7. Simple hypotheses

A simple hypothesis H specifies f completely (eg $H_0: \theta = 1/2$ in (a)). Otherwise H is a composite hypothesis (eg $H_1: \theta \neq 1/2$ in (b)).

For testing H_0 against an alternative hypothesis H_1, a test procedure has to partition \mathcal{X}^n into two disjoint and exhaustive regions C and \bar{C}, such that if $x \in C$ then H_0 is rejected and if $x \in \bar{C}$ then H_0 is not rejected.

The critical region (or rejection region) C defines the test. When performing a test we may (i) arrive at a correct conclusion, or (ii) make one of two types of error:

(a) we may reject H_0 when H_0 is true (a Type I error).
(b) we may not reject H_0 when H_0 is false (a Type II error).

NB: When Neyman and Pearson developed the theory in the 1930s, they spoke of ‘accepting’ H_0. Now we generally refer to ‘not rejecting H_0’.

Testing a simple hypothesis against a simple alternative

When H_0 and H_1 are both simple, let

$$\alpha = P(\text{Type I error}) = P(x \in C | H_0 \text{ is true})$$
$$\beta = P(\text{Type II error}) = P(x \notin C | H_1 \text{ is true})$$

We define the size of the test to be α.

$1 - \beta$ is also known as the power of the test to detect H_1. Ideally we would like $\alpha = \beta = 0$, but typically it is not possible to find a test that makes both α and β arbitrarily small.

Definition 7.1

- The likelihood of a simple hypothesis $H: \theta = \theta^*$ given data x is $L_x(H) = f(x | \theta = \theta^*)$.
- The likelihood ratio of two simple hypotheses H_0, H_1, given data x, is $\Lambda_x(H_0, H_1) = L_x(H_1)/L_x(H_0)$.
- A likelihood ratio test (LR test) is one where the critical region C is of the form $C = \{x : \Lambda_x(H_0, H_1) > k\}$ for some k. □

Let X_1, \ldots, X_n be iid, each taking values in \mathcal{X}, each with unknown pdf/pmf f, and suppose that we have two hypotheses, H_0 and H_1, about f.

On the basis of data $X = x$, we make a choice between the two hypotheses.

Examples

(a) A coin has $P(\text{Heads}) = \theta$, and is thrown independently n times. We could have $H_0 : \theta = 1/2$ versus $H_1 : \theta = 3/4$.
(b) As in (a), with $H_0 : \theta = 1/2$ as before, but with $H_1 : \theta \neq 1/2$.
(c) Suppose X_1, \ldots, X_n are iid discrete rv’s. We could have H_0 : the distribution is Poisson with unknown mean, and H_1 : the distribution is not Poisson. This is a goodness-of-fit test.
(d) General parametric case: X_1, \ldots, X_n are iid with density $f(x | \theta)$, with $H_0: \theta \in \Theta_0$ and $H_1: \theta \in \Theta_1$ where $\Theta_0 \cap \Theta_1 = \emptyset$ (we may or may not have $\Theta_0 \cup \Theta_1 = \Theta$).
(e) We could have $H_0: f = f_0$ and $H_1: f = f_1$ where f_0 and f_1 are densities that are completely specified but do not come from the same parametric family.
Proof

The given C specifies a likelihood ratio test with size α.

Let $\beta = \mathbb{P}(X \not\in C \mid f_1) = \int_{\bar{C}} f_1(x) \, dx$.

Let C^* be the critical region of any other test with size less than or equal to α.

Let $\alpha^* = \mathbb{P}(X \in C^* \mid f_0)$, $\beta^* = \mathbb{P}(X \not\in C^* \mid f_1)$.

We want to show $\beta \leq \beta^*$.

We know $\alpha^* \leq \alpha$, i.e. $\int_{\bar{C}} f_0(x) \, dx \leq \int_{\bar{C}} f_0(x) \, dx$.

Also, on C we have $f_1(x) > k f_0(x)$, while on \bar{C} we have $f_1(x) \leq k f_0(x)$.

Thus

$$\int_{C} f_0(x) \, dx \leq k \int_{C} f_0(x) \, dx, \quad \int_{C} f_0(x) \, dx \leq k \int_{C} f_0(x) \, dx. \quad (1)$$

Hence

\[
\beta - \beta^* = \int_{C} f_1(x) \, dx - \int_{C^*} f_1(x) \, dx = \int_{\bar{C}} f_1(x) \, dx + \int_{C \cap C^*} f_1(x) \, dx - \int_{C^*} f_1(x) \, dx \\
\leq k \int_{\bar{C}} f_0(x) \, dx - k \int_{C \cap C^*} f_0(x) \, dx = k \left(\int_{\bar{C}} f_0(x) \, dx + \int_{C \cap C^*} f_0(x) \, dx \right) - k \left(\int_{C \cap C^*} f_0(x) \, dx + \int_{C^*} f_0(x) \, dx \right) \\
= k (\alpha^* - \alpha) \leq 0.
\]

\[\square\]

Example 7.3

Suppose that X_1, \ldots, X_n are iid $N(\mu, \sigma^2_0)$, where σ^2_0 is known. We want to find the best size α test of $H_0: \mu = \mu_0$ against $H_1: \mu = \mu_1$, where μ_0 and μ_1 are known fixed values with $\mu_1 > \mu_0$.

\[
\Lambda_\alpha(H_0; H_1) = \frac{(2\pi\sigma^2_0)^{-n/2} \exp \left(-\frac{1}{2\sigma^2_0} \sum (x_i - \mu_1)^2 \right)}{(2\pi\sigma^2_0)^{-n/2} \exp \left(-\frac{1}{2\sigma^2_0} \sum (x_i - \mu_0)^2 \right)} = \exp \left(\frac{(\mu_1 - \mu_0) n \bar{x} + n(\mu_0^2 - \mu_1^2)}{2\sigma^2_0} \right) \quad (\text{check}).
\]

This is an increasing function of \bar{x}, so for any k,

\[\Lambda_\alpha > k \Leftrightarrow \bar{x} > c \text{ for some } c.
\]

Hence we reject H_0 if $\bar{x} > c$ where c is chosen such that $\mathbb{P}(\bar{X} > c \mid H_0) = \alpha$.

Under H_0, $\bar{x} \sim N(\mu_0, \sigma^2_0/n)$, so $Z = \sqrt{n}(\bar{x} - \mu_0)/\sigma_0 \sim N(0,1)$.

Since $\bar{x} > c \Leftrightarrow Z > c'$ for some c', the size α test rejects H_0 if $Z = \sqrt{n}(\bar{x} - \mu_0)/\sigma_0 > z_\alpha$.

- We assume continuous densities to ensure that a LR test of exactly size α exists.
- The Neyman–Pearson Lemma shows that α and β cannot both be arbitrarily small.
- It says that the most powerful test (ie the one with the smallest Type II error probability), among tests with size smaller than or equal to α, is the size α likelihood ratio test.
- Thus we should fix $\mathbb{P}(\text{Type I error})$ at some level α and then use the Neyman–Pearson Lemma to find the best test.
- Here the hypotheses are not treated symmetrically; H_0 has precedence over H_1 and a Type I error is treated as more serious than a Type II error.
- H_0 is called the null hypothesis and H_1 is called the alternative hypothesis.
- The null hypothesis is a conservative hypothesis, ie one of “no change,” “no bias,” “no association,” and is only rejected if we have clear evidence against it.
- H_1 represents the kind of departure from H_0 that is of interest to us.
7. Simple hypotheses

7.2. Testing a simple hypothesis against a simple alternative

Suppose $\mu_0 = 5, \mu_1 = 6, \sigma_0 = 1, \alpha = 0.05, n = 4$ and $x = (5.1, 5.5, 4.9, 5.3)$, so that $\bar{x} = 5.2$.

- From tables, $z_{0.05} = 1.645$.
- We have $z = \frac{\sqrt{n}(\bar{x} - \mu_0)}{\sigma_0} = 0.4$ and this is less than 1.645, so x is not in the rejection region.
- We do not reject H_0 at the 5%- level; the data are consistent with H_0.
- This does not mean that H_0 is 'true', just that it cannot be ruled out.
- This is called a z-test.

P-values

- In this example, LR tests reject H_0 if $z > k$ for some constant k.
- The size of such a test is $\alpha = P(Z > k \mid H_0) = 1 - \Phi(k)$, and is decreasing as k increases.
- Our observed value z will be in the rejection region $\iff z > k \iff \alpha > p^* = P(Z > z \mid H_0)$.
- The quantity p^* is called the p-value of our observed data x.
- For Example 7.3, $z = 0.4$ and so $p^* = 1 - \Phi(0.4) = 0.3446$.
- In general, the p-value is sometimes called the 'observed significance level' of x and is the probability under H_0 of seeing data that are 'more extreme' than our observed data x.
- Extreme observations are viewed as providing evidence against H_0.
- The p-value has a Uniform(0,1) pdf under the null hypothesis. To see this for a z-test, note that

 $P(p^* < p \mid H_0) = P([1 - \Phi(Z)] < p \mid H_0) = P(Z > \Phi^{-1}(1 - p) \mid H_0)$

 $= 1 - \Phi(\Phi^{-1}(1 - p)) = 1 - (1 - p) = p.$