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Composite hypotheses, types of error and power

For composite hypotheses like H:6 > 0, the error probabilities do not have a
single value.

Define the power function W(0) = P(X € C|0) = P(reject Hy|0).
We want W(#) to be small on Hy and large on H;.

Define the size of the test to be a = supycq, W(0).

For 6 € ©1, 1 — W(0) = P(Type Il error|8).

Sometimes the Neyman—Pearson theory can be extended to one-sided
alternatives.

For example, in Example 7.3 we have shown that the most powerful size o
test of Hp : = po versus Hy : = py (where uy > o) is given by
C={x:n(x—wo)/oo > za}.

This critical region depends on pg, n, 09, o, on the fact that 3 > po, but
not on the particular value of p;y.
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@ Hence this C defines the most powerful size « test of Hy : x = po against
any p1 that is larger than pg.

@ This test is then uniformly most powerful size « for testing Hp : 1 = po
against Hy : > po.

Definition 8.1

A test specified by a critical region C is uniformly most powerful (UMP) size «
test for testing Hp : 0 € ©¢ against Hy : 0 € © if
(i) supgeo, W(0) = a;
(i) for any other test C* with size < & and with power function W* we have
W(9) > W*(0) for all 6 € ©5.

@ UMP tests may not exist.
@ However likelihood ratio tests are often UMP.
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Example 8.2

Suppose Xi, ..., X, are iid N(uo,03) where oq is known, and we wish to test
Ho : 1 < pp against Hy @ > pg.

o First consider testing Hj : v = o against Hj : = p1 where g > g (as in
Example 7.3)

@ As in Example 7.3, the Neyman-Pearson test of size o of H} against Hj has
C={x:n(x—wo)/oo > 24}

@ We will show that C is in fact UMP for the composite hypotheses Hy against
Hy

o For u € R, the power function is

W) = Breect Hy) =, (Y00 )

0o

- pH(W—u)Nﬁﬁwo—M)

00 0o

_ 1_¢<za+ﬁ(/io—#)>.
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power= 1 - pnorm( gqnorm(0.95) + sqrt(n) * (muO-x) / sigmal )
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We know W(uo) = a. (just plug in)
W(u) is an increasing function of p.
So sup, <, W(r) = a, and (i) is satisfied.

For (ii), observe that for any p > pg, the Neyman Pearson size « test of H}
vs Hj has critical region C (the calculation in Example 7.3 depended only on
the fact that 1 > po and not on the particular value of p;.)

Let C* and W™ belong to any other test of Hy vs H; of size < «

Then C* can be regarded as a test of Hj : u = o vs Hy of size < «, and
NP-Lemma says that W*(u1) < W(u1)

This holds for all p3 > uo and so (ii) is satisfied.
So C is UMP size o for Hy vs H;. O
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Generalised likelihood ratio tests

@ We now consider likelihood ratio tests for more general situations.

@ Define the likelihood of a composite hypothesis H : § € © given data x to
be
Ly(H) = sup f(x]0).
0cO
@ So far we have considered disjoint hypotheses ©¢, ©1, but often we are not
interested in any specific alternative, and it is easier to take ©; = © rather
than ©; = © \ 9.
@ Then
Lx(H1) _ SUPsce, f(x|0)
L«(Ho) SUPyco, f(x]6)

with large values of Ay indicating departure from Hp.

N(Ho; Hi) = (= 1), (1)

o Notice that if Ay = supgceng, f(X[0)/supgee, f(x|0), then
Ax = max{1,A}}.
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Example 8.3

Single sample: testing a given mean, known variance (z-test). Suppose that
Xi, ..., X, are iid N(u,03), with 03 known, and we wish to test Ho : = pio
against Hy : 1 # po (uo is a given constant).

@ Here ©g = {p0} and © =R.
o For the denominator in (1) we have supg, f(x|u) = (x| o).
@ For the numerator, we have supg f(x|u) = f(x|[i), where i is the mle, so

fi = X (check).
@ Hence
(2703) "2 exp (=L S(xi - x)?)
(2703) "2 exp (- % S~ o))
and we reject Hy if Ay is ‘large.’
We find that

A«(Ho; Hi) =

2 |Og /\X(Ho; Hl)

{Z(X’ to)® _Z( _X)] ?(X—uo)z. (check)

e Thus an equivalent test is to reject Hp if [v/n(X — 110)/00| is large.

om\ =
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o Under Hy, Z = /n(X — po)/oo ~ N(0,1) so the size o generalised likelihood
test rejects Hy if |\/n(X — po)/o0| > za 2.
o Since n(X — yg)?/0d ~ X3 if Hy s true, this is equivalent to rejecting Ho if
n(X — p0)*/og > xi(@) (check that 22 , = xi(a)). O
Notes:
@ This is a "two-tailed’ test - i.e. reject Hy both for high and low values of x.

o We reject Hp if [/n(x — po) /00| > z4/2. A symmetric 100(1 — )%
confidence interval for i is X % z, /> 00 /+/n. Therefore we reject Hy iff pi is
not in this confidence interval (check).

@ In later lectures the close connection between confidence intervals and
hypothesis tests is explored further.
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The 'generalised likelihood ratio test’

@ The next theorem allows us to use likelihood ratio tests even when we cannot
find the exact relevant null distribution.

@ First consider the ‘size’ or ‘dimension’ of our hypotheses: suppose that Hy
imposes p independent restrictions on ©, so for example, if and we have

o Hy:0i =a,...,0, =ap (a1,...,a given numbers),

e Hy: A =b (Apxk bpx1lgiven),

o Ho:0i=F(d), i=1,....k ¢=(¢1,...,0kp)
@ Then © has 'k free parameters’ and ©g has ‘k — p free parameters.’
e We write |©g| = k — p and |©| = k.
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Theorem 8.4

(not proved)
Suppose ©g C ©1, |©1] — |©9| = p. Then under regularity conditions, as n — oo,
with X = (X1, ..., X,), Xi's iid, we have, if Hy is true,

2log Ax(Ho; Hi) ~ x5.

If Hy is not true, then 2log A\ tends to be larger. We reject Hy if 2log \ > ¢ where
c = x5(«) for a test of approximately size c.

In Example 8.3, |©1] — |©g| = 1, and in this case we saw that under Hp,

2log A ~ x? exactly for all n in that particular case, rather than just
approximately for large n as the Theorem shows.

(Often the likelihood ratio is calculated with the null hypothesis in the numerator,
and so the test statistic is —2log Ax(Hi; Hp).)
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