

Under H_0 (no effect of month of birth), \tilde{p}_i is the proportion of births in month i in 1993/1994 - this is not simply proportional to number of days in month, as there is for example an excess of September births (the 'Christmas effect').

<table>
<thead>
<tr>
<th>Month</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
</tr>
</thead>
<tbody>
<tr>
<td>ni</td>
<td>470</td>
<td>515</td>
<td>470</td>
<td>457</td>
<td>473</td>
<td>381</td>
<td>466</td>
<td>457</td>
<td>437</td>
<td>396</td>
<td>384</td>
<td>394</td>
</tr>
<tr>
<td>100\tilde{p}_i</td>
<td>8.8</td>
<td>8.5</td>
<td>7.9</td>
<td>8.3</td>
<td>8.3</td>
<td>7.6</td>
<td>8.6</td>
<td>8.3</td>
<td>8.6</td>
<td>8.5</td>
<td>8.5</td>
<td>8.3</td>
</tr>
<tr>
<td>n\tilde{p}_i</td>
<td>466.4</td>
<td>448.2</td>
<td>416.3</td>
<td>439.2</td>
<td>436.9</td>
<td>402.3</td>
<td>456.3</td>
<td>437.6</td>
<td>457.2</td>
<td>450.0</td>
<td>451.3</td>
<td>438.2</td>
</tr>
</tbody>
</table>

- $2 \log \Lambda = 2 \sum n_i \log \left(\frac{n_i}{n\tilde{p}_i} \right) = 44.9$
- $P(\chi^2_{11} > 44.86) = 3 \times 10^{-9}$, which is our p-value.
- Since this is certainly less than 0.001, we can reject H_0 at the 0.1% level, or can say 'significant at the 0.1% level'.
- NB The traditional levels for comparison are $\alpha = 0.05, 0.01, 0.001$, roughly corresponding to 'evidence', 'strong evidence', and 'very strong evidence'.
9. Tests of goodness-of-fit and independence
9.2. Likelihood ratio tests

Likelihood ratio tests

A similar common situation has \(H_0 : p_i = p_i(\theta) \) for some parameter \(\theta \) and \(H_1 \) as before. Now \(|\Theta_0| \) is the number of independent parameters to be estimated under \(H_0 \).

Under \(H_0 \): we find mle \(\hat{\theta} \) by maximising \(\sum n_i \log p_i(\theta) \), and then

\[
2 \log \Lambda = 2 \log \left(\frac{\hat{p}_1^{n_1} \cdots \hat{p}_k^{n_k}}{p_1(\hat{\theta})^{n_1} \cdots p_k(\hat{\theta})^{n_k}} \right) = 2 \sum n_i \log \left(\frac{n_i}{np_i(\hat{\theta})} \right). \tag{2}
\]

Now the degrees of freedom are \(k - 1 - |\Theta_0| \), and we reject \(H_0 \) if

\[
2 \log \Lambda > \chi^2_{k-1-|\Theta_0|}(\alpha).
\]
Pearson’s Chi-squared tests

Notice that (1) and (2) are of the same form.

Let \(o_i = n_i \) (the observed number in \(i \)th set) and let \(e_i \) be \(n \tilde{p}_i \) in (1) or \(np_i(\hat{\theta}) \) in (2). Let \(\delta_i = o_i - e_i \). Then

\[
2 \log \Lambda = 2 \sum o_i \log \left(\frac{o_i}{e_i} \right)
\]

\[
= 2 \sum (e_i + \delta_i) \log \left(1 + \frac{\delta_i}{e_i} \right)
\]

\[
\approx 2 \sum \left(\delta_i + \frac{\delta_i^2}{e_i} - \frac{\delta_i^2}{2e_i} \right)
\]

\[
= \sum \frac{\delta_i^2}{e_i} = \sum \frac{(o_i - e_i)^2}{e_i},
\]

where we have assumed \(\log \left(1 + \frac{\delta_i}{e_i} \right) \approx \frac{\delta_i}{e_i} - \frac{\delta_i^2}{2e_i} \), ignored terms in \(\delta_i^3 \), and used that \(\sum \delta_i = 0 \) (check).

This is Pearson’s chi-squared statistic; we refer it to \(\chi^2_{k-1-|\Theta_0|} \).
Example 9.1 continued using R:

```r
chisq.test(n, p=ptilde)
data: n
X-squared = 44.6912, df = 11, p-value = 5.498e-06
```
Example 9.2

Mendel crossed 556 smooth yellow male peas with wrinkled green female peas. From the progeny let

- \(N_1 \) be the number of smooth yellow peas,
- \(N_2 \) be the number of smooth green peas,
- \(N_3 \) be the number of wrinkled yellow peas,
- \(N_4 \) be the number of wrinkled green peas.

We wish to test the goodness of fit of the model

\[H_0 : (p_1, p_2, p_3, p_4) = (9/16, 3/16, 3/16, 1/16), \]

the proportions predicted by Mendel’s theory.

Suppose we observe \((n_1, n_2, n_3, n_4) = (315, 108, 102, 31)\). We find \((e_1, e_2, e_3, e_4) = (312.75, 104.25, 104.25, 34.75)\), \(2 \log \Lambda = 0.618\) and

\[
\sum \frac{(o_i - e_i)^2}{e_i} = 0.604.
\]

Here \(|\Theta_0| = 0\) and \(|\Theta_1| = 4 - 1 = 3\), so we refer our test statistics to \(\chi^2_3\).

Since \(\chi^2_3(0.05) = 7.815\) we see that neither value is significant at 5% level, so there is no evidence against Mendel’s theory.

In fact the \(p\)-value is approximately \(\mathbb{P}(\chi^2_3 > 0.6) \approx 0.96\). □

NB So in fact could be considered as a suspiciously good fit
Example 9.3

In a genetics problem, each individual has one of three possible genotypes, with probabilities p_1, p_2, p_3. Suppose that we wish to test $H_0 : p_i = p_i(\theta)$ $i = 1, 2, 3$, where $p_1(\theta) = \theta^2$, $p_2(\theta) = 2\theta(1 - \theta)$, $p_3(\theta) = (1 - \theta)^2$, for some $\theta \in (0, 1)$.

We observe $N_i = n_i$, $i = 1, 2, 3$ ($\sum N_i = n$).

Under H_0, the mle $\hat{\theta}$ is found by maximising

$$\sum n_i \log p_i(\theta) = 2n_1 \log \theta + n_2 \log(2\theta(1 - \theta)) + 2n_3 \log(1 - \theta).$$

We find that $\hat{\theta} = (2n_1 + n_2)/(2n)$ (check).

Also $|\Theta_0| = 1$ and $|\Theta_1| = 2$.

Now substitute $p_i(\hat{\theta})$ into (2), or find the corresponding Pearson’s chi-squared statistic, and refer to χ^2_1. □
Testing independence in contingency tables

A table in which observations or individuals are classified according to two or more criteria is called a **contingency table**.

Example 9.4

500 people with recent car changes were asked about their previous and new cars.

<table>
<thead>
<tr>
<th>Previous car</th>
<th>Large</th>
<th>Medium</th>
<th>Small</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large</td>
<td>56</td>
<td>52</td>
<td>42</td>
</tr>
<tr>
<td>Medium</td>
<td>50</td>
<td>83</td>
<td>67</td>
</tr>
<tr>
<td>Small</td>
<td>18</td>
<td>51</td>
<td>81</td>
</tr>
</tbody>
</table>

This is a two-way contingency table: each person is classified according to previous car size and new car size. □
Consider a two-way contingency table with r rows and c columns.

For $i = 1, \ldots, r$ and $j = 1, \ldots, c$ let p_{ij} be the probability that an individual selected at random from the population under consideration is classified in row i and column j (i.e., in the (i, j) cell of the table).

Let $p_{i+} = \sum_j p_{ij} = P(\text{in row } i)$, and $p_{+j} = \sum_i p_{ij} = P(\text{in column } j)$.

We must have $p_{++} = \sum_i \sum_j p_{ij} = 1$, i.e., $\sum_i p_{i+} = \sum_j p_{+j} = 1$.

Suppose a random sample of n individuals is taken, and let n_{ij} be the number of these classified in the (i, j) cell of the table.

Let $n_{i+} = \sum_j n_{ij}$ and $n_{+j} = \sum_i n_{ij}$, so $n_{++} = n$.

We have

$$(N_{11}, N_{12}, \ldots, N_{1c}, N_{21}, \ldots, N_{rc}) \sim \text{Multinomial}(n; p_{11}, p_{12}, \ldots, p_{1c}, p_{21}, \ldots, p_{rc})$$
We may be interested in testing the null hypothesis that the two classifications are independent, so test

- $H_0 : p_{ij} = p_{i+}p_{+j}$, $i = 1, \ldots, r$, $j = 1, \ldots, c$ (with $\sum_i p_{i+} = 1 = \sum_j p_{+j}$, $p_{i+}, p_{+j} \geq 0$),
- $H_1 : p_{ij}$'s unrestricted (but as usual need $p_{++} = 1$, $p_{ij} \geq 0$).

Under H_1 the mle's are $\hat{p}_{ij} = n_{ij}/n$.

Under H_0, using Lagrangian methods, the mle's are $\hat{p}_{i+} = n_{i+}/n$ and $\hat{p}_{+j} = n_{+j}/n$.

Write o_{ij} for n_{ij} and let $e_{ij} = n\hat{p}_{i+}\hat{p}_{+j} = n_{i+}n_{+j}/n$.

Then

$$2 \log \Lambda = 2 \sum_{i=1}^{r} \sum_{j=1}^{c} o_{ij} \log \left(\frac{o_{ij}}{e_{ij}} \right) \approx \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{(o_{ij} - e_{ij})^2}{e_{ij}}$$

using the same approximating steps as for Pearson's Chi-squared test.

We have $|\Theta_1| = rc - 1$, because under H_1 the p_{ij}'s sum to one.

Further, $|\Theta_0| = (r - 1) + (c - 1)$, because p_{1+}, \ldots, p_{r+} must satisfy $\sum_i p_{i+} = 1$ and p_{+1}, \ldots, p_{+c} must satisfy $\sum_j p_{+j} = 1$.

So $|\Theta_1| - |\Theta_0| = rc - 1 - (r - 1) - (c - 1) = (r - 1)(c - 1)$.
Example 9.5

In Example 9.4, suppose we wish to test H_0: the new and previous car sizes are independent.

We obtain:

<table>
<thead>
<tr>
<th></th>
<th>Large</th>
<th>Medium</th>
<th>Small</th>
</tr>
</thead>
<tbody>
<tr>
<td>o_{ij} Previous car Large</td>
<td>56</td>
<td>52</td>
<td>42</td>
</tr>
<tr>
<td>Medium</td>
<td>50</td>
<td>83</td>
<td>67</td>
</tr>
<tr>
<td>Small</td>
<td>18</td>
<td>51</td>
<td>81</td>
</tr>
<tr>
<td>Total</td>
<td>124</td>
<td>186</td>
<td>190</td>
</tr>
<tr>
<td>e_{ij} Previous car Large</td>
<td>37.2</td>
<td>55.8</td>
<td>57.0</td>
</tr>
<tr>
<td>Medium</td>
<td>49.6</td>
<td>74.4</td>
<td>76.0</td>
</tr>
<tr>
<td>Small</td>
<td>37.2</td>
<td>55.8</td>
<td>57.0</td>
</tr>
<tr>
<td>Total</td>
<td>124</td>
<td>186</td>
<td>190</td>
</tr>
</tbody>
</table>

Note the margins are the same.
Then \[\sum \sum \frac{(o_{ij} - e_{ij})^2}{e_{ij}} = 36.20 \text{, and } df = (3 - 1)(3 - 1) = 4. \]

From tables, \[\chi^2_4(0.05) = 9.488 \text{ and } \chi^2_4(0.01) = 13.28. \]

So our observed value of 36.20 is significant at the 1% level, ie there is strong evidence against \(H_0 \), so we conclude that the new and present car sizes are not independent.

It may be informative to look at the contributions of each cell to Pearson’s chi-squared:

<table>
<thead>
<tr>
<th>Previous car</th>
<th>New car</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Large</td>
</tr>
<tr>
<td>Large</td>
<td>9.50</td>
</tr>
<tr>
<td>Medium</td>
<td>0.00</td>
</tr>
<tr>
<td>Small</td>
<td>9.91</td>
</tr>
</tbody>
</table>

It seems that more owners of large cars than expected under \(H_0 \) bought another large car, and more owners of small cars than expected under \(H_0 \) bought another small car.

Fewer than expected changed from a small to a large car. □