Lecture 7. Simple Hypotheses

Lecture 7. Simple Hypotheses

7. Simple hypotheses 7.1. Introduction

A simple hypothesis H specifies f completely (eg $H_0: \theta = 1/2$ in (a)).

Otherwise H is a **composite hypothesis** (eg $H_1: \theta \neq 1/2$ in (b)).

For testing H_0 against an alternative hypothesis H_1 , a test procedure has to partition \mathcal{X}^n into two disjoint and exhaustive regions C and \bar{C} , such that if $\mathbf{x} \in C$ then H_0 is rejected and if $\mathbf{x} \in \bar{C}$ then H_0 is not rejected.

The **critical region** (or **rejection region**) *C* defines the test.

When performing a test we may (i) arrive at a correct conclusion, or (ii) make one of two types of error:

- (a) we may reject H_0 when H_0 is true (a **Type I error**),
- (b) we may not reject H_0 when H_0 is false (a **Type II error**).

NB: When Neyman and Pearson developed the theory in the 1930s, they spoke of 'accepting' H_0 . Now we generally refer to 'not rejecting H_0 '.

Lecture 7. Simple Hypotheses 3 (1–1)

7. Simple hypotheses 7.1. Introduction

Introduction

Let X_1, \ldots, X_n be iid, each taking values in \mathcal{X} , each with unknown pdf/pmf f, and suppose that we have two hypotheses, H_0 and H_1 , about f.

On the basis of data X=x, we make a choice between the two hypotheses.

Examples

- (a) A coin has $\mathbb{P}(\text{Heads}) = \theta$, and is thrown independently n times. We could have $H_0: \theta = 1/2$ versus $H_1: \theta = 3/4$.
- (b) As in (a), with $H_0: \theta = 1/2$ as before, but with $H_1: \theta \neq 1/2$.
- (c) Suppose X_1, \ldots, X_n are iid discrete rv's. We could have H_0 : the distribution is Poisson with unknown mean, and H_1 : the distribution is not Poisson. This is a goodness-of-fit test.
- (d) General parametric case: X_1, \ldots, X_n are iid with density $f(x | \theta)$, with $H_0: \theta \in \Theta_0$ and $H_1: \theta \in \Theta_1$ where $\Theta_0 \cap \Theta_1 = \emptyset$ (we may or may not have $\Theta_0 \cup \Theta_1 = \Theta$).
- (e) We could have $H_0: f = f_0$ and $H_1: f = f_1$ where f_0 and f_1 are densities that are completely specified but do not come from the same parametric family.

Lecture 7. Simple Hypotheses 2 (1-

7. Simple hypotheses 7.2. Testing a simple hypothesis against a simple alternative

Testing a simple hypothesis against a simple alternative

When H_0 and H_1 are both simple, let

$$\alpha = \mathbb{P}(\mathsf{Type} \; \mathsf{I} \; \mathsf{error}) = \mathbb{P}(\mathbf{X} \in C \, | \, H_0 \; \mathsf{is} \; \mathsf{true})$$

 $\beta = \mathbb{P}(\mathsf{Type} \; \mathsf{II} \; \mathsf{error}) = \mathbb{P}(\mathbf{X} \notin C \, | \, H_1 \; \mathsf{is} \; \mathsf{true}).$

We define the **size** of the test to be α .

 $1-\beta$ is also known as the **power** of the test to detect H_1 .

Ideally we would like $\alpha = \beta = 0$, but typically it is not possible to find a test that makes both α and β arbitrarily small.

Definition 7.1

- The **likelihood** of a simple hypothesis $H: \theta = \theta^*$ given data **x** is $L_{\mathbf{x}}(H) = f_{\mathbf{x}}(\mathbf{x} | \theta = \theta^*)$.
- The **likelihood ratio** of two simple hypotheses H_0 , H_1 , given data \mathbf{x} , is $\Lambda_{\mathbf{x}}(H_0; H_1) = L_{\mathbf{x}}(H_1)/L_{\mathbf{x}}(H_0)$.
- A likelihood ratio test (LR test) is one where the critical region C is of the form $C = \{\mathbf{x} : \Lambda_{\mathbf{x}}(H_0; H_1) > k\}$ for some k. \square

Lecture 7. Simple Hypotheses 4 (1–1

Theorem 7.2

(The Neyman–Pearson Lemma) Suppose $H_0: f=f_0$, $H_1: f=f_1$, where f_0 and f_1 are continuous densities that are nonzero on the same regions. Then among all tests of size less than or equal to α , the test with smallest probability of a Type II error is given by $C=\{\mathbf{x}: f_1(\mathbf{x})/f_0(\mathbf{x})>k\}$ where k is chosen such that $\alpha=\mathbb{P}(\text{reject }H_0\,|\,H_0)=\mathbb{P}(\mathbf{X}\in C\,|\,H_0)=\int_C f_0(\mathbf{x})d\mathbf{x}$.

Proof

The given C specifies a likelihood ratio test with size α .

Let
$$\beta = \mathbb{P}(\mathbf{X} \notin C | f_1) = \int_{\bar{C}} f_1(\mathbf{x}) d\mathbf{x}$$
.

Let C^* be the critical region of any other test with size less than or equal to α .

Let
$$\alpha^* = \mathbb{P}(\mathbf{X} \in C^* | f_0)$$
, $\beta^* = \mathbb{P}(\mathbf{X} \not\in C^* | f_1)$.

We want to show $\beta \leq \beta^*$.

Lecture 7. Simple Hypotheses

We know $\alpha^* \leq \alpha$, ie $\int_{C^*} f_0(\mathbf{x}) d\mathbf{x} \leq \int_{C} f_0(\mathbf{x}) d\mathbf{x}$.

Also, on C we have $f_1(\mathbf{x}) > kf_0(\mathbf{x})$, while on \bar{C} we have $f_1(\mathbf{x}) \leq kf_0(\mathbf{x})$.

Thus

$$\int_{\bar{C}^*\cap C} f_1(\mathbf{x}) d\mathbf{x} \geq k \int_{\bar{C}^*\cap C} f_0(\mathbf{x}) d\mathbf{x}, \qquad \int_{\bar{C}\cap C^*} f_1(\mathbf{x}) d\mathbf{x} \leq k \int_{\bar{C}\cap C^*} f_0(\mathbf{x}) d\mathbf{x}. \quad (1)$$

Lecture 7. Simple Hypotheses 5 (1–1)

7. Simple hypotheses 7.2. Testing a simple hypothesis against a simple alternative

- \bullet We assume continuous densities to ensure that a LR test of exactly size α exists.
- \bullet The Neyman–Pearson Lemma shows that α and β cannot both be arbitrarily small.
- It says that the most powerful test (ie the one with the smallest Type II error probability), among tests with size smaller than or equal to α , is the size α likelihood ratio test.
- Thus we should fix $\mathbb{P}(\mathsf{Type}\ \mathsf{I}\ \mathsf{error})$ at some level α and then use the Neyman–Pearson Lemma to find the best test.
- Here the hypotheses are not treated symmetrically; H_0 has precedence over H_1 and a Type I error is treated as more serious than a Type II error.
- H_0 is called the **null hypothesis** and H_1 is called the **alternative hypothesis**.
- The null hypothesis is a conservative hypothesis, ie one of "no change," "no bias," "no association," and is only rejected if we have clear evidence against it.
- H_1 represents the kind of departure from H_0 that is of interest to us.

Hence

$$\beta - \beta^{*} = \int_{\bar{C}} f_{1}(\mathbf{x}) d\mathbf{x} - \int_{\bar{C}^{*}} f_{1}(\mathbf{x}) d\mathbf{x}$$

$$= \int_{\bar{C} \cap C^{*}} f_{1}(\mathbf{x}) d\mathbf{x} + \int_{\bar{C} \cap \bar{C}^{*}} f_{1}(\mathbf{x}) d\mathbf{x} - \int_{\bar{C}^{*} \cap C} f_{1}(\mathbf{x}) d\mathbf{x} - \int_{\bar{C} \cap \bar{C}^{*}} f_{1}(\mathbf{x}) d\mathbf{x}$$

$$\leq k \int_{\bar{C} \cap C^{*}} f_{0}(\mathbf{x}) d\mathbf{x} - k \int_{\bar{C}^{*} \cap C} f_{0}(\mathbf{x}) d\mathbf{x} \qquad \text{by (??)}$$

$$= k \left\{ \int_{\bar{C} \cap C^{*}} f_{0}(\mathbf{x}) d\mathbf{x} + \int_{C \cap C^{*}} f_{0}(\mathbf{x}) d\mathbf{x} \right\}$$

$$-k \left\{ \int_{\bar{C}^{*} \cap C} f_{0}(\mathbf{x}) d\mathbf{x} + \int_{C \cap C^{*}} f_{0}(\mathbf{x}) d\mathbf{x} \right\}$$

$$= k (\alpha^{*} - \alpha)$$

$$\leq 0.$$

П

Lecture 7. Simple Hypotheses 6 (1–

7. Simple hypotheses 7.2. Testing a simple hypothesis against a simple alternative

Example 7.3

Suppose that X_1, \ldots, X_n are iid $N(\mu, \sigma_0^2)$, where σ_0^2 is known. We want to find the best size α test of $H_0: \mu = \mu_0$ against $H_1: \mu = \mu_1$, where μ_0 and μ_1 are known fixed values with $\mu_1 > \mu_0$.

$$\begin{split} \Lambda_{\mathbf{x}}(H_0; H_1) &= \frac{(2\pi\sigma_0^2)^{-n/2} \exp\left(-\frac{1}{2\sigma_0^2} \sum (x_i - \mu_1)^2\right)}{(2\pi\sigma_0^2)^{-n/2} \exp\left(-\frac{1}{2\sigma_0^2} \sum (x_i - \mu_0)^2\right)} \\ &= \exp\left(\frac{(\mu_1 - \mu_0)}{\sigma_0^2} n\bar{\mathbf{x}} + \frac{n(\mu_0^2 - \mu_1^2)}{2\sigma_0^2}\right) \quad \text{(check)}. \end{split}$$

• This is an increasing function of \bar{x} , so for any k,

$$\Lambda_{\mathbf{v}} > k \Leftrightarrow \bar{x} > c$$
 for some c.

- Hence we reject H_0 if $\bar{x} > c$ where c is chosen such that $\mathbb{P}(\bar{X} > c \mid H_0) = \alpha$.
- Under H_0 , $\bar{X} \sim N(\mu_0, \sigma_0^2/n)$, so $Z = \sqrt{n}(\bar{X} \mu_0)/\sigma_0 \sim N(0, 1)$.
- Since $\bar{x} > c \Leftrightarrow z > c'$ for some c', the size α test rejects H_0 if $z = \sqrt{n}(\bar{x} \mu_0)/\sigma_0 > z_{\alpha}$.

Lecture 7. Simple Hypotheses 8 (1–1)

7. Simple hypotheses 7.2. Testing a simple hypothesis against a simple alternative

- Suppose $\mu_0=5$, $\mu_1=6$, $\sigma_0=1$, $\alpha=0.05$, n=4 and $\mathbf{x}=(5.1,5.5,4.9,5.3)$, so that $\bar{x}=5.2$.
- From tables, $z_{0.05} = 1.645$.
- We have $z = \frac{\sqrt{n}(\bar{x} \mu_0)}{\sigma_0} = 0.4$ and this is less than 1.645, so **x** is not in the rejection region.
- We do not reject H_0 at the 5%- level; the data are consistent with H_0 .
- This does not mean that H_0 is 'true', just that it cannot be ruled out.
- This is called a *z*-**test**. □

Lecture 7. Simple Hypotheses 9

7. Simple hypotheses 7.3. P-values

P-values

• In this example, LR tests reject H_0 if z > k for some constant k.

- The size of such a test is $\alpha = \mathbb{P}(Z > k | H_0) = 1 \Phi(k)$, and is decreasing as k increases.
- Our observed value z will be in the rejection region $\Leftrightarrow z > k \Leftrightarrow \alpha > p^* = \mathbb{P}(Z > z | H_0)$.
- The quantity p^* is called the p-value of our observed data x.
- For Example 7.3, z = 0.4 and so $p^* = 1 \Phi(0.4) = 0.3446$.
- In general, the p-value is sometimes called the 'observed significance level' of x and is the probability under H₀ of seeing data that are 'more extreme' than our observed data x.
- Extreme observations are viewed as providing evidence againt H_0 .
- * The p-value has a Uniform(0,1) pdf under the null hypothesis. To see this for a z-test, note that

$$\mathbb{P}(p* \Phi^{-1}(1 - p) \mid H_0)$$
$$= 1 - \Phi(\Phi^{-1}(1 - p)) = 1 - (1 - p) = p.$$

Lecture 7. Simple Hypotheses 10 (1–1)