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9. Tests of goodness-of-fit and independence 9.1. Goodness-of-fit of a fully-specified null distribution

Goodness-of-fit of a fully-specified null distribution

Suppose the observation space X is partitioned into k sets, and let pi be the
probability that an observation is in set i , i = 1, . . . , k.

Consider testing H0 : the pi ’s arise from a fully specified model against H1: the
pi ’s are unrestricted (but we must still have pi ≥ 0,

∑
pi = 1).

This is a goodness-of-fit test.

Example 9.1

Birth month of admissions to Oxford and Cambridge in 2012

Month Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug
ni 470 515 470 457 473 381 466 457 437 396 384 394

Are these compatible with a uniform distribution over the year? �
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9. Tests of goodness-of-fit and independence 9.1. Goodness-of-fit of a fully-specified null distribution

Out of n independent observations let Ni be the number of observations in
the ith set.

So (N1, . . . ,Nk) ∼ Multinomial(n; p1, . . . , pk).

For a generalised likelihood ratio test of H0, we need to find the maximised
likelihood under H0 and H1.

Under H1: like(p1, . . . , pk) ∝ pn1
1 . . . pnkk so the loglikelihood is

l = constant +
∑

ni log pi .

We want to maximise this subject to
∑

pi = 1.

By considering the Lagrangian L =
∑

ni log pi − λ(
∑

pi − 1), we find mle’s
p̂i = ni/n. Also |Θ1| = k − 1.

Under H0: H0 specifies the values of the pi ’s completely, pi = p̃i say, so
|Θ0| = 0.

Putting these two together, we find

2 log Λ = 2 log

(
p̂n1

1 . . . p̂nkk
p̃n1

1 . . . p̃nkk

)
= 2

∑
ni log

(
ni
np̃i

)
. (1)

Here |Θ1| − |Θ0| = k − 1, so we reject H0 if 2 log Λ > χ2
k−1(α) for an

approximate size α test.
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9. Tests of goodness-of-fit and independence 9.1. Goodness-of-fit of a fully-specified null distribution

Example 9.1 continued:

Under H0 (no effect of month of birth), p̃i is the proportion of births in month i in
1993/1994 - this is not simply proportional to number of days in month, as there
is for example an excess of September births (the ’Christmas effect’).

Month Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug
ni 470 515 470 457 473 381 466 457 437 396 384 394

100p̃i 8.8 8.5 7.9 8.3 8.3 7.6 8.6 8.3 8.6 8.5 8.5 8.3
np̃i 466.4 448.2 416.3 439.2 436.9 402.3 456.3 437.6 457.2 450.0 451.3 438.2

2 log Λ = 2
∑

ni log
(

ni
np̃i

)
= 44.9

P(χ2
11 > 44.86) = 3x10−9, which is our p-value.

Since this is certainly less than 0.001, we can reject H0 at the 0.1% level, or
can say ’significant at the 0.1% level’.

NB The traditional levels for comparison are α = 0.05, 0.01, 0.001, roughly
corresponding to ’evidence’, ’strong evidence’, and ’very strong evidence’.
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9. Tests of goodness-of-fit and independence 9.2. Likelihood ratio tests

Likelihood ratio tests

A similar common situation has H0 : pi = pi (θ) for some parameter θ and H1 as
before. Now |Θ0| is the number of independent parameters to be estimated under
H0.

Under H0: we find mle θ̂ by maximising
∑

ni log pi (θ), and then

2 log Λ = 2 log

(
p̂n1

1 . . . p̂nkk
p1(θ̂)n1 . . . pk(θ̂)nk

)
= 2

∑
ni log

(
ni

npi (θ̂)

)
. (2)

Now the degrees of freedom are k − 1− |Θ0|, and we reject H0 if
2 log Λ > χ2

k−1−|Θ0|(α).
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9. Tests of goodness-of-fit and independence 9.3. Pearson’s Chi-squared tests

Pearson’s Chi-squared tests

Notice that (??) and (??) are of the same form.

Let oi = ni (the observed number in ith set) and let ei be np̃i in (??) or npi (θ̂) in
(??). Let δi = oi − ei . Then

2 log Λ = 2
∑

oi log

(
oi
ei

)

= 2
∑

(ei + δi ) log

(
1 +

δi
ei

)

≈ 2
∑(

δi +
δ2
i

ei
− δ2

i

2ei

)

=
∑ δ2

i

ei
=
∑ (oi − ei )

2

ei
,

where we have assumed log
(

1 + δi
ei

)
≈ δi

ei
− δ2

i

2e2
i

, ignored terms in δ3
i , and used

that
∑
δi = 0 (check).

This is Pearson’s chi-squared statistic; we refer it to χ2
k−1−|Θ0|.
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9. Tests of goodness-of-fit and independence 9.3. Pearson’s Chi-squared tests

Example 9.1 continued using R:

chisq.test(n,p=ptilde)

data: n

X-squared = 44.6912, df = 11, p-value = 5.498e-06
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9. Tests of goodness-of-fit and independence 9.3. Pearson’s Chi-squared tests

Example 9.2

Mendel crossed 556 smooth yellow male peas with wrinkled green female peas.
From the progeny let

N1 be the number of smooth yellow peas,
N2 be the number of smooth green peas,
N3 be the number of wrinkled yellow peas,
N4 be the number of wrinkled green peas.

We wish to test the goodness of fit of the model
H0 : (p1, p2, p3, p4) = (9/16, 3/16, 3/16, 1/16), the proportions predicted by
Mendel’s theory.

Suppose we observe (n1, n2, n3, n4) = (315, 108, 102, 31).

We find (e1, e2, e3, e4) = (312.75, 104.25, 104.25, 34.75), 2 log Λ = 0.618 and∑ (oi−ei )2

ei
= 0.604.

Here |Θ0| = 0 and |Θ1| = 4− 1 = 3, so we refer our test statistics to χ2
3.

Since χ2
3(0.05) = 7.815 we see that neither value is significant at 5% level, so

there is no evidence against Mendel’s theory.

In fact the p-value is approximately P(χ2
3 > 0.6) ≈ 0.96. �

NB So in fact could be considered as a suspiciously good fit
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9. Tests of goodness-of-fit and independence 9.3. Pearson’s Chi-squared tests

Example 9.3

In a genetics problem, each individual has one of three possible genotypes, with
probabilities p1, p2, p3. Suppose that we wish to test H0 : pi = pi (θ) i = 1, 2, 3,
where p1(θ) = θ2, p2(θ) = 2θ(1− θ), p3(θ) = (1− θ)2, for some θ ∈ (0, 1).

We observe Ni = ni , i = 1, 2, 3 (
∑

Ni = n).

Under H0, the mle θ̂ is found by maximising

∑
ni log pi (θ) = 2n1 log θ + n2 log(2θ(1− θ)) + 2n3 log(1− θ).

We find that θ̂ = (2n1 + n2)/(2n) (check).

Also |Θ0| = 1 and |Θ1| = 2.

Now substitute pi (θ̂) into (2), or find the corresponding Pearson’s chi-squared
statistic, and refer to χ2

1. �
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9. Tests of goodness-of-fit and independence 9.4. Testing independence in contingency tables

Testing independence in contingency tables

A table in which observations or individuals are classified according to two or more
criteria is called a contingency table.

Example 9.4

500 people with recent car changes were asked about their previous and new cars.
New car

Large Medium Small
Previous Large 56 52 42
car Medium 50 83 67

Small 18 51 81
This is a two-way contingency table: each person is classified according to
previous car size and new car size. �
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9. Tests of goodness-of-fit and independence 9.4. Testing independence in contingency tables

Consider a two-way contingency table with r rows and c columns.

For i = 1, . . . , r and j = 1, . . . , c let pij be the probability that an individual
selected at random from the population under consideration is classified in
row i and column j (ie in the (i , j) cell of the table).

Let pi+ =
∑

j pij = P(in row i), and p+j =
∑

i pij = P(in column j).

We must have p++ =
∑

i

∑
j pij = 1, ie

∑
i pi+ =

∑
j p+j = 1.

Suppose a random sample of n individuals is taken, and let nij be the number
of these classified in the (i , j) cell of the table.

Let ni+ =
∑

j nij and n+j =
∑

i nij , so n++ = n.

We have

(N11,N12, . . . ,N1c ,N21, . . . ,Nrc) ∼ Multinomial(n; p11, p12, . . . , p1c , p21, . . . , prc).
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9. Tests of goodness-of-fit and independence 9.4. Testing independence in contingency tables

We may be interested in testing the null hypothesis that the two
classifications are independent, so test

H0 : pij = pi+p+j , i = 1, . . . , r , j = 1, . . . , c (with
∑

i pi+ = 1 =
∑

j p+j ,
pi+, p+j ≥ 0),

H1 : pij ’s unrestricted (but as usual need p++ = 1, pij ≥ 0).

Under H1 the mle’s are p̂ij = nij/n.

Under H0, using Lagrangian methods, the mle’s are p̂i+ = ni+/n and
p̂+j = n+j/n.

Write oij for nij and let eij = np̂i+p̂+j = ni+n+j/n.

Then

2 log Λ = 2
r∑

i=1

c∑

j=1

oij log

(
oij
eij

)
≈

r∑

i=1

c∑

j=1

(oij − eij)
2

eij

using the same approximating steps as for Pearson’s Chi-squared test.

We have |Θ1| = rc − 1, because under H1 the pij ’s sum to one.

Further, |Θ0| = (r − 1) + (c − 1), because p1+, . . . , pr+ must satisfy∑
i pi+ = 1 and p+1, . . . , p+c must satisfy

∑
j p+j = 1.

So |Θ1| − |Θ0| = rc − 1− (r − 1)− (c − 1) = (r − 1)(c − 1).
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9. Tests of goodness-of-fit and independence 9.4. Testing independence in contingency tables

Example 9.5

In Example 9.4, suppose we wish to test H0 : the new and previous car sizes are
independent.

We obtain:
New car

oij Large Medium Small
Previous Large 56 52 42 150
car Medium 50 83 67 200

Small 18 51 81 150
124 186 190 500

New car
eij Large Medium Small

Previous Large 37.2 55.8 57.0 150
car Medium 49.6 74.4 76.0 200

Small 37.2 55.8 57.0 150
124 186 190 500

Note the margins are the same.
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9. Tests of goodness-of-fit and independence 9.4. Testing independence in contingency tables

Then
∑∑ (oij−eij )2

eij
= 36.20, and df = (3− 1)(3− 1) = 4.

From tables, χ2
4(0.05) = 9.488 and χ2

4(0.01) = 13.28.

So our observed value of 36.20 is significant at the 1% level, ie there is strong
evidence against H0, so we conclude that the new and present car sizes are not
independent.

It may be informative to look at the contributions of each cell to Pearson’s
chi-squared:

New car
Large Medium Small

Previous Large 9.50 0.26 3.95
car Medium 0.00 0.99 1.07

Small 9.91 0.41 10.11

It seems that more owners of large cars than expected under H0 bought another
large car, and more owners of small cars than expected under H0 bought another
small car.

Fewer than expected changed from a small to a large car. �
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