Lecture 8. Composite hypotheses

Lecture 8. Composite hypotheses 1 (1-11)

8. Composite hypotheses ~ 8.1. Composite hypotheses, types of error and power

@ Hence this C defines the most powerful size a test of Hp : pt = po against
any pq that is larger than pg.

@ This test is then uniformly most powerful size « for testing Hy : it = po
against Hy : > pp.

Definition 8.1
A test specified by a critical region C is uniformly most powerful (UMP) size «
test for testing Hp : 0 € ©¢ against Hy : 0 € O if
(i) suppee, W(0) = a;
(ii) for any other test C* with size < « and with power function W* we have
W(0) > W*(6) for all 6 € ©;.

@ UMP tests may not exist.

@ However likelihood ratio tests are often UMP.
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8. Composite hypotheses  8.1. Composite hypotheses, types of error and power

Composite hypotheses, types of error and power

o For composite hypotheses like H:6 > 0, the error probabilities do not have a
single value.

Define the power function W (0) = P(X € C|0) = P(reject Hy |0).
We want W(6) to be small on Hy and large on H;.

Define the size of the test to be o = supycg, W(0).

For 0 € ©1, 1 — W(0) = P(Type Il error|8).

Sometimes the Neyman—Pearson theory can be extended to one-sided
alternatives.

@ For example, in Example 7.3 we have shown that the most powerful size a
test of Hy : 1 = o versus Hy : 1 = py (where pg > pg) is given by
C={x:+/n(x—puo)/oo > za}.

@ This critical region depends on g, n, og, , on the fact that pu; > po, but
not on the particular value of y;.
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8. Composite hypotheses ~ 8.1. Composite hypotheses, types of error and power
Example 8.2

Suppose Xi, ..., X, are iid N(uo,02) where g is known, and we wish to test
Ho : v < po against Hy @ > pp.

o First consider testing Hy : = po against Hj : = p1 where pg > o (as in
Example 7.3)

@ As in Example 7.3, the Neyman-Pearson test of size o of H{j against Hj has
C={x:/n(x—po)/oo > za}

o We will show that C is in fact UMP for the composite hypotheses Hy against
Hy

o For u € R, the power function is

W(u) = Pu(reject Ho) =P, (M > za>
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8. Composite hypotheses  8.1. Composite hypotheses, types of error and power

power= 1 - pnorm( gnorm(0.95) + sqrt(n) * (mu0-x) / sigmal )

Power curve for n=4, o=1
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8. Composite hypotheses  8.2. Generalised likelihood ratio tests

Generalised likelihood ratio tests

We now consider likelihood ratio tests for more general situations.

Define the likelihood of a composite hypothesis H : § € © given data x to
be

Ly(H) = sup f(x|9).

0eo

So far we have considered disjoint hypotheses ©g, ©1, but often we are not
interested in any specific alternative, and it is easier to take ©; = © rather
than ©; = 0© \ (S
Then

oy L) _ supyce, (x[0)
M) = T () ~ e, 7l 0) 2 g

with large values of A, indicating departure from Hj.

Notice that if A; = supyce\e, f(X[0)/supgece, f(x]0), then
A = max{1,A}}.
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8. Composite hypotheses  8.1. Composite hypotheses, types of error and power

We know W(uo) = . (just plug in)
W(u) is an increasing function of p.
So sup,,<,,, W(1) = a, and (i) is satisfied.

For (i), observe that for any p > po, the Neyman Pearson size « test of H|
vs Hj has critical region C (the calculation in Example 7.3 depended only on
the fact that p > pp and not on the particular value of u4.)

o Let C* and W™ belong to any other test of Hy vs H; of size < «

@ Then C* can be regarded as a test of Hj : = po vs Hj of size < «, and
NP-Lemma says that W*(u1) < W(u1)

@ This holds for all p3 > g and so (ii) is satisfied.

@ So C is UMP size « for Hy vs H;. O
Lecture 8. Composite hypotheses 6 (1-11)
8. Composite hypotheses  8.2. Generalised likelihood ratio tests
Example 8.3

Single sample: testing a given mean, known variance (z-test). Suppose that
Xi,..., Xy are iid N(p, 03), with o3 known, and we wish to test Hp : 1 = po
against Hy : pu # po (po is a given constant).

@ Here ©g = {io} and © =R.
@ For the denominator in (1) we have supg, f(x| i) = f(x| o).
@ For the numerator, we have supg f(x|u) = f(x| i), where fi is the mle, so
fi = x (check).
@ Hence
(2708) " exp (— 2 S — %))
AX(HO; Hl) = - )
(2708) "2 exp (52 L(xi — 10)?)
0
and we reject Hy if Ay is ‘large.’
@ We find that
1 n
2log Ax(Ho; H1) = 2 {Z(Xi — o)’ =Y (xi — ?)2} = Ufg(x—uo)? (check)

e Thus an equivalent test is to reject Hp if |\/n(X — po)/oo| is large.
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8. Composite hypotheses  8.2. Generalised likelihood ratio tests

o Under Hy, Z = v/n(X — po)/o0 ~ N(0,1) so the size o generalised likelihood

test rejects Hy if |\/ﬁ()'< - Mo)/00| > Zo/0-
e Since n(X — p9)?/0¢ ~ X3 if Hy s true, this is equivalent to rejecting H if
n(X — no)?/o§ > xi(a) (check that 2 , = x3(a)). O
Notes:
@ This is a "two-tailed’ test - i.e. reject Hy both for high and low values of x.
o We reject Hy if ‘\/E(S( — ,uo)/a()’ > Z4/2. A symmetric 100(1 — )%

confidence interval for p is X &= z, /> ao/+/n. Therefore we reject Hy iff g is

not in this confidence interval (check).

@ In later lectures the close connection between confidence intervals and
hypothesis tests is explored further.
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8. Composite hypotheses  8.3. The 'generalised likelihood ratio test’

Theorem 8.4
(not proved)
Suppose ©y C Oy,
with X = (X,...,X,), Xi's iid, we have, if Hy is true,

2log Ax(Ho; Hi) ~ x

2
P

If Hy is not true, then 2log A\ tends to be larger. We reject Hy if 2log A > ¢ where

c= Xf,(a) for a test of approximately size .

©1| — |©0| = p. Then under regularity conditions, as n — oo,

In Example 8.3, |©1] — |©¢| = 1, and in this case we saw that under Hp,
2log A ~ X2 exactly for all nin that particular case, rather than just
approximately for large n as the Theorem shows.

(Often the likelihood ratio is calculated with the null hypothesis in the numerator,

and so the test statistic is —2 log Ax(H1; Ho).)
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8. Composite hypotheses 8.3. The 'generalised likelihood ratio test'

The 'generalised likelihood ratio test’

@ The next theorem allows us to use likelihood ratio tests even when we cannot
find the exact relevant null distribution.

o First consider the ‘size’ or ‘dimension’ of our hypotheses: suppose that Hy
imposes p independent restrictions on ©, so for example, if and we have

o Hy: 0y =a,...,0, =ap (a1,...,ap given numbers),

o Hy: A0 =b (A pxk,bpx1given),

o Ho:6i=f(¢), i=1,....k ¢=(d1,...,bkp).
@ Then © has 'k free parameters’ and ©g has ‘k — p free parameters.’
o We write |©g| = k — p and |©] = k.
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