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Composite hypotheses, types of error and power

For composite hypotheses like H :θ ≥ 0, the error probabilities do not have a
single value.

Define the power function W (θ) = P(X ∈ C |θ) = P(reject H0 |θ).

We want W (θ) to be small on H0 and large on H1.

Define the size of the test to be α = supθ∈Θ0
W (θ).

For θ ∈ Θ1, 1−W (θ) = P(Type II error |θ).

Sometimes the Neyman–Pearson theory can be extended to one-sided
alternatives.

For example, in Example 7.3 we have shown that the most powerful size α
test of H0 : µ = µ0 versus H1 : µ = µ1 (where µ1 > µ0) is given by
C = {x :

√
n(x̄ − µ0)/σ0 > zα}.

This critical region depends on µ0, n, σ0, α, on the fact that µ1 > µ0, but
not on the particular value of µ1.
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Hence this C defines the most powerful size α test of H0 : µ = µ0 against
any µ1 that is larger than µ0.

This test is then uniformly most powerful size α for testing H0 : µ = µ0

against H1 : µ > µ0.

Definition 8.1

A test specified by a critical region C is uniformly most powerful (UMP) size α
test for testing H0 : θ ∈ Θ0 against H1 : θ ∈ Θ1 if

(i) supθ∈Θ0
W (θ) = α;

(ii) for any other test C∗ with size ≤ α and with power function W ∗ we have
W (θ) ≥W ∗(θ) for all θ ∈ Θ1.

UMP tests may not exist.

However likelihood ratio tests are often UMP.
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Example 8.2

Suppose X1, . . . ,Xn are iid N(µ0, σ
2
0) where σ0 is known, and we wish to test

H0 : µ ≤ µ0 against H1 : µ > µ0.

First consider testing H ′0 : µ = µ0 against H ′1 : µ = µ1 where µ1 > µ0 (as in
Example 7.3)

As in Example 7.3, the Neyman-Pearson test of size α of H ′0 against H ′1 has
C = {x :

√
n(x̄ − µ0)/σ0 > zα}.

We will show that C is in fact UMP for the composite hypotheses H0 against
H1

For µ ∈ R, the power function is

W (µ) = Pµ(reject H0) = Pµ
(√

n(X̄ − µ0)

σ0
> zα

)

= Pµ
(√

n(X̄ − µ)

σ0
> zα +

√
n(µ0 − µ)

σ0

)

= 1− Φ

(
zα +

√
n(µ0 − µ)

σ0

)
.
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power= 1 - pnorm( qnorm(0.95) + sqrt(n) * (mu0-x) / sigma0 )
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We know W (µ0) = α. (just plug in)

W (µ) is an increasing function of µ.

So supµ≤µ0
W (µ) = α, and (i) is satisfied.

For (ii), observe that for any µ > µ0, the Neyman Pearson size α test of H ′0
vs H ′1 has critical region C (the calculation in Example 7.3 depended only on
the fact that µ > µ0 and not on the particular value of µ1.)

Let C∗ and W ∗ belong to any other test of H0 vs H1 of size ≤ α
Then C∗ can be regarded as a test of H ′0 : µ = µ0 vs H ′1 of size ≤ α, and
NP-Lemma says that W ∗(µ1) ≤W (µ1)

This holds for all µ1 > µ0 and so (ii) is satisfied.

So C is UMP size α for H0 vs H1. �
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Generalised likelihood ratio tests

We now consider likelihood ratio tests for more general situations.

Define the likelihood of a composite hypothesis H : θ ∈ Θ given data x to
be

Lx(H) = sup
θ∈Θ

f (x |θ).

So far we have considered disjoint hypotheses Θ0, Θ1, but often we are not
interested in any specific alternative, and it is easier to take Θ1 = Θ rather
than Θ1 = Θ \Θ0.

Then

Λx(H0;H1) =
Lx(H1)

Lx(H0)
=

supθ∈Θ1
f (x |θ)

supθ∈Θ0
f (x |θ)

(≥ 1), (1)

with large values of Λx indicating departure from H0.

Notice that if Λ∗x = supθ∈Θ\Θ0
f (x |θ)/ supθ∈Θ0

f (x |θ), then
Λx = max{1,Λ∗x}.
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Example 8.3

Single sample: testing a given mean, known variance (z-test). Suppose that
X1, . . . ,Xn are iid N(µ, σ2

0), with σ2
0 known, and we wish to test H0 : µ = µ0

against H1 : µ 6= µ0 (µ0 is a given constant).

Here Θ0 = {µ0} and Θ = R.

For the denominator in (1) we have supΘ0
f (x |µ) = f (x |µ0).

For the numerator, we have supΘ f (x |µ) = f (x | µ̂), where µ̂ is the mle, so
µ̂ = x̄ (check).

Hence

Λx(H0;H1) =
(2πσ2

0)−n/2 exp
(
− 1

2σ2
0

∑
(xi − x̄)2

)

(2πσ2
0)−n/2 exp

(
− 1

2σ2
0

∑
(xi − µ0)2

) ,

and we reject H0 if Λx is ‘large.’

We find that

2 log Λx(H0;H1) =
1

σ2
0

[∑
(xi − µ0)2 −

∑
(xi − x̄)2

]
=

n

σ2
0

(x̄−µ0)2. (check)

Thus an equivalent test is to reject H0 if
∣∣√n(x̄ − µ0)/σ0

∣∣ is large.
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Under H0, Z =
√
n(X̄ − µ0)/σ0 ∼ N(0, 1) so the size α generalised likelihood

test rejects H0 if
∣∣√n(x̄ − µ0)/σ0

∣∣ > zα/2.

Since n(X̄ − µ0)2/σ2
0 ∼ χ2

1 if H0 s true, this is equivalent to rejecting H0 if
n(X̄ − µ0)2/σ2

0 > χ2
1(α) (check that z2

α/2 = χ2
1(α)). �

Notes:

This is a ’two-tailed’ test - i.e. reject H0 both for high and low values of x̄ .

We reject H0 if
∣∣√n(x̄ − µ0)/σ0

∣∣ > zα/2. A symmetric 100(1− α)%
confidence interval for µ is x̄ ± zα/2 σ0/

√
n. Therefore we reject H0 iff µ0 is

not in this confidence interval (check).

In later lectures the close connection between confidence intervals and
hypothesis tests is explored further.
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The ’generalised likelihood ratio test’

The next theorem allows us to use likelihood ratio tests even when we cannot
find the exact relevant null distribution.

First consider the ‘size’ or ‘dimension’ of our hypotheses: suppose that H0

imposes p independent restrictions on Θ, so for example, if and we have

H0 : θi1 = a1, . . . , θip = ap (a1, . . . , ap given numbers),

H0 : Aθ = b (A p × k, b p × 1 given),

H0 : θi = fi (φ), i = 1, . . . , k, φ = (φ1, . . . , φk−p).

Then Θ has ‘k free parameters’ and Θ0 has ‘k − p free parameters.’

We write |Θ0| = k − p and |Θ| = k.
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Theorem 8.4

(not proved)
Suppose Θ0 ⊆ Θ1, |Θ1| − |Θ0| = p. Then under regularity conditions, as n→∞,
with X = (X1, . . . ,Xn), Xi ’s iid, we have, if H0 is true,

2 log ΛX(H0;H1) ∼ χ2
p.

If H0 is not true, then 2 log Λ tends to be larger. We reject H0 if 2 log Λ > c where
c = χ2

p(α) for a test of approximately size α.

In Example 8.3, |Θ1| − |Θ0| = 1, and in this case we saw that under H0,
2 log Λ ∼ χ2

1 exactly for all n in that particular case, rather than just
approximately for large n as the Theorem shows.

(Often the likelihood ratio is calculated with the null hypothesis in the numerator,
and so the test statistic is −2 log ΛX(H1;H0).)
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