Lecture 8. Composite hypotheses
Composite hypotheses, types of error and power

- For composite hypotheses like $H: \theta \geq 0$, the error probabilities do not have a single value.

- Define the **power function** $W(\theta) = \mathbb{P}(X \in C | \theta) = \mathbb{P}(\text{reject } H_0 | \theta)$.

- We want $W(\theta)$ to be small on H_0 and large on H_1.

- Define the **size** of the test to be $\alpha = \sup_{\theta \in \Theta_0} W(\theta)$.

- For $\theta \in \Theta_1$, $1 - W(\theta) = \mathbb{P}(\text{Type II error} | \theta)$.

- Sometimes the Neyman–Pearson theory can be extended to one-sided alternatives.

- For example, in Example 7.3 we have shown that the most powerful size α test of $H_0 : \mu = \mu_0$ versus $H_1 : \mu = \mu_1$ (where $\mu_1 > \mu_0$) is given by $C = \{x : \sqrt{n}(\bar{x} - \mu_0)/\sigma_0 > z\alpha \}$.

- This critical region depends on $\mu_0, n, \sigma_0, \alpha$, on the fact that $\mu_1 > \mu_0$, but not on the particular value of μ_1.
• Hence this C defines the most powerful size α test of $H_0 : \mu = \mu_0$ against any μ_1 that is larger than μ_0.

• This test is then uniformly most powerful size α for testing $H_0 : \mu = \mu_0$ against $H_1 : \mu > \mu_0$.

Definition 8.1

A test specified by a critical region C is **uniformly most powerful** (UMP) size α test for testing $H_0 : \theta \in \Theta_0$ against $H_1 : \theta \in \Theta_1$ if

(i) $\sup_{\theta \in \Theta_0} W(\theta) = \alpha$;
(ii) for any other test C^* with size $\leq \alpha$ and with power function W^* we have $W(\theta) \geq W^*(\theta)$ for all $\theta \in \Theta_1$.

• UMP tests may not exist.

• However likelihood ratio tests are often UMP.
Example 8.2

Suppose X_1, \ldots, X_n are iid $N(\mu_0, \sigma_0^2)$ where σ_0 is known, and we wish to test $H_0 : \mu \leq \mu_0$ against $H_1 : \mu > \mu_0$.

- First consider testing $H'_0 : \mu = \mu_0$ against $H'_1 : \mu = \mu_1$ where $\mu_1 > \mu_0$ (as in Example 7.3).
- As in Example 7.3, the Neyman-Pearson test of size α of H'_0 against H'_1 has $C = \{x : \sqrt{n}(\bar{x} - \mu_0)/\sigma_0 > z_\alpha \}$.
- We will show that C is in fact UMP for the composite hypotheses H_0 against H_1.
- For $\mu \in \mathbb{R}$, the power function is

$$W(\mu) = \mathbb{P}_\mu(\text{reject } H_0) = \mathbb{P}_\mu \left(\frac{\sqrt{n}(\bar{X} - \mu_0)}{\sigma_0} > z_\alpha \right)$$

$$= \mathbb{P}_\mu \left(\frac{\sqrt{n}(\bar{X} - \mu)}{\sigma_0} > z_\alpha + \frac{\sqrt{n}(\mu_0 - \mu)}{\sigma_0} \right)$$

$$= 1 - \Phi \left(z_\alpha + \frac{\sqrt{n}(\mu_0 - \mu)}{\sigma_0} \right).$$

\[
power = 1 - \text{pnorm}(\text{qnorm}(0.95) + \sqrt{n} \times (\mu_0 - x) / \sigma_0)
\]
We know $W(\mu_0) = \alpha$. (just plug in)

$W(\mu)$ is an increasing function of μ.

So $\sup_{\mu \leq \mu_0} W(\mu) = \alpha$, and (i) is satisfied.

For (ii), observe that for any $\mu > \mu_0$, the Neyman Pearson size α test of H'_0 vs H'_1 has critical region C (the calculation in Example 7.3 depended only on the fact that $\mu > \mu_0$ and not on the particular value of μ_1.)

Let C^* and W^* belong to any other test of H_0 vs H_1 of size $\leq \alpha$

Then C^* can be regarded as a test of $H'_0 : \mu = \mu_0$ vs H'_1 of size $\leq \alpha$, and NP-Lemma says that $W^*(\mu_1) \leq W(\mu_1)$

This holds for all $\mu_1 > \mu_0$ and so (ii) is satisfied.

So C is UMP size α for H_0 vs H_1. □
Generalised likelihood ratio tests

- We now consider likelihood ratio tests for more general situations.
- Define the **likelihood of a composite hypothesis** $H : \theta \in \Theta$ given data x to be

 $$L_x(H) = \sup_{\theta \in \Theta} f(x|\theta).$$

- So far we have considered disjoint hypotheses Θ_0, Θ_1, but often we are not interested in any specific alternative, and it is easier to take $\Theta_1 = \Theta$ rather than $\Theta_1 = \Theta \setminus \Theta_0$.
- Then
 $$\Lambda_x(H_0; H_1) = \frac{L_x(H_1)}{L_x(H_0)} = \frac{\sup_{\theta \in \Theta_1} f(x|\theta)}{\sup_{\theta \in \Theta_0} f(x|\theta)} (\geq 1),$$
 (1)

 with large values of Λ_x indicating departure from H_0.
- Notice that if $\Lambda_x^* = \sup_{\theta \in \Theta \setminus \Theta_0} f(x|\theta) / \sup_{\theta \in \Theta_0} f(x|\theta)$, then
 $$\Lambda_x = \max\{1, \Lambda_x^*\}.$$
Example 8.3

Single sample: testing a given mean, known variance (z-test). Suppose that X_1, \ldots, X_n are iid $N(\mu, \sigma_0^2)$, with σ_0^2 known, and we wish to test $H_0 : \mu = \mu_0$ against $H_1 : \mu \neq \mu_0$ (μ_0 is a given constant).

- Here $\Theta_0 = \{\mu_0\}$ and $\Theta = \mathbb{R}$.
- For the denominator in (1) we have $\sup_{\Theta_0} f(x | \mu) = f(x | \mu_0)$.
- For the numerator, we have $\sup_{\Theta} f(x | \mu) = f(x | \hat{\mu})$, where $\hat{\mu}$ is the mle, so $\hat{\mu} = \bar{x}$ (check).
- Hence

$$\Lambda_x(H_0; H_1) = \frac{(2\pi \sigma_0^2)^{-n/2} \exp \left(-\frac{1}{2\sigma_0^2} \sum (x_i - \bar{x})^2 \right)}{(2\pi \sigma_0^2)^{-n/2} \exp \left(-\frac{1}{2\sigma_0^2} \sum (x_i - \mu_0)^2 \right)},$$

and we reject H_0 if Λ_x is ‘large.’

- We find that

$$2 \log \Lambda_x(H_0; H_1) = \frac{1}{\sigma_0^2} \left[\sum (x_i - \mu_0)^2 - \sum (x_i - \bar{x})^2 \right] = \frac{n}{\sigma_0^2} (\bar{x} - \mu_0)^2.$$ (check)

- Thus an equivalent test is to reject H_0 if $|\sqrt{n}(\bar{x} - \mu_0) / \sigma_0|$ is large.
8. Composite hypotheses

8.2. Generalised likelihood ratio tests

- Under H_0, $Z = \sqrt{n}(\bar{X} - \mu_0)/\sigma_0 \sim N(0, 1)$ so the size α generalised likelihood test rejects H_0 if $|\sqrt{n}(\bar{X} - \mu_0)/\sigma_0| > z_{\alpha/2}$.

- Since $n(\bar{X} - \mu_0)^2/\sigma_0^2 \sim \chi^2_1$ if H_0 is true, this is equivalent to rejecting H_0 if $n(\bar{X} - \mu_0)^2/\sigma_0^2 > \chi^2_1(\alpha)$ (check that $z_{\alpha/2}^2 = \chi^2_1(\alpha)$). □

Notes:

- This is a 'two-tailed' test - i.e. reject H_0 both for high and low values of \bar{X}.
- We reject H_0 if $|\sqrt{n}(\bar{X} - \mu_0)/\sigma_0| > z_{\alpha/2}$. A symmetric 100(1 α)% confidence interval for μ is $\bar{X} \pm z_{\alpha/2} \sigma_0/\sqrt{n}$. Therefore we reject H_0 iff μ_0 is not in this confidence interval (check).
- In later lectures the close connection between confidence intervals and hypothesis tests is explored further.
The 'generalised likelihood ratio test'

- The next theorem allows us to use likelihood ratio tests even when we cannot find the exact relevant null distribution.
- First consider the 'size' or 'dimension' of our hypotheses: suppose that H_0 imposes p independent restrictions on Θ, so for example, if and we have
 - $H_0 : \theta_{i_1} = a_1, \ldots, \theta_{i_p} = a_p \ (a_1, \ldots, a_p \text{ given numbers})$,
 - $H_0 : A\theta = b \ (A \ p \times k, \ b \ p \times 1 \text{ given})$,
 - $H_0 : \theta_i = f_i(\phi), \ i = 1, \ldots, k, \ \phi = (\phi_1, \ldots, \phi_{k-p})$.
- Then Θ has 'k free parameters' and Θ_0 has 'k – p free parameters.'
- We write $|\Theta_0| = k - p$ and $|\Theta| = k$.

Theorem 8.4

(not proved)
Suppose $\Theta_0 \subseteq \Theta_1$, $|\Theta_1| - |\Theta_0| = p$. Then under regularity conditions, as $n \to \infty$, with $\mathbf{X} = (X_1, \ldots, X_n)$, X_i’s iid, we have, if H_0 is true,

$$2 \log \Lambda_{\mathbf{X}}(H_0; H_1) \sim \chi^2_p.$$

If H_0 is not true, then $2 \log \Lambda$ tends to be larger. We reject H_0 if $2 \log \Lambda > c$ where $c = \chi^2_p(\alpha)$ for a test of approximately size α.

In Example 8.3, $|\Theta_1| - |\Theta_0| = 1$, and in this case we saw that under H_0,

$$2 \log \Lambda \sim \chi^2_1$$

exactly for all n in that particular case, rather than just approximately for large n as the Theorem shows.

(Of often the likelihood ratio is calculated with the null hypothesis in the numerator, and so the test statistic is $-2 \log \Lambda_{\mathbf{X}}(H_1; H_0)$.)